2018-05-17 14:01:02 +00:00
|
|
|
#pragma once
|
|
|
|
#include <cgv/math/vec.h>
|
|
|
|
#include <cgv/math/mat.h>
|
|
|
|
#include <cgv/math/perm_mat.h>
|
|
|
|
#include <cgv/math/diag_mat.h>
|
|
|
|
#include <cgv/math/tri_diag_mat.h>
|
|
|
|
#include <cgv/math/up_tri_mat.h>
|
|
|
|
#include <cgv/math/low_tri_mat.h>
|
|
|
|
#include <cgv/math/lu.h>
|
|
|
|
#include <cgv/math/svd.h>
|
|
|
|
#include <cgv/math/qr.h>
|
|
|
|
|
|
|
|
|
|
|
|
namespace cgv {
|
|
|
|
namespace math {
|
|
|
|
|
|
|
|
///solves linear system ax=b
|
|
|
|
///a is an upper triangular matrix
|
|
|
|
template<typename T>
|
|
|
|
bool solve(const up_tri_mat<T>& a,const vec<T>&b, vec<T>&x)
|
|
|
|
{
|
|
|
|
assert(a.nrows() == a.ncols());
|
|
|
|
|
|
|
|
int N = a.nrows();
|
|
|
|
x.resize(N);
|
|
|
|
T sum;
|
|
|
|
for(int i = N-1; i >= 0;i--)
|
|
|
|
{
|
|
|
|
sum =0;
|
|
|
|
for(int j = i+1;j < N; j++)
|
|
|
|
sum += a(i,j)*x(j);
|
|
|
|
if(a(i,i) == 0)
|
|
|
|
return false;
|
|
|
|
x[i] = (b[i] - sum)/a(i,i);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
///solves multiple linear systems ax=b
|
|
|
|
///a is an upper triangular matrix
|
|
|
|
///x is the matrix of solution vectors (columns)
|
|
|
|
///b is the matrix of right-hand sides (columns)
|
|
|
|
template<typename T>
|
|
|
|
bool solve(const up_tri_mat<T>& a,const mat<T>&b,mat<T>&x)
|
|
|
|
{
|
|
|
|
assert(b.nrows() == a.ncols());
|
|
|
|
vec<T> xcol;
|
|
|
|
x.resize(b.nrows(),b.ncols());
|
|
|
|
for(unsigned i = 0; i < b.ncols();i++)
|
|
|
|
{
|
|
|
|
if(!solve(a,b.col(i),xcol))
|
|
|
|
return false;
|
|
|
|
x.set_col(i,xcol);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
///solves linear system ax=b
|
|
|
|
///a is a lower triangular matrix
|
|
|
|
template<typename T>
|
|
|
|
bool solve(const low_tri_mat<T>& a, const vec<T>&b, vec<T>&x)
|
|
|
|
{
|
|
|
|
|
|
|
|
int N = a.nrows();
|
|
|
|
x.resize(N);
|
|
|
|
T sum;
|
|
|
|
for(int i = 0; i < N;i++)
|
|
|
|
{
|
|
|
|
sum =0;
|
|
|
|
for(int j = 0;j < i; j++)
|
|
|
|
sum += a(i,j)*x(j);
|
|
|
|
if(a(i,i) == 0)
|
|
|
|
return false;
|
|
|
|
x[i] = (b[i] - sum)/a(i,i);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
///solves multiple linear systems ax=b
|
|
|
|
///a is a lower triangular matrix
|
|
|
|
///x is the matrix of solution vectors (columns)
|
|
|
|
///b is the matrix of right-hand sides (columns)
|
|
|
|
template<typename T>
|
|
|
|
bool solve(const low_tri_mat<T>& a,const mat<T>&b,mat<T>&x)
|
|
|
|
{
|
|
|
|
assert(b.nrows() == a.ncols());
|
|
|
|
vec<T> xcol;
|
|
|
|
x.resize(b.nrows(),b.ncols());
|
|
|
|
for(unsigned i = 0; i < b.ncols();i++)
|
|
|
|
{
|
|
|
|
if(!solve(a,b.col(i),xcol))
|
|
|
|
return false;
|
|
|
|
x.set_col(i,xcol);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
///solves linear system ax=b
|
|
|
|
///a is a diagonal matrix
|
|
|
|
template<typename T>
|
|
|
|
bool solve(const diag_mat<T>& a, const vec<T>&b, vec<T>&x)
|
|
|
|
{
|
|
|
|
int N = a.ncols();
|
|
|
|
x.resize(N);
|
|
|
|
for(int i = 0; i < N;i++)
|
|
|
|
{
|
|
|
|
if(a(i) == 0)
|
|
|
|
return false;
|
|
|
|
x(i) = (T)b(i)/a(i);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
///solves linear system ax=b
|
2018-05-17 13:50:03 +00:00
|
|
|
///a is a tri diagonal matrix
|
|
|
|
template <typename T>
|
|
|
|
bool solve(const tri_diag_mat<T>& a, const vec<T>& b, vec<T>& x)
|
|
|
|
{
|
|
|
|
x.resize(b.dim());
|
|
|
|
int i;
|
|
|
|
vec<T> aa = a.band(-1);
|
|
|
|
vec<T> bb = a.band(0);
|
|
|
|
vec<T> cc = a.band(1);
|
|
|
|
vec<T> dd = b;
|
|
|
|
|
|
|
|
int n = b.dim();
|
|
|
|
|
|
|
|
if(bb(0) == 0)
|
|
|
|
return false;
|
|
|
|
cc(0) /= bb(0);
|
|
|
|
dd(0) /= bb(0);
|
|
|
|
for(i = 1; i < n; i++)
|
|
|
|
{
|
|
|
|
T id = (bb(i) - cc(i-1) * aa(i));
|
|
|
|
if(id == 0)
|
|
|
|
return false;
|
|
|
|
cc(i) /= id;
|
|
|
|
dd(i) = (dd(i) - dd(i-1) * aa(i))/id;
|
|
|
|
}
|
|
|
|
|
|
|
|
x(n - 1) = dd(n - 1);
|
|
|
|
for(i = n - 2; i >= 0; i--)
|
|
|
|
x(i) = dd(i) - cc(i) * x(i + 1);
|
|
|
|
return true;
|
2018-05-17 14:01:02 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
///solves multiple linear systems ax=b
|
|
|
|
///a is a diagonal matrix
|
|
|
|
///x is the matrix of solution vectors (columns)
|
|
|
|
///b is the matrix of right-hand sides (columns)
|
|
|
|
template<typename T>
|
|
|
|
bool solve(const diag_mat<T>& a, const mat<T>&b, mat<T>&x)
|
|
|
|
{
|
|
|
|
assert(b.nrows() == a.ncols());
|
|
|
|
vec<T> xcol;
|
|
|
|
x.resize(b.nrows(),b.ncols());
|
|
|
|
for(unsigned i = 0; i < b.ncols();i++)
|
|
|
|
{
|
|
|
|
if(!solve(a,b.col(i),xcol))
|
|
|
|
return false;
|
|
|
|
x.set_col(i,xcol);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
///solves linear system ax=b
|
|
|
|
///a is a permutation matrix
|
|
|
|
template<typename T>
|
|
|
|
bool solve(const perm_mat &a, const vec<T> &b, vec<T>&x)
|
|
|
|
{
|
|
|
|
|
|
|
|
x.resize(a.nrows());
|
|
|
|
x=transpose(a)*b;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
///solves multiple linear systems ax=b
|
|
|
|
///a is permutation matrix
|
|
|
|
///x is the matrix of solution vectors (columns)
|
|
|
|
///b is the matrix of right-hand sides (columns)
|
|
|
|
template<typename T>
|
|
|
|
bool solve(const perm_mat& a,const mat<T>&b,mat<T>&x)
|
|
|
|
{
|
|
|
|
assert(a.nrows() == a.ncols());
|
|
|
|
vec<T> xcol;
|
|
|
|
x.resize(b.nrows(),b.ncols());
|
|
|
|
for(unsigned i = 0; i < b.ncols();i++)
|
|
|
|
{
|
|
|
|
if(!solve(a,b.col(i),xcol))
|
|
|
|
return false;
|
|
|
|
x.set_col(i,xcol);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///solve ax=b with lu decomposition
|
|
|
|
///a is a full storage matrix
|
|
|
|
template<typename T>
|
|
|
|
bool lu_solve(const mat<T>& a, const vec<T>&b, vec<T>&x)
|
|
|
|
{
|
|
|
|
assert(a.nrows() == a.ncols());
|
|
|
|
x.resize(a.nrows());
|
|
|
|
vec<T> temp1,temp2;
|
|
|
|
low_tri_mat<T> L;
|
|
|
|
up_tri_mat<T> U;
|
|
|
|
perm_mat P;
|
|
|
|
if(!lu(a,P,L,U))
|
|
|
|
return false;
|
|
|
|
if(!solve(P,b,temp1))
|
|
|
|
return false;
|
|
|
|
if(!solve(L,temp1,temp2))
|
|
|
|
return false;
|
|
|
|
return solve(U,temp2,x);
|
|
|
|
}
|
|
|
|
|
|
|
|
///solve ax=b, standard solver for full storage matrix is lu_solve
|
|
|
|
///a is a full storage matrix
|
|
|
|
template<typename T>
|
|
|
|
bool solve(const mat<T>& a, const vec<T>&b, vec<T>&x)
|
|
|
|
{
|
|
|
|
return lu_solve( a, b, x) ;
|
|
|
|
}
|
|
|
|
|
|
|
|
///solves multiple linear systems ax=b
|
|
|
|
///a is full storage matrix
|
|
|
|
///x is the matrix of solution vectors (columns)
|
|
|
|
///b is the matrix of right-hand sides (columns)
|
|
|
|
template<typename T>
|
|
|
|
bool lu_solve(const mat<T>& a,const mat<T>&b,mat<T>&x)
|
|
|
|
{
|
|
|
|
assert(a.nrows() == a.ncols());
|
|
|
|
x.resize(b.nrows(),b.ncols());
|
|
|
|
mat<T> temp1,temp2;
|
|
|
|
low_tri_mat<T> L;
|
|
|
|
up_tri_mat<T> U;
|
|
|
|
perm_mat P;
|
|
|
|
if(!lu(a,P,L,U))
|
|
|
|
return false;
|
|
|
|
if(!solve(P,b,temp1))
|
|
|
|
return false;
|
|
|
|
if(!solve(L,temp1,temp2))
|
|
|
|
return false;
|
|
|
|
return solve(U,temp2,x);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
///solves multiple linear systems ax=b with the svd solver
|
|
|
|
///a is full storage matrix
|
|
|
|
///x is the matrix of solution vectors (columns)
|
|
|
|
///b is the matrix of right-hand sides (columns)
|
|
|
|
template<typename T>
|
|
|
|
bool solve(const mat<T>& a, const mat<T>&b, mat<T>&x)
|
|
|
|
{
|
|
|
|
return svd_solve( a, b, x) ;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///solve ax=b with qr decomposition
|
|
|
|
template<typename T>
|
|
|
|
bool qr_solve(const mat<T>& a, const vec<T>&b, vec<T>&x)
|
|
|
|
{
|
|
|
|
x.resize(a.nrows());
|
|
|
|
vec<T> temp;
|
|
|
|
mat<T> q;
|
|
|
|
up_tri_mat<T> r;
|
|
|
|
if(!qr(a,q,r))
|
|
|
|
return false;
|
|
|
|
Atx(q,b,temp);
|
|
|
|
return solve(r,temp,x);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///solves multiple linear systems ax=b with qr solver
|
|
|
|
///a is full storage matrix
|
|
|
|
///x is the matrix of solution vectors (columns)
|
|
|
|
///b is the matrix of right-hand sides (columns)
|
|
|
|
template<typename T>
|
|
|
|
bool qr_solve(const mat<T>& a, const mat<T>&b, mat<T>&x)
|
|
|
|
{
|
|
|
|
assert(a.nrows() == a.ncols());
|
|
|
|
x.resize(b.nrows(),b.ncols());
|
|
|
|
mat<T> temp;
|
|
|
|
mat<T> q;
|
|
|
|
up_tri_mat<T> r;
|
|
|
|
if(!qr(a,q,r))
|
|
|
|
return false;
|
|
|
|
AtB(q,b,temp);
|
|
|
|
return solve(r,temp,x);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///solve ax=b with svd decomposition
|
|
|
|
template<typename T>
|
|
|
|
bool svd_solve(const mat<T>& a, const vec<T>&b, vec<T>&x)
|
|
|
|
{
|
|
|
|
x.resize(a.nrows());
|
|
|
|
vec<T> temp;
|
|
|
|
mat<T> u,v;
|
|
|
|
diag_mat<T> d;
|
|
|
|
if(!svd(a,u,d,v))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
Atx(u,b,temp);
|
|
|
|
if(!solve(d,temp,x))
|
|
|
|
return false;
|
|
|
|
x=v*x;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
///solve ax=b with svd decomposition
|
|
|
|
template<typename T>
|
|
|
|
bool svd_solve(const mat<T>& a, const mat<T>&b, mat<T>&x)
|
|
|
|
{
|
|
|
|
assert(a.nrows() == a.ncols());
|
|
|
|
x.resize(b.nrows(),b.ncols());
|
|
|
|
|
|
|
|
mat<T> temp;
|
|
|
|
mat<T> u,v;
|
|
|
|
diag_mat<T> d;
|
|
|
|
if(!svd(a,u,d,v))
|
|
|
|
return false;
|
|
|
|
AtB(u,b,temp);
|
|
|
|
if(!solve(d,temp,x))
|
|
|
|
return false;
|
|
|
|
x=v*x;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2018-05-17 13:50:03 +00:00
|
|
|
}
|