2018-05-17 14:01:02 +00:00
|
|
|
#pragma once
|
|
|
|
#include <ctime>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "functions.h"
|
|
|
|
#include <cgv/math/vec.h>
|
|
|
|
#include <cgv/math/mat.h>
|
2018-05-17 13:50:03 +00:00
|
|
|
#include <cgv/math/eig.h>
|
2018-05-17 14:01:02 +00:00
|
|
|
#include <cgv/math/diag_mat.h>
|
|
|
|
#include <cgv/math/perm_mat.h>
|
|
|
|
#include <cgv/math/up_tri_mat.h>
|
|
|
|
#include <cgv/math/low_tri_mat.h>
|
|
|
|
#include <cgv/math/quat.h>
|
|
|
|
#include <set>
|
|
|
|
//#include <cgv/math/constants.h>
|
|
|
|
|
|
|
|
namespace cgv {
|
|
|
|
namespace math {
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* High quality random number generator,
|
|
|
|
* which is a little bit slower than typical random number generators
|
|
|
|
* but with a period about 3.138 x 10^57.
|
|
|
|
*/
|
|
|
|
struct random
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
unsigned long long u,v,w;
|
|
|
|
double storedval;
|
|
|
|
public:
|
|
|
|
/// set a new seed
|
|
|
|
void set_seed(unsigned long long seed)
|
|
|
|
{
|
|
|
|
w = 1;
|
|
|
|
v = 4101842887655102017LL;
|
|
|
|
u = seed^v;
|
|
|
|
unsigned long long ull;
|
|
|
|
uniform(ull);
|
|
|
|
v = u; uniform(ull);
|
|
|
|
w = v; uniform(ull);
|
|
|
|
}
|
|
|
|
|
|
|
|
///standard constructor uses system time as random seed
|
|
|
|
random() : storedval(0.0)
|
|
|
|
{
|
|
|
|
unsigned long long seed = clock();
|
|
|
|
set_seed(seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
///constructor initializes random generator with given seed
|
|
|
|
random(unsigned long long seed) : storedval(0.0)
|
|
|
|
{
|
|
|
|
set_seed(seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates 64bit pseudo random integer
|
|
|
|
void uniform(unsigned long long& rv)
|
|
|
|
{
|
|
|
|
u = u*2862933555777941757LL + 7046029254386353087LL;
|
|
|
|
v ^= v >> 17; v ^= v <<31; v ^= v >> 8;
|
|
|
|
w = 4294957665U*(w & 0xffffffff) + (w >> 32);
|
|
|
|
unsigned long long x = u ^(u << 21); x ^= x >>35; x^=x << 4;
|
|
|
|
rv= (x+v)^w;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a 32bit pseudo random unsigned integer
|
|
|
|
void uniform(unsigned int& rv)
|
|
|
|
{
|
|
|
|
unsigned long long v;
|
|
|
|
uniform(v);
|
|
|
|
rv= (unsigned int) v;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a 32bit pseudo random signed integer
|
|
|
|
void uniform(int& rv)
|
|
|
|
{
|
|
|
|
unsigned long long v;
|
|
|
|
uniform(v);
|
|
|
|
rv = (int) v;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a 32bit pseudo random signed integer
|
|
|
|
void uniform(long& rv)
|
|
|
|
{
|
|
|
|
unsigned long long v;
|
|
|
|
uniform(v);
|
|
|
|
rv = (long) v;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a 64bit pseudo random signed integer
|
|
|
|
void uniform(long long& rv)
|
|
|
|
{
|
|
|
|
unsigned long long v;
|
|
|
|
uniform(v);
|
|
|
|
rv = (long long) v;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random boolean
|
|
|
|
void uniform(bool& rv)
|
|
|
|
{
|
|
|
|
unsigned long long v;
|
|
|
|
uniform(v);
|
|
|
|
rv= v%2 == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random integer between min and max
|
|
|
|
void uniform(const unsigned min,const unsigned max, unsigned& rv)
|
|
|
|
{
|
|
|
|
uniform(rv);
|
|
|
|
rv =rv%(max-min+1)+min;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random integer between min and max
|
|
|
|
void uniform(const int min,const int max, int& rv)
|
|
|
|
{
|
|
|
|
uniform(rv);
|
|
|
|
rv =(int)(rv%(unsigned)(max-min+1))+min;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///generates a pseudo random double-precision floating point number uniformly distributed between 0 and 1
|
|
|
|
void uniform(double& rv)
|
|
|
|
{
|
|
|
|
unsigned long long v;
|
|
|
|
uniform(v);
|
|
|
|
rv= 5.42101086242752217E-20 * v;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random double-precision floating point number uniformly distributed between min and max
|
|
|
|
void uniform(const double min,const double max, double &rv)
|
|
|
|
{
|
|
|
|
double v;
|
|
|
|
uniform(v);
|
|
|
|
rv= (max-min)*v + min;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single-precision floating point number uniformly distributed between 0 and 1
|
|
|
|
void uniform(float & rv)
|
|
|
|
{
|
|
|
|
double v;
|
|
|
|
uniform(v);
|
|
|
|
rv =(float) v;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single-precision floating point number uniformly distributed between 0 and 1
|
|
|
|
void uniform(const float min,const float max, float& rv)
|
|
|
|
{
|
|
|
|
float f;
|
|
|
|
uniform(f);
|
|
|
|
rv= (max-min)*f + min;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single precision vector with uniformly distribute components between 0 and 1
|
|
|
|
void uniform( vec<float>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.size();i++)
|
|
|
|
uniform(rv(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single precision vector with uniformly distribute components between min and max
|
|
|
|
void uniform(const float min,const float max, vec<float>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.size();i++)
|
|
|
|
uniform(min,max,rv(i));
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///generates a pseudo random double precision vector with uniformly distribute components between 0 and 1
|
|
|
|
void uniform(vec<double>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.size();i++)
|
|
|
|
uniform(rv(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random double precision vector with uniformly distribute components between min and max
|
|
|
|
void uniform(const double min,const double max, vec<double>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.size();i++)
|
|
|
|
uniform(min,max,rv(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single precision full matrix with uniformly distribute components between 0 and 1
|
|
|
|
void uniform(mat<float>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
for(unsigned j = 0; j < rv.ncols(); j++)
|
|
|
|
uniform(rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single precision full matrix with uniformly distribute components between min and max
|
|
|
|
void uniform(const float min,const float max, mat<float>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
for(unsigned j = 0; j < rv.ncols(); j++)
|
|
|
|
uniform(min,max,rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random permutation matrix
|
|
|
|
void uniform(perm_mat& rv)
|
|
|
|
{
|
|
|
|
unsigned j;
|
|
|
|
for(unsigned i = 0; i < rv.size();i++)
|
|
|
|
{
|
|
|
|
uniform(j);
|
|
|
|
j=(i+j)%rv.size();
|
|
|
|
rv.swap(i,j);
|
|
|
|
}
|
|
|
|
std::random_shuffle(&(rv(0)),&(rv(rv.nrows())));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single precision upper triangular matrix with uniformly distribute components between 0 and 1
|
|
|
|
void uniform(up_tri_mat<float>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
for(unsigned j = i; j < rv.ncols(); j++)
|
|
|
|
uniform(rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///generates a pseudo random single precision upper triangular matrix with uniformly distribute components between min and max
|
|
|
|
void uniform(const float min, const float max,up_tri_mat<float>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
for(unsigned j = i; j < rv.ncols(); j++)
|
|
|
|
uniform(min,max,rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random double precision upper triangular matrix with uniformly distribute components between 0 and 1
|
|
|
|
void uniform(up_tri_mat<double>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
for(unsigned j = i; j < rv.ncols(); j++)
|
|
|
|
uniform(rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random double precision upper triangular matrix with uniformly distribute components between min and max
|
|
|
|
void uniform(const double min, const double max,up_tri_mat<double>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
for(unsigned j = i; j < rv.ncols(); j++)
|
|
|
|
uniform(min,max,rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single precision lower triangular matrix with uniformly distribute components between 0 and 1
|
|
|
|
void uniform( low_tri_mat<float>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
for(unsigned j = 0; j <= i; j++)
|
|
|
|
uniform(rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single precision lower triangular matrix with uniformly distribute components between min and max
|
|
|
|
void uniform(const float min,const float max, low_tri_mat<float>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
for(unsigned j = 0; j <= i; j++)
|
|
|
|
uniform(min,max,rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random double precision lower triangular matrix with uniformly distribute components between 0 and 1
|
|
|
|
void uniform( low_tri_mat<double>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned j = 0; j < rv.ncols(); j++)
|
|
|
|
for(unsigned i = 0; i < j; i++)
|
|
|
|
uniform(rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random double precision lower triangular matrix with uniformly distribute components between min and max
|
|
|
|
void uniform(const double min,const double max, low_tri_mat<double>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned j = 0; j < rv.ncols(); j++)
|
|
|
|
for(unsigned i = 0; i < j; i++)
|
|
|
|
uniform(min,max,rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single precision diagonal matrix with uniformly distribute components between 0 and 1
|
|
|
|
void uniform(diag_mat<float>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
uniform(rv(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random single precision diagonal matrix with uniformly distribute components between min and max
|
|
|
|
void uniform(const float min,const float max, diag_mat<float>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
uniform(min,max,rv(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random double precision diagonal matrix with uniformly distribute components between 0 and 1
|
|
|
|
void uniform(diag_mat<double>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
uniform(rv(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random double precision diagonal matrix with uniformly distribute components between min and max
|
|
|
|
void uniform(const double min,const double max, diag_mat<double>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
uniform(min,max,rv(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///generates a pseudo random double full matrix with uniformly distribute components between 0 and 1
|
|
|
|
void uniform(mat<double>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
for(unsigned j = 0; j < rv.ncols(); j++)
|
|
|
|
uniform(rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a pseudo random double full matrix with uniformly distribute components between min and max
|
|
|
|
void uniform(const double min,const double max, mat<double>& rv)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0; i < rv.nrows(); i++)
|
|
|
|
for(unsigned j = 0; j < rv.ncols(); j++)
|
|
|
|
uniform(min,max,rv(i,j));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///generates a normal deviate double-precision floating point value with mu = 0 and sigma = 1
|
|
|
|
void normal(double& rv)
|
|
|
|
{
|
|
|
|
double v1,v2,rsq,fac;
|
|
|
|
if(storedval == 0.)
|
|
|
|
{
|
|
|
|
do{
|
|
|
|
uniform(v1);
|
|
|
|
uniform(v2);
|
|
|
|
|
|
|
|
v1 = 2.0 * v1-1.0;
|
|
|
|
v2 = 2.0 * v2-1.0;
|
|
|
|
rsq = v1*v1+v2*v2;
|
|
|
|
}while(rsq >= 1.0 || rsq == 0.0);
|
|
|
|
fac = sqrt(-2.0*std::log(rsq)/rsq);
|
|
|
|
storedval = v1*fac;
|
|
|
|
rv= v2*fac;
|
|
|
|
|
|
|
|
}else
|
|
|
|
{
|
|
|
|
fac = storedval;
|
|
|
|
storedval = 0.;
|
|
|
|
rv= fac;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a normal deviate single-precision floating point value with mu = 0 and sigma = 1
|
|
|
|
void normal(float& rv)
|
|
|
|
{
|
|
|
|
double d;
|
|
|
|
normal(d);
|
|
|
|
rv = (float)d;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a normal deviate double-precision floating point value with mu and sigma
|
|
|
|
void normal(const double mu, const double sigma, double &rv)
|
|
|
|
{
|
|
|
|
double d;
|
|
|
|
normal(d);
|
|
|
|
rv =mu + sigma * d;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a normal deviate single-precision floating point value with mu and sigma
|
|
|
|
void normal(const float mu, const float sigma, float& rv)
|
|
|
|
{ float f;
|
|
|
|
normal(f);
|
|
|
|
rv= mu + sigma * f;
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a single precision random direction (uniformly distributed position on the unit sphere)
|
|
|
|
void uniform_direction(vec<float>& v)
|
|
|
|
{
|
|
|
|
|
|
|
|
for(unsigned i = 0;i < v.size(); i++)
|
|
|
|
normal(v(i));
|
|
|
|
v.normalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///generates a double precision random direction (uniformly distributed position on the unit sphere)
|
|
|
|
void uniform_direction(vec<double>& v)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0;i < v.size();i++)
|
|
|
|
normal(v(i));
|
|
|
|
v.normalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a single precision random orientation represented as a unit quaternion
|
|
|
|
void uniform_quat_orientation(vec<float>& q)
|
|
|
|
{
|
|
|
|
float x[3];
|
|
|
|
uniform(x[0]);
|
|
|
|
uniform(x[1]);
|
|
|
|
uniform(x[2]);
|
|
|
|
float a, b, c, d, s;
|
|
|
|
float z, r, theta, omega;
|
|
|
|
|
|
|
|
|
|
|
|
z = x[0];
|
|
|
|
r = sqrt( 1 - z * z );
|
|
|
|
theta = 2.0f * 3.14159f * x[1];
|
|
|
|
omega = 3.14159f * x[2];
|
|
|
|
|
|
|
|
|
|
|
|
s = sin( omega );
|
|
|
|
a = cos( omega );
|
|
|
|
b = s * cos( theta ) * r;
|
|
|
|
c = s * sin( theta ) * r;
|
|
|
|
d = s * z;
|
|
|
|
|
|
|
|
|
|
|
|
q.set(b,c,d,a);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///generates a double precision random orientation
|
|
|
|
///represented as a unit quaternion
|
|
|
|
void uniform_quat_orientation(vec<double>& q)
|
|
|
|
{
|
|
|
|
q.resize(4);
|
|
|
|
double x[3];
|
|
|
|
uniform(x[0]);
|
|
|
|
uniform(x[1]);
|
|
|
|
uniform(x[2]);
|
|
|
|
double a, b, c, d, s;
|
|
|
|
double z, r, theta, omega;
|
|
|
|
|
|
|
|
|
|
|
|
z = x[0];
|
|
|
|
r = sqrt( 1 - z * z );
|
|
|
|
theta = 2.0 * 3.14159 * x[1];
|
|
|
|
omega = 3.14159 * x[2];
|
|
|
|
|
|
|
|
|
|
|
|
s = sin( omega );
|
|
|
|
a = cos( omega );
|
|
|
|
b = s * cos( theta ) * r;
|
|
|
|
c = s * sin( theta ) * r;
|
|
|
|
d = s * z;
|
|
|
|
|
|
|
|
|
|
|
|
q.set(b,c,d,a);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///generates a single precision random orientation represented as a rotation matrix
|
|
|
|
void uniform_orientation(mat<float>& m)
|
|
|
|
{
|
|
|
|
if(m.nrows() == 3 && m.ncols() == 3)
|
|
|
|
{
|
|
|
|
vec<float> q(4);
|
|
|
|
uniform_quat_orientation(q);
|
|
|
|
m = quat_2_mat_33(q);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if(m.nrows() == 4 && m.ncols() == 4)
|
|
|
|
{
|
|
|
|
vec<float> q(4);
|
|
|
|
uniform_quat_orientation(q);
|
|
|
|
m = quat_2_mat_44(q);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
assert(false);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
///generates a double precision random orientation represented as a rotation matrix
|
|
|
|
void uniform_orientation( mat<double>& m)
|
|
|
|
{
|
|
|
|
if(m.nrows() == 3 && m.ncols() == 3)
|
|
|
|
{
|
|
|
|
vec<double> q(4);
|
|
|
|
uniform_quat_orientation(q);
|
|
|
|
m = quat_2_mat_33(q);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if(m.nrows() == 4 && m.ncols() == 4)
|
|
|
|
{
|
|
|
|
vec<double> q(4);
|
|
|
|
uniform_quat_orientation(q);
|
|
|
|
m = quat_2_mat_44(q);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
assert(false);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///creates an uniform distributed random point in unit box (0,0,...,0)..(1,1,...,1); if dim(p)=0, it is set to 3
|
|
|
|
void uniform_point_in_unit_box(vec<double>& p)
|
|
|
|
{
|
|
|
|
if (p.size() == 0)
|
|
|
|
p.resize(3);
|
|
|
|
for (unsigned i=0; i<p.size(); ++i)
|
|
|
|
uniform(p(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
///creates an uniform distributed random point in box minp..maxp
|
|
|
|
void uniform_point_in_box(const vec<double>& minp,const vec<double>& maxp, vec<double>& p)
|
|
|
|
{
|
|
|
|
assert(minp.size() == maxp.size());
|
|
|
|
if (p.size() != minp.size())
|
|
|
|
p.resize(minp.size());
|
|
|
|
for (unsigned i=0; i<p.size(); ++i)
|
|
|
|
uniform(minp(i),maxp(i),p(i));
|
|
|
|
}
|
|
|
|
|
|
|
|
///creates an uniform distributed random point in unit sphere
|
|
|
|
void uniform_point_in_unit_ball(vec<double>& p)
|
|
|
|
{
|
|
|
|
uniform_direction(p);
|
|
|
|
double r;
|
|
|
|
uniform(r);
|
|
|
|
r = pow(r, 1.0/p.size());
|
|
|
|
p *= r;
|
|
|
|
}
|
|
|
|
///creates an uniform distributed random point in triangle p1,p2,p3
|
|
|
|
void uniform_point_in_triangle(const vec<double>& p1, const vec<double>& p2, const vec<double>& p3,vec<double> p)
|
|
|
|
{
|
|
|
|
double u,v;
|
|
|
|
uniform(u);
|
|
|
|
uniform(v);
|
|
|
|
if(u+v > 1.0)
|
|
|
|
{
|
|
|
|
u=1.0-u;
|
|
|
|
v=1.0-v;
|
|
|
|
}
|
|
|
|
p= u*p1 + v*p2 +(1.0-u-v)*p3;
|
|
|
|
}
|
|
|
|
|
|
|
|
///creates an uniform distributed random point on the surface of a sphere with given center and radius
|
|
|
|
void uniform_point_on_sphere(const vec<double>& center,const double& radius,
|
|
|
|
vec<double>& p)
|
|
|
|
{
|
|
|
|
for(unsigned i = 0;i < p.size();i++)
|
|
|
|
normal(p(i));
|
|
|
|
p.normalize();
|
|
|
|
p=center+radius*p;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///creates a vector of k unique indices drawn from 0 to n-1
|
|
|
|
void uniform_nchoosek(unsigned n, unsigned k, vec<unsigned>& indices)
|
|
|
|
{
|
|
|
|
std::set<unsigned> s;
|
|
|
|
unsigned v;
|
|
|
|
while(s.size() < k)
|
|
|
|
{
|
|
|
|
uniform(0,n-1,v);
|
|
|
|
s.insert(v);
|
|
|
|
}
|
|
|
|
|
|
|
|
indices.resize(k);
|
|
|
|
unsigned i=0;
|
|
|
|
for(std::set<unsigned>::iterator it =s.begin(); it != s.end();it++,i++)
|
|
|
|
indices(i)=*it;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|