theorie magic

This commit is contained in:
fruitstaa 2019-01-09 15:54:31 +01:00
parent 32587866d6
commit 13d900f83e
2 changed files with 18 additions and 4 deletions

Binary file not shown.

View file

@ -25,10 +25,24 @@ The more obtuse the triangle, the more acute the angle of the corner of the voro
\subsection*{(b)} \subsection*{(b)}
The formula for calculating the surface of a triangle is: $\frac{1}{2}*h*b$ The formula for calculating the surface of a triangle is: $\frac{1}{2}*h*b$
As for the red triangle: $\frac{1}{2}*h*b$ As for the red triangle: $\frac{1}{2}*h*b$
with: $h=\frac{||p_i - p_j||}{2}$ and $b=b_1 + b_2$ where $b_1$ is left part of the baseline facing $\alpha_{ij}$ and $b_2$ is the right one facing $\beta_{ij}$.\\ We define: $h=\frac{||\underline{p}_i - \underline{p}_j||}{2}$ and $b=b_1 + b_2$ where $b_1$ is left part of the baseline facing $\alpha_{ij}$ and $b_2$ is the right one facing $\beta_{ij}$. In addition we define the vertex of the traingle facing $\alpha_{ij}$ to be $A$ and the vertex of the triangle facing $\beta_{ij}$ to be $B$. The distance between $p_i$ and $A$ (R) is equal to $\frac{||\underline{p}_i-\underline{p}_j||}{2 sin(\alpha_{ij}}$. It can be assumed that the angle $\underline{p}_S \underline{A} \underline{p}_i=\alpha_{ij}$ with $p_S$ as the vertex where the red triangle crosses the edge from $\underline{p}_i$ to $\underline{p}_j$. As a result it can be assumed that $cos(\alpha_{ij})= \frac{b_1}{R}$ and also $b_1 = cos(\alpha_{ij}) \times R$\\
As a result the surface of the left part of the red triangle can be calculated:
\subsection*{(c)} \begin{align*}
A_{\alpha}(i,j)&=\frac{1}{2}\times b_1 \times \frac{||\underline{p}_i- \underline{p}_j||}{2}\\
A_{\alpha}(i,j)&=\frac{1}{4}\times cos(\alpha_{ij}) \times R\times ||\underline{p}_i- \underline{p}_j||\\
A_{\alpha}(i,j)&=\frac{1}{4}\times \frac{cos(\alpha_{ij})}{2\times sin(\alpha_{ij})} \times R \times {||\underline{p}_i- \underline{p}_j||}^2\\
A_{\alpha}(i,j)&=\frac{1}{8}\times cot(\alpha_{ij}) \times R \times {||\underline{p}_i- \underline{p}_j||}^2\\
\end{align*}
The same goes for the right side and as a result if we combine both:
\begin{align*}
A(i,j)&=\frac{1}{8}\times cot(\alpha_{ij}) \times R \times {||\underline{p}_i- \underline{p}_j||}^2 + \frac{1}{8}\times cot(\beta_{ij}) \times R \times {||\underline{p}_i- \underline{p}_j||}^2\\
A(i,j)&=\frac{1}{8}\times (cot(\alpha_{ij})+cot(\beta_{ij})) \times R \times {||\underline{p}_i- \underline{p}_j||}^2\\
\end{align*}
If we sum up all the triangles T with the index $j$ of the voronoi-area this is the result:
\begin{align*}
A_{voronoi-area}(i)&=\sum_{j\in T(i)} \frac{1}{8}\times (cot(\alpha_{ij})+cot(\beta_{ij})) \times R \times {||\underline{p}_i- \underline{p}_j||}^2\\
A_{voronoi-area}(i)&=\frac{1}{8}\times \sum_{j\in T(i)} (cot(\alpha_{ij})+cot(\beta_{ij})) \times R \times {||\underline{p}_i- \underline{p}_j||}^2\\
\end{align*}
\subsection*{3.1.2} \subsection*{3.1.2}
\subsection*{(a)} \subsection*{(a)}
We know every vertex($v$) has three edges($e$) and 2 faces($f$). In addition every edge($e$) can separated into two half edges ($e_h$), this means $e_h = 2*e = 6*v$.\\ We know every vertex($v$) has three edges($e$) and 2 faces($f$). In addition every edge($e$) can separated into two half edges ($e_h$), this means $e_h = 2*e = 6*v$.\\