diff --git a/exercise2/Theorie.pdf b/exercise2/Theorie.pdf index af114ed..0a0d52a 100644 Binary files a/exercise2/Theorie.pdf and b/exercise2/Theorie.pdf differ diff --git a/exercise2/Theorie.tex b/exercise2/Theorie.tex index 438ab63..bdfb55b 100644 --- a/exercise2/Theorie.tex +++ b/exercise2/Theorie.tex @@ -60,5 +60,5 @@ Aus der Vorlesung: $dA = \sqrt{det I_{\tau}^f} \,du\,dv$\\ \end{align*} \\ $\Rightarrow A = \int_{0}^{2\pi} \int_{0}^{2\pi} r(r(cos(u))+R) \,du\,dv = 2 \pi r \times \int_{0}^{2\pi} r(cos(u))+R \,dv =\\\\ 2 \pi r [Rv + r(sin(v)]_{0}^{2\pi} = 2 \pi r \times (2\pi R) = \underline{\underline{4\pi^2Rr}} $ -t\end{document} +\end{document} diff --git a/exercise3/Theorie.pdf b/exercise3/Theorie.pdf new file mode 100644 index 0000000..c2fc042 Binary files /dev/null and b/exercise3/Theorie.pdf differ diff --git a/exercise3/Theorie.tex b/exercise3/Theorie.tex new file mode 100644 index 0000000..72944fe --- /dev/null +++ b/exercise3/Theorie.tex @@ -0,0 +1,52 @@ +\documentclass[12pt, a4paper]{article} + +%packages +\usepackage[ngerman]{babel} +\usepackage[utf8x]{inputenc} +%Formel packages +\usepackage{amsmath} +\usepackage{amsthm} +\usepackage{amsbsy} +\usepackage{amssymb} + + +\usepackage{enumerate} +\usepackage{geometry} +\geometry{a4paper, top=25mm, left=18mm, right=15mm, bottom=30mm, +headsep=10mm, footskip=12mm} + + +\begin{document} + +\section*{Computer Graphics - Excercise 2} +\subsection*{3.1.1} +\subsection*{(a)} +The more obtuse the triangle, the more acute the angle of the corner of the voronoi area gets. Because the both sides of this corner has to be in a 90° angle to the sides of the traingle. +\subsection*{(b)} +The formula of triangle is: $\frac{1}{2}*h*b$ +As for the red triangle: $\frac{1}{2}*h*b$ +with: $h=\frac{||p_i - p_j||}{2}$ and $b=$ + +\subsection*{(c)} + +\subsection*{3.1.2} +\subsection*{(a)} +We know every vertex($v$) has three edges($e$) and 2 faces($f$). In addition every edge($e$) can separated into two half edges ($e_h$), this means $e_h = 2*e = 6*v$.\\ +If we add the memory for every part it results in a formula:\\ +\begin{center} +memory $= v*16\text{bytes} + e*4\text{bytes} + e_h*16\text{bytes} + f*4\text{bytes}$\\ +$\rightarrow \text{through assumptions:}$\\ +memory $= v*(16+3*4+6*16+2*4)\text{bytes}=v*132\text{bytes}$ +\end{center} +\subsection*{(b)} +Because in a quad mash two triangles are combined into one quad, the resulting faces will be reduced by a half. The resulting ratio will be 1:3:1 (for v : e : f) +\subsection*{(c)} +We know every vertex($v$) has three edges($e$) and one face($f$). In addition every edge($e$) can separated into two half edges ($e_h$), this means $e_h = 2*e = 6*v$.\\ +If we add the memory for every part it results in a formula:\\ +\begin{center} +memory $= v*16\text{bytes} + e*4\text{bytes} + e_h*16\text{bytes} + f*4\text{bytes}$\\ +$\rightarrow \text{through assumptions:}$\\ +memory $= v*(16+3*4+6*16+1*4)\text{bytes}=v*132\text{bytes}$ +\end{center} +\end{document} +