Computer Graphics I, WS 2018/2019
Exercise 2: Advanced Rendering

2 Advanced Rendering

This exercise focuses on advanced rendering techniques, including various texture mapping approaches and
instancing. The theoretical part reviews concepts from surface analysis.

All exercises and source code is property of the Chair of Computer Graphics and Visualization. Pub-
lication and distribution is prohibited.

2.1 Theory

In this exercise, we will calculate the surface area of a torus. The surface of the torus is given by

cosu COS U COSV
flu,v) =R | sinu | +7 | sinucosv |, (1)
0 sinv

where 7 is the radius of the tube, R is the radius of the circle that the tube follows, and u and v are parameters
in the range [0, 27].

(a) Calculate the Jacobian of the above parametrization of the torus. (1 point)
(b) Calculate the first fundamental form and simplify. (2 points)

(c) Calculate the area element and show that the surface area of the torus equals A = 4727 R by integration
of the area element over the entire parameter domain. (2 points)

2.2 Practical Part

Please update the source code repository (git pull) to get the most recent changes. When you start
Exercise 2, you should see an empty scene with a sky.

The goal of this exercise is to implement an infinite procedural terrain as shown in Figure 1. This terrain is
made up of several square patches and the application determines the visible patches at runtime based on the
current view. We start by implementing a single patch.

2.2.1 Geometry for the terrain (1.5 points)

First, we need geometry information for a single terrain patch in the form of a vertex array object, vertex
buffer, and index buffer. This geometry should not contain any height information as those are added later in
the shader. Instead, the geometry should only represent a tessellated flat square patch as shown in Figure 2.

The patch should comprise a single triangle strip. There are two strategies to realize this: The index buffer
can either contain degenerate triangles that reference the same vertex more than once, or it can contain
a restart index that allows you to start a new substrip. Refer to the documentation for glPrimitive-
RestartIndex for more information.

(a) Generate positions and indices for a flat terrain patch in CreateGeometry in Viewer.cpp by
filling the vectors positions and indices. The square patch should have PATCH_SIZE vertices

Computer Graphics I, WS 2018/2019
Exercise 2: Advanced Rendering

Figure 1: Final result of this exercise Figure 2: Wireframe of a single patch

along one side with a vertex spacing of 1 unit. The lower corner should start at the origin, the opposite
corner should lie in the positive quadrant. The y-axis points upwards, i.e. the patch should extend in
the xz-plane. (1 point)

(b) Add an appropriate draw call in drawContents. The shader and VAO are already bound and
necessary uniform variables are already set. (0.5 points)

If you implemented everything correctly, you should see a flat gray plane in your scene.

2.2.2 Procedural height map (1 point)

We now want to use the vertex shader to change the height of the flat plane. For this task, the shader already
contains a function getTerrainHeight (vec2 p) that returns the height of the terrain at a given xz
position.

(a) Use the vertex shader terrain.vert to change the y-coordinate of the incoming vertex to the
correct height. (0.5 points)

(b) Furthermore, calculate vertex normals in the vertex shader using finite differences. Pass them to the
fragment shader and use them for lighting calculations. The illumination model is already imple-
mented and invoked with the call to calculateLighting. You simply need to make sure that n
contains the correct surface normal. (0.5 points)

If you implemented everything correctly, you should now see a shaded gray terrain in your scene.

2.2.3 Simple Texturing (2 points)

We now want to add a generic grass texture to our terrain. To achieve this, we first need to create a texture
object and fill it with appropriate data. Then, we need to bind the texture to a shader variable and finally
sample the texture in the fragment shader.

(a) Implement the generation of a filled texture in CreateTexture in Viewer.cpp. The function
already contains code that loads pixel data, resulting in a byte array with RGB triplets. Create a texture

Computer Graphics I, WS 2018/2019
Exercise 2: Advanced Rendering

object, set appropriate parameters (at least the wrap mode and the minification and magnification
filters), upload the pixel data, and return the name of the texture. Also, make sure that mip maps are
generated for the texture. If the parameter repeat is set to true, specify a repeating wrap mode; if it
is set to false, specify a clamping wrap mode. (1 point)

(b) Add an appropriate sampler2D variable in the fragment shader and use it to sample the grass texture
at the current location of the terrain. You can use the appropriately scaled xz coordinate of the
fragment in world space as texture coordinates. The image should have a world-space size of % X %
and repeat thereafter. Make sure that the texture is bound before the draw call (name is stored in

grassTexture) and that the uniform variable is set correctly. (1 point)

If you implemented everything correctly, you should now see a shaded grass-covered terrain.

2.2.4 Advanced Texturing (3.5 points)

We now want to add some more interesting details to the terrain appearance. First,
steep slopes will reveal the underlying rock. Second, we will add a road to our
terrain. The road is based on a so-called alpha map that specifies the areas where the
road should be (see right). In this alpha map, white areas depict roads, black areas
depict grass/rock, and gray areas depict a mixture between the two.

(a) Add asecond texture to the fragment shader that holds the rock texture (name stored in rockTexture).
Determine steep slopes of the terrain based on the normal and show the rock texture instead of the grass
texture. Realize a smooth transition between the two textures. The GLSL function mix can be of use
for this task. (1 point)

(b) Add the alpha map and the road texture (names stored in alphaMap and roadColorTexture,
respectively) to the fragment shader and show the road texture in the correct locations. You need
differently scaled texture coordinates to sample the alpha map. The alpha map image should have a
world-space size of 255 x 255 and is set up with a non-repeating wrap mode. (1 point)

(c) Use the specular map for the road (name stored in roadSpecularMap) to add localized specular
highlights to the road. The specular map is a gray-scale texture that contains the specular intensity for
each pixel. Feed this information to calculateLighting. (0.5 points)

(d) Add normal mapping to the road. The normal map (name stored in roadNormalMap) contains
tangent-space normals as explained in the lecture (y-component needs to be inverted). Pass the tangent
and bitangent (that you should already have from your normal calculations) to the fragment shader and
use them to transform the tangent space normal from the texture to a world space normal. Use this
normal for lighting calculations. (1 point)

If you have implemented everything correctly, you should now see a fully shaded and textured terrain patch
in your scene. Specular highlights should be visible around the stones in the road texture.

Computer Graphics I, WS 2018/2019
Exercise 2: Advanced Rendering

2.2.5 Infinite terrain (2 points)

Finally, we want to render an infinite terrain by rendering multiple instances of the terrain patch with
distinct offsets. We will use instanced rendering to render all required instances at once. To do this,
we first need an instance attribute that holds the offset information for the terrain patches. The Viewer
class already contains a vertex buffer named offsetBuffer for this purpose. Hints: You can bind
the buffer with offsetBuffer.bind (). Furthermore, you can get the location of an attribute us-
ing terrainShader.attrib ("attributeName"). You can upload data to a buffer by creating
astd::vector<Eigen: :Vector2f> and using offsetBuffer.uploadData (vector).

(a) Add the offset attribute to the vertex shader and to the vertex array object in CreateGeometry. De-
clare the attribute as an instance attribute using glVertexAttribDivisor. IndrawContents,
fill the buffer with a single entry of (0, 0). Replace the draw call with an instanced one and use the
offset attribute appropriately in the shader. This should produce the same result as before. (1 point)

Finally, we must find all terrain patches that are visible. For this, we first calculate the view frustum and its
bounding box. For all terrain patches that overlap the bounding box, we then perform view frustum culling,
i.e., we check if the patch is actually within the view. The view frustum consists of six clipping planes.
A patch is not within the view if it is completely behind any of these planes. You can use the functions
CalculateViewFrustum and IsBoxCompletelyBehindPlane for this task. The height of the
terrain is between 0 and 15.

(b) Collect all visible patches and load the corresponding offsets into the offset buffer to generate an
infinite terrain. Store the number of visible patches in visiblePatches to show it in the top left
corner of the screen. (1 point)

Submission

Zip all source code files in the folder exercise? into a zip archive and upload it to Opal.

2.2.6 Bonus Tasks (max. +5 points)

(a) Implement distance-based fog in the fragment shader to allow a smooth transition between the terrain
and the sky in the background. For this, you need to bind the texture backgroundTexture to the
shader variable background. After that, you can use the function getBackgroundColor () in
the fragment shader to get the background color. Implement linearly increasing fog between distance
500 (no fog) and 1000 (complete fog). (1 point)

(b) Add view-dependent tessellation of the terrain patches using the tessellation shader, i.e., use a higher
tessellation density for close patches. Optionally, make sure that there will never be cracks in the
surface resulting from different resolutions of neighboring patches. (2+1 points)

(c) Implement water surfaces at a constant height in the terrain. You can choose how detailed you want
your water to be (e.g. reflections and refractions). (max. S points)

(d) Implement an editor for the alpha map in the application that lets the user paint roads on the terrain.
(5 points)

	Advanced Rendering
	Theory
	Practical Part
	Geometry for the terrain (1.5 points)
	Procedural height map (1 point)
	Simple Texturing (2 points)
	Advanced Texturing (3.5 points)
	Infinite terrain (2 points)
	Bonus Tasks (max. +5 points)

