diff --git a/exercise2/Theorie.pdf b/exercise2/Theorie.pdf new file mode 100644 index 0000000..3cfb729 Binary files /dev/null and b/exercise2/Theorie.pdf differ diff --git a/exercise2/Theorie.tex b/exercise2/Theorie.tex new file mode 100644 index 0000000..87c457b --- /dev/null +++ b/exercise2/Theorie.tex @@ -0,0 +1,53 @@ +\documentclass[12pt, a4paper]{article} + +%packages +\usepackage[ngerman]{babel} +\usepackage[utf8x]{inputenc} +%Formel packages +\usepackage{amsmath} +\usepackage{amsthm} +\usepackage{amsbsy} +\usepackage{amssymb} + + +\usepackage{enumerate} + + +\begin{document} + +\section*{Computer Graphics - Excercise 2} +\begin{align*} + f(u,v) = R \begin{pmatrix} cos(u) \\ sin(u) \\ 0 \end{pmatrix} + r \begin{pmatrix} cos(u) \times cos(v) \\ sin(u) \times cos(v) \\ sin(v) \end{pmatrix} +\end{align*} +\subsection*{2.1} +\subsection*{a)} +\begin{align*} + \frac {\delta f }{\delta u} (u,v) &= \begin{pmatrix} R (-sin(u)) + r (cos(v) \times -sin(u)) \\ R \times cos(u) + r(cos(v)\times cos(u)) \\ 0 \end{pmatrix}\\ + \\ + \frac {\delta f }{\delta v} (u,v) &= \begin{pmatrix} r (cos(u) \times (-sin(v))) \\ r(-sin(v) \times sin(u)) \\ r \times cos(v) \end{pmatrix}\\ + \\ + \Rightarrow Jacobian:\\ + J_f (u,f) &=\begin{pmatrix} R \times (-sin(u)) +r (cos(v) \times -sin(u)) & r (cos(u) \times (-sin(v))) \\ sin(u) \times cos(v) & r(-sin(v) \times sin(u)) \\ 0 & r \times cos(v)\end{pmatrix}\\ +\end{align*} +\subsection*{b)} +$I_{\tau}^s = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$ mit $s_u=\frac {\delta f }{\delta u} (u,v), s_v=\frac {\delta f }{\delta v} (u,v)\\ +\\ +E = ||s_u||^2 = (r(cos(u))+R)^2\\ +\\ +F = < s_u , s_v > = 0\\ +\\ +G = ||s_v||^2 = r^2\\$ +\\ +$\Rightarrow I_{\tau}^f = \begin{pmatrix} (r(cos(u))+R)^2 & 0 \\ 0 & r^2 \end{pmatrix}$ + +\subsection*{c)} + +Aus der Vorlesung: $dA = \sqrt{det I_{\tau}^f} \,du\,dv$\\ +\begin{align*} +\Rightarrow dA &= \sqrt{det \begin{pmatrix} (r(cos(u))+R)^2 & 0 \\ 0 & r^2 \end{pmatrix}} \,du\,dv\\ +\Rightarrow dA &= r(r(cos(u))+R) \,du\,dv\\ +\end{align*} +\\ +$\Rightarrow A = \int_{0}^{2\pi} \int_{0}^{2\pi} r(r(cos(u))+R) \,du\,dv = 2 \pi r \times \int_{0}^{2\pi} r(cos(u))+R \,dv =\\\\ 2 \pi r [Rv + r(sin(v)]_{0}^{2\pi} = 2 \pi r \times (2\pi R) = \underline{\underline{4\pi^2Rr}} $ +t\end{document} +