diff --git a/exercise1/Theorie.pdf b/exercise1/Theorie.pdf index 0269be9..29a16b3 100644 Binary files a/exercise1/Theorie.pdf and b/exercise1/Theorie.pdf differ diff --git a/exercise1/Theorie.tex b/exercise1/Theorie.tex index 5a6ecf7..e2ef8a1 100644 --- a/exercise1/Theorie.tex +++ b/exercise1/Theorie.tex @@ -119,26 +119,11 @@ $\Rightarrow S \times T \neq T \times S \Rightarrow$ does not commute\\ \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ y_1&y_2&\cdots&y_n\\ z_1&z_2&\cdots&z_n \\ \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ \end{pmatrix} = \begin{pmatrix} \sum\limits_{i=1} x_i \\ \sum\limits_{i=1} y_i \\ \sum\limits_{i=1} z_i \end{pmatrix} \end{gather*} +\newpage + \subsection*{c)} -\begin{align*} -L(p) &= length(p_x - ((p_x \cdot (\vec{e} + \vec{d} \cdot t)) \cdot \vec{d} \cdot t) - \vec{e}) \\ -Vector &= ( L(p_x), L(p_{x+1}), ... , L(p_{x+n})) \hspace{6em} n \widehat{=} Anz. Punkte \\ -\end{align*} - -Berechnung für: \\ -$p_1 = (-1, -1, 1); p_2 = (2, 1, -2); p_3 = (2, 1, -3); p_4 = (-1, -2, 1); p_5 = (3, -1, 0)$ -\begin{align*} -L(p_1) &= length(p_1 - ((p_1 \cdot (\vec{e} + \vec{d} \cdot t)) \cdot \vec{d} \cdot t) - \vec{e}) \\ -L(p_2) &= length(p_2 - ((p_2 \cdot (\vec{e} + \vec{d} \cdot t)) \cdot \vec{d} \cdot t) - \vec{e}) \\ -L(p_3) &= length(p_3 - ((p_3 \cdot (\vec{e} + \vec{d} \cdot t)) \cdot \vec{d} \cdot t) - \vec{e}) \\ -L(p_4) &= length(p_4 - ((p_4 \cdot (\vec{e} + \vec{d} \cdot t)) \cdot \vec{d} \cdot t) - \vec{e}) \\ -L(p_5) &= length(p_5 - ((p_5 \cdot (\vec{e} + \vec{d} \cdot t)) \cdot \vec{d} \cdot t) - \vec{e}) \\ -\\ -Vector &= ( L(p_1), L(p_2), L(p_3), L(p_4), L(p_5)) \\ -\end{align*} - \begin{gather*} -M = \begin{pmatrix} M_{11} & M_{12} & M_{13} & t_x \\ M_{21}&M_{22}& M_{23}&t_y\\ M_{31}&M_{32}&M_{33}&t_z \\ p_x&p_y&p_z&1 \\ \end{pmatrix}; + \tilde{M} = \begin{pmatrix} M_{11} & M_{12} & M_{13} & t_x \\ M_{21}&M_{22}& M_{23}&t_y\\ M_{31}&M_{32}&M_{33}&t_z \\ p_x&p_y&p_z&1 \\ \end{pmatrix}; e = \begin{pmatrix} 5 \\ 10 \\ 5 \\\end{pmatrix}= t; p = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \end{pmatrix} \end{gather*} @@ -147,7 +132,18 @@ z_\phi = \frac {\begin{pmatrix} 0\\0\\1\\ \end{pmatrix} \times p_x} {1 \times |p y_\phi = \frac {\begin{pmatrix} 0\\1\\0\\ \end{pmatrix} \times p_x} {1 \times |p_x|} \Rightarrow \begin{pmatrix} cos(y_\phi) & 0 & sin(y_\phi) \\ 0 &1 &0\\ -sin(z_\phi)&0&cos(y_\phi) \\ \end{pmatrix}=R_y\\ x_\phi = \frac {\begin{pmatrix} 1\\0\\0\\ \end{pmatrix} \times p_x} {1 \times |p_x|} \Rightarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 &cos(x_\phi)&-sin(x_\phi)\\ 0&sin(x_\phi)&cos(x_\phi) \\ \end{pmatrix}=R_x\\ M = R_x \times R_y \times R_z \\ -\Rightarrow Vector = \begin{pmatrix} +\end{gather*} +Berechnung für: \\ +$p_1 = (-1, -1, 1); p_2 = (2, 1, -2); p_3 = (2, 1, -3); p_4 = (-1, -2, 1); p_5 = (3, -1, 0)$ +\begin{gather*} +\Rightarrow Vector =\begin{pmatrix} +p_1 \times \tilde{M_1}\\ +p_2 \times \tilde{M_2}\\ +p_3 \times \tilde{M_3}\\ +p_4 \times \tilde{M_4}\\ +p_5 \times \tilde{M_5}\\ \end{pmatrix} += + \begin{pmatrix} 6.323746006808568\\ 2.672777625063053\\ 1.6528549605644152\\