CGI/exercise1/Theorie.tex
2018-11-12 11:42:52 +01:00

152 lines
6.8 KiB
TeX
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[12pt, a4paper]{article}
%packages
\usepackage[ngerman]{babel}
\usepackage[utf8x]{inputenc}
%Formel packages
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsbsy}
\usepackage{amssymb}
\usepackage{enumerate}
\begin{document}
\section*{Computer Graphics - Excercise 1}
\subsection*{1.1.1}
\subsection*{a)}
\begin{itemize}
\item Matrix Multiplication $\widehat{=}$ transformation
\item Inverse of a transformation $\tilde{T}^{-1}$ \\
\begin{align*}
\Rightarrow && \tilde{T}*\tilde{T}^{-1} &= \tilde{T}^{-1}*\tilde{T} = \tilde{E} && \left |\ *\tilde{p} \right. \\
&&\tilde{T}^{-1}*\tilde{T}*\tilde{p} &= \tilde{E}*\tilde{p} && \left |\ \tilde{T}*\tilde{p}=\tilde{p'} \right. \\
\Rightarrow && \tilde{E}*\tilde{p} = \tilde{p}&, \hspace{1em} \tilde{T}^{-1}*\tilde{p'} = \tilde{p} \\
\end{align*}
\end{itemize}
\subsection*{b)}
For $R_1 \times R_2$\\
\begin{gather*}
\begin{pmatrix} a & b & 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} e & f & 0 \\ g& h& 0\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} a \times e + b \times g& a \times f + b \times h & 0 \\ c \times e + d \times g& c \times f + d \times h & 0\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
For $R_2 \times R_1$\\
\begin{gather*}
\begin{pmatrix} e & f & 0 \\ g& h& 0\\ 0&0&1\\ \end{pmatrix} \times \begin{pmatrix} a & b & 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} =\begin{pmatrix} a \times e + c \times f& b \times e + d \times f & 0 \\ a \times g + c \times h& b \times g + d \times h & 0\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow R_1 \times R_2 \neq R_2 \times R_1 \Rightarrow$ does not commute\\
\newpage
\hspace{-2em}
For $T_1 \times T_2$\\
\begin{gather*}
\begin{pmatrix} 1 & 0 & a \\ 0&1&b\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} 1 & 0 & c \\ 0& 1& d\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} 1& 0 & a+c \\ 0& 1 & b+d\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
\hspace{-0.5em}
For $T_2 \times T_1$\\
\begin{gather*}
\begin{pmatrix} 1 & 0 & c \\ 0&1&d\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} 1 & 0 & a \\ 0& 1& b\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} 1& 0 & a+c \\ 0& 1 & b+d\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow T_1 \times T_2 = T_2 \times T_1 \Rightarrow$ does commute\\
\\
\hspace{-1.5em}
For $S_1 \times S_2$\\
\begin{gather*}
\begin{pmatrix} a & 0 & 0 \\ 0&b&0\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} c & 0 & 0 \\ 0& d& 0\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} a \times c & 0 & 0 \\ b \times d& 0 & 0\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
For $S_2 \times S_1$\\
\begin{gather*}
\begin{pmatrix} c & 0& 0 \\ 0& d& 0\\ 0&0&1\\ \end{pmatrix} \times \begin{pmatrix} a & 0 & 0 \\ 0&b&0\\ 0&0&1 \\ \end{pmatrix} =\begin{pmatrix} a \times c & 0 & 0 \\ b \times d& 0 & 0\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow S_1 \times S_2 = S_2 \times S_1 \Rightarrow$ does commute\\
\\
\hspace{-1.5em}
For $R \times T$\\
\begin{gather*}
\begin{pmatrix} a & b& 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} 1 & 0 & e \\ 0& 1& f\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} a& b & a \times e + b \times f \\ c& d & c\times e + d \times f\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
For $T \times R$\\
\begin{gather*}
\begin{pmatrix} 1 & 0 & e \\ 0& 1& f\\ 0&0&1\\ \end{pmatrix} \times \begin{pmatrix} a & b& 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} =\begin{pmatrix} a& b & e \\ c& d & f\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow R \times T \neq T \times R \Rightarrow$ does not commute\\
\\
\hspace{-1.5em}
For $R \times S$\\
\begin{gather*}
\begin{pmatrix} a & b& 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} e & 0 & 0 \\ 0& f& 0\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} a \times e& b \times f & 0 \\ c \times f & d \times f & 0\times e + d \times f\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
For $S \times R$\\
\begin{gather*}
\begin{pmatrix} e & 0 & 0 \\ 0& f& 0\\ 0&0&1\\ \end{pmatrix} \times \begin{pmatrix} a & b& 0 \\ c&d&0\\ 0&0&1 \\ \end{pmatrix} =\begin{pmatrix} a \times e& b \times f & 0 \\ c \times f & d \times f & 0\times e + d \times f\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow R \times S = S \times R \Rightarrow$ does commute\\
\\
\hspace{-1.5em}
For $S \times T$\\
\begin{gather*}
\begin{pmatrix} 1 & 0 & a \\ 0&0&b\\ 0&0&1 \\ \end{pmatrix} \times \begin{pmatrix} c & 0 & 0 \\ 0& d& 0\\ 0&0&1\\ \end{pmatrix} =\begin{pmatrix} c & 0 & a \\ 0& d & b\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
For $T \times S$\\
\begin{gather*}
\begin{pmatrix} c & 0 & 0 \\ 0& d& 0\\ 0&0&1\\ \end{pmatrix} \times \begin{pmatrix} 1 & 0 & a \\ 0&0&b\\ 0&0&1 \\ \end{pmatrix} =\begin{pmatrix} c & 0 & a \times c \\ d& 0 & b \times d\\ 0&0&1 \\ \end{pmatrix}
\end{gather*}
$\Rightarrow S \times T \neq T \times S \Rightarrow$ does not commute\\
\subsection*{1.1.2}
\subsection*{a)}
\begin{gather*}
\begin{pmatrix} 1 & 0 & 0 \\ 0&0&1\\ 0&1&0 \\ \end{pmatrix} \times \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ y_1&y_2&\cdots&y_n\\ z_1&z_2&\cdots&z_n \\ \end{pmatrix} =\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ z_1&z_2&\cdots&z_n\\ y_1&y_2&\cdots&y_n \\ \end{pmatrix}
\end{gather*}
\subsection*{b)}
\begin{gather*}
\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ y_1&y_2&\cdots&y_n\\ z_1&z_2&\cdots&z_n \\ \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ \end{pmatrix} =
\begin{pmatrix} \sum\limits_{i=1} x_i \\ \sum\limits_{i=1} y_i \\ \sum\limits_{i=1} z_i \end{pmatrix}
\end{gather*}
\subsection*{c)}
\begin{gather*}
\tilde{M} = \begin{pmatrix} M_{11} & M_{12} & M_{13} & t_x \\ M_{21}&M_{22}& M_{23}&t_y\\ M_{31}&M_{32}&M_{33}&t_z \\ p_x&p_y&p_z&1 \\ \end{pmatrix};
e = \begin{pmatrix} 5 \\ 10 \\ 5 \\\end{pmatrix}= t;
p = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \end{pmatrix}
\end{gather*}
\begin{gather*}
z_\phi = \frac {\begin{pmatrix} 0\\0\\1\\ \end{pmatrix} \times p_x} {1 \times |p_x|} \Rightarrow \begin{pmatrix} cos(z_\phi) & -sin(z_\phi) & 0 \\ sin(z_\phi)&cos(z_\phi)&0\\ 0&0&1 \\ \end{pmatrix}=R_z\\
y_\phi = \frac {\begin{pmatrix} 0\\1\\0\\ \end{pmatrix} \times p_x} {1 \times |p_x|} \Rightarrow \begin{pmatrix} cos(y_\phi) & 0 & sin(y_\phi) \\ 0 &1 &0\\ -sin(z_\phi)&0&cos(y_\phi) \\ \end{pmatrix}=R_y\\
x_\phi = \frac {\begin{pmatrix} 1\\0\\0\\ \end{pmatrix} \times p_x} {1 \times |p_x|} \Rightarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 &cos(x_\phi)&-sin(x_\phi)\\ 0&sin(x_\phi)&cos(x_\phi) \\ \end{pmatrix}=R_x\\
M = R_x \times R_y \times R_z \\
\end{gather*}
\newpage
Berechnung für: \\
$p_1 = (-1, -1, 1); p_2 = (2, 1, -2); p_3 = (2, 1, -3); p_4 = (-1, -2, 1); p_5 = (3, -1, 0)$
\begin{gather*}
\Rightarrow Vector =\begin{pmatrix}
p_1 \times \tilde{M_1}\\
p_2 \times \tilde{M_2}\\
p_3 \times \tilde{M_3}\\
p_4 \times \tilde{M_4}\\
p_5 \times \tilde{M_5}\\ \end{pmatrix}
=
\begin{pmatrix}
6.323746006808568\\
2.672777625063053\\
1.6528549605644152\\
6.432049954608068\\
4.731031538265404\\ \end{pmatrix}\\
\Rightarrow z_{far} = p_4 = 6.432049954608068; z_{near} = p_3 = 1.6528549605644152\\
\end{gather*}
\end{document}