Computer Graphics - Excercise 2

3.1.1

(a)

The more obtuse the triangle, the more acute the angle of the corner of the voronoi area gets. Because the both sides of this corner has to be in a 90° angle to the sides of the traingle.

(b)

The formula of triangle is: $\frac{1}{2} * h * b$ As for the red triangle: $\frac{1}{2} * h * b$ with: $h = \frac{||p_i - p_j||}{2}$ and $b = \frac{||p_i - p_j||}{2}$

(c)

3.1.2

(a)

We know every vertex(v) has three edges(e) and 2 faces(f). In addition every edge(e) can separated into two half edges (e_h) , this means $e_h = 2 * e = 6 * v$.

If we add the memory for every part it results in a formula:

$$\begin{array}{l} \mathrm{memory} = v*16\mathrm{bytes} + e*4\mathrm{bytes} + e_h*16\mathrm{bytes} + f*4\mathrm{bytes} \\ \to \mathrm{through} \ \mathrm{assumptions:} \\ \mathrm{memory} = v*(16+3*4+6*16+2*4)\mathrm{bytes} = v*132\mathrm{bytes} \end{array}$$

(b)

Because in a quad mash two triangles are combined into one quad, the resulting faces will be reduced by a half. The resulting ratio will be 1:3:1 (for v : e : f)

(c)

We know every vertex(v) has three edges(e) and one face(f). In addition every edge(e) can separated into two half edges (e_h) , this means $e_h = 2 * e = 6 * v$. If we add the memory for every part it results in a formula:

> memory = v * 16 bytes + e * 4 bytes + $e_h * 16$ bytes + f * 4 bytes \rightarrow through assumptions: memory = v * (16 + 3 * 4 + 6 * 16 + 1 * 4)bytes = v * 132bytes