git ignore and Theorie changed

This commit is contained in:
fruitstaa 2018-11-11 16:31:48 +01:00
parent 500f3f7ccf
commit 7e1583f053
3 changed files with 86 additions and 4 deletions

2
.gitignore vendored
View file

@ -1 +1,3 @@
build/ build/
*.log
*.syctex.gz

Binary file not shown.

View file

@ -19,7 +19,7 @@
\subsection*{1.1.1} \subsection*{1.1.1}
\subsection*{a)} \subsection*{a)}
\begin{itemize} \begin{itemize}
\item Matrix Multiplication $\equiv$ transformation \item Matrix Multiplication $\widehat{=}$ transformation
\item Inverse of a transformation $\tilde{T}^{-1}$ \\ \item Inverse of a transformation $\tilde{T}^{-1}$ \\
\begin{align*} \begin{align*}
\Rightarrow && \tilde{T}*\tilde{T}^{-1} &= \tilde{T}^{-1}*\tilde{T} = \tilde{E} && \left |\ *\tilde{p} \right. \\ \Rightarrow && \tilde{T}*\tilde{T}^{-1} &= \tilde{T}^{-1}*\tilde{T} = \tilde{E} && \left |\ *\tilde{p} \right. \\
@ -29,21 +29,101 @@
\end{itemize} \end{itemize}
\subsection*{b)} \subsection*{b)}
For $R_1 \times R_2$\\
\begin{gather*}
\begin{pmatrix} a & b & 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} e & f & 0 \\ g& h& 0\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} a \times e + b \times g& a \times f + b \times h & 0 \\ c \times e + d \times g& c \times f + d \times h & 0\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
For $R_2 \times R_1$\\
\begin{gather*}
\begin{pmatrix} e & f & 0 \\ g& h& 0\\ 0&0&1\\ \end{pmatrix} \times \begin{pmatrix} a & b & 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} =\begin{pmatrix} a \times e + c \times f& b \times e + d \times f & 0 \\ a \times g + c \times h& b \times g + d \times h & 0\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow R_1 \times R_2 \neq R_2 \times R_1 \Rightarrow$ does not commute\\
\newpage
\hspace{-5.5em}
For $T_1 \times T_2$\\
\begin{gather*}
\begin{pmatrix} 1 & 0 & a \\ 0&1&b\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} 1 & 0 & c \\ 0& 1& d\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} 1& 0 & a+c \\ 0& 1 & b+d\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
\hspace{-4.5em}
For $T_2 \times T_1$\\
\begin{gather*}
\begin{pmatrix} 1 & 0 & c \\ 0&1&d\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} 1 & 0 & a \\ 0& 1& b\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} 1& 0 & a+c \\ 0& 1 & b+d\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow T_1 \times T_2 = T_2 \times T_1 \Rightarrow$ does commute\\
\hspace{-5.5em}
For $S_1 \times S_2$\\
\begin{gather*}
\begin{pmatrix} a & 0 & 0 \\ 0&b&0\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} c & 0 & 0 \\ 0& d& 0\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} a \times c & 0 & 0 \\ b \times d& 0 & 0\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
\hspace{-4.5em}
For $S_2 \times S_1$\\
\begin{gather*}
\begin{pmatrix} c & 0& 0 \\ 0& d& 0\\ 0&0&1\\ \end{pmatrix} \times \begin{pmatrix} a & 0 & 0 \\ 0&b&0\\ 0&0&1 \\ \end{pmatrix} =\begin{pmatrix} a \times c & 0 & 0 \\ b \times d& 0 & 0\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow S_1 \times S_2 = S_2 \times S_1 \Rightarrow$ does commute\\
\hspace{-5.5em}
For $R \times T$\\
\begin{gather*}
\begin{pmatrix} a & b& 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} 1 & 0 & e \\ 0& 1& f\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} a& b & a \times e + b \times f \\ c& d & c\times e + d \times f\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
\hspace{-4.5em}
For $T \times R$\\
\begin{gather*}
\begin{pmatrix} 1 & 0 & e \\ 0& 1& f\\ 0&0&1\\ \end{pmatrix} \times \begin{pmatrix} a & b& 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} =\begin{pmatrix} a& b & e \\ c& d & f\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow R \times T \neq T \times R \Rightarrow$ does not commute\\
\hspace{-1.25em}
For $R \times S$\\
\begin{gather*}
\begin{pmatrix} a & b& 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} e & 0 & 0 \\ 0& f& 0\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} a \times e& b \times f & 0 \\ c \times f & d \times f & 0\times e + d \times f\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
\hspace{-0.25em}
For $S \times R$\\
\begin{gather*}
\begin{pmatrix} e & 0 & 0 \\ 0& f& 0\\ 0&0&1\\ \end{pmatrix} \times \begin{pmatrix} a & b& 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} =\begin{pmatrix} a \times e& b \times f & 0 \\ c \times f & d \times f & 0\times e + d \times f\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow R \times S = S \times R \Rightarrow$ does commute\\
\hspace{-1.25em}
For $S \times T$\\
\begin{gather*}
\begin{pmatrix} 1 & 0 & a \\ 0&0&b\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} c & 0 & 0 \\ 0& d& 0\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} c & 0 & a \\ 0& d & b\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
\hspace{-0.25em}
For $T \times S$\\
\begin{gather*}
\begin{pmatrix} c & 0 & 0 \\ 0& d& 0\\ 0&0&1\\ \end{pmatrix} \times \begin{pmatrix} 1 & 0 & a \\ 0&0&b\\ 0&0&1 \\ \end{pmatrix} =\begin{pmatrix} c & 0 & a \times c \\ d& 0 & b \times d\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow S \times T \neq T \times S \Rightarrow$ does not commute\\
\subsection*{1.1.2} \subsection*{1.1.2}
\subsection*{a)} \subsection*{a)}
\begin{gather*} \begin{gather*}
\begin{pmatrix} 1 & 0 & 0 \\ 0&1&0\\ 0&0&1 \\ \end{pmatrix} * \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ y_1&y_2&\cdots&y_n\\ z_1&z_2&\cdots&z_n \\ \end{pmatrix} =\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ z_1&z_2&\cdots&z_n\\ y_1&y_2&\cdots&y_n \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0&1&0\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ y_1&y_2&\cdots&y_n\\ z_1&z_2&\cdots&z_n \\ \end{pmatrix} =\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ z_1&z_2&\cdots&z_n\\ y_1&y_2&\cdots&y_n \\ \end{pmatrix}
\end{gather*} \end{gather*}
\subsection*{b)} \subsection*{b)}
\begin{gather*} \begin{gather*}
\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ y_1&y_2&\cdots&y_n\\ z_1&z_2&\cdots&z_n \\ \end{pmatrix} * \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ y_1&y_2&\cdots&y_n\\ z_1&z_2&\cdots&z_n \\ \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ \end{pmatrix} =
\begin{pmatrix} \sum\limits_{i=1} x_i \\ \sum\limits_{i=1} y_i \\ \sum\limits_{i=1} z_i \end{pmatrix} \begin{pmatrix} \sum\limits_{i=1} x_i \\ \sum\limits_{i=1} y_i \\ \sum\limits_{i=1} z_i \end{pmatrix}
\end{gather*} \end{gather*}
\subsection*{c)} \subsection*{c)}
\begin{align*} \begin{align*}
L(p) &= length(p_x - ((p_x \cdot (\vec{e} + \vec{d} * t)) *\vec{d} * t) - \vec{e}) \\ L(p) &= length(p_x - ((p_x \cdot (\vec{e} + \vec{d} * t)) *\vec{d} * t) - \vec{e}) \\
Vector &= ( L(p_x), L(p_{x+1}), ... , L(p_{x+n})) \hspace{6em} n \equiv Anz. Punkte \\ Vector &= ( L(p_x), L(p_{x+1}), ... , L(p_{x+n})) \hspace{6em} n \widehat{=} Anz. Punkte \\
\end{align*} \end{align*}
Berechnung: Berechnung: