2018-12-10 10:19:50 +00:00
\documentclass [12pt, a4paper] { article}
%packages
\usepackage [ngerman] { babel}
\usepackage [utf8x] { inputenc}
%Formel packages
\usepackage { amsmath}
\usepackage { amsthm}
\usepackage { amsbsy}
\usepackage { amssymb}
\usepackage { enumerate}
2018-12-10 12:18:40 +00:00
\usepackage { geometry}
\geometry { a4paper, top=25mm, left=18mm, right=15mm, bottom=30mm,
headsep=10mm, footskip=12mm}
2018-12-10 10:19:50 +00:00
\begin { document}
\section * { Computer Graphics - Excercise 2}
\begin { align*}
f(u,v) = R \begin { pmatrix} cos(u) \\ sin(u) \\ 0 \end { pmatrix} + r \begin { pmatrix} cos(u) \times cos(v) \\ sin(u) \times cos(v) \\ sin(v) \end { pmatrix}
\end { align*}
\subsection * { 2.1}
\subsection * { a)}
\begin { align*}
\frac { \delta f } { \delta u} (u,v) & = \begin { pmatrix} R (-sin(u)) + r (cos(v) \times -sin(u)) \\ R \times cos(u) + r(cos(v)\times cos(u)) \\ 0 \end { pmatrix} \\
\\
\frac { \delta f } { \delta v} (u,v) & = \begin { pmatrix} r (cos(u) \times (-sin(v))) \\ r(-sin(v) \times sin(u)) \\ r \times cos(v) \end { pmatrix} \\
\\
\Rightarrow Jacobian:\\
J_ f (u,f) & =\begin { pmatrix} R \times (-sin(u)) +r (cos(v) \times -sin(u)) & r (cos(u) \times (-sin(v))) \\ sin(u) \times cos(v) & r(-sin(v) \times sin(u)) \\ 0 & r \times cos(v)\end { pmatrix} \\
\end { align*}
\subsection * { b)}
$ I _ { \tau } ^ s = \begin { pmatrix } E & F \\ F & G \end { pmatrix } $ mit $ s _ u = \frac { \delta f } { \delta u } ( u,v ) , s _ v = \frac { \delta f } { \delta v } ( u,v ) \\
\\
2018-12-10 12:18:40 +00:00
E = ||s_ u||^ 2 = \\
\sqrt { (R (-sin(u)) + r (cos(v) \times -sin(u)))^ 2+(R \times cos(u) + r(cos(v)\times cos(u)))^ 2+0^ 2} ^ 2 = \\
\sqrt { R^ 2 ((-sin(u))^ 2+cos(u)^ 2)+2Rrcos(v)((-sin(u))^ 2 +cos(u)^ 2)+r^ 2 cos(v)((-sin(u))^ 2+cos(u)^ 2)} ^ 2 =
\sqrt { (R^ 2 + 2Rrcos(v) + r^ 2cos(v)^ 2} ^ 2 = (r(cos(u))+R)^ 2\\
2018-12-10 10:19:50 +00:00
\\
F = < s_ u , s_ v > = 0\\
\\
2018-12-10 12:18:40 +00:00
G = ||s_ v||^ 2 = \\
\sqrt { (r (cos(u) \times (-sin(v))))^ 2+(r(-sin(v) \times sin(u)))^ 2+(r \times cos(v))^ 2} ^ 2 =\\
\sqrt { (r^ 2 \times cos(u)^ 2 \times (-sin(v))^ 2)+(r^ 2((-sin(v))^ 2 \times sin(u)^ 2))+(r^ 2 \times cos(v)^ 2)} ^ 2 =\\
\sqrt { r^ 2(sin(v)^ 2 (cos(u)^ 2 \times sin(u)^ 2)+cos(v)^ 2} ^ 2 =\\
\sqrt { r^ 2(sin(v)^ 2+cos(v)^ 2} ^ 2 = r^ 2\\
$
2018-12-10 10:19:50 +00:00
\\
$ \Rightarrow I _ { \tau } ^ f = \begin { pmatrix } ( r ( cos ( u ) ) + R ) ^ 2 & 0 \\ 0 & r ^ 2 \end { pmatrix } $
\subsection * { c)}
Aus der Vorlesung: $ dA = \sqrt { det I _ { \tau } ^ f } \, du \, dv $ \\
\begin { align*}
\Rightarrow dA & = \sqrt { det \begin { pmatrix} (r(cos(u))+R)^ 2 & 0 \\ 0 & r^ 2 \end { pmatrix} } \, du\, dv\\
\Rightarrow dA & = r(r(cos(u))+R) \, du\, dv\\
\end { align*}
\\
$ \Rightarrow A = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 2 \pi } r ( r ( cos ( u ) ) + R ) \, du \, dv = 2 \pi r \times \int _ { 0 } ^ { 2 \pi } r ( cos ( u ) ) + R \, dv = \\ \\ 2 \pi r [ Rv + r ( sin ( v ) ] _ { 0 } ^ { 2 \pi } = 2 \pi r \times ( 2 \pi R ) = \underline { \underline { 4 \pi ^ 2 Rr } } $
2019-01-05 13:19:37 +00:00
\end { document}
2018-12-10 10:19:50 +00:00