CGII/framework/include/cgv/math/transformations.h

931 lines
19 KiB
C
Raw Normal View History

2018-05-17 14:01:02 +00:00
#pragma once
#include "vec.h"
#include "mat.h"
2018-06-20 09:18:17 +00:00
namespace cgv
{
namespace math
{
2018-05-17 14:01:02 +00:00
///creates a 3x3 scale matrix
template <typename T>
2018-06-20 09:18:17 +00:00
const mat<T> scale_33(const T &sx, const T &sy, const T &sz)
{
mat<T> m(3, 3);
m(0, 0) = sx;
m(0, 1) = 0;
m(0, 2) = 0;
m(1, 0) = 0;
m(1, 1) = sy;
m(1, 2) = 0;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = sz;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a 3x3 uniform scale matrix
template <typename T>
2018-06-20 09:18:17 +00:00
const mat<T> scale_33(const T &s)
{
mat<T> m(3, 3);
m(0, 0) = s;
m(0, 1) = 0;
m(0, 2) = 0;
m(1, 0) = 0;
m(1, 1) = s;
m(1, 2) = 0;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = s;
2018-05-17 14:01:02 +00:00
return m;
}
2018-06-20 09:18:17 +00:00
///creates a 3x3 rotation matrix around the x axis, the angle is in degree
template <typename T>
const mat<T> rotatex_33(const T &angle)
{
T angler = angle * (T)3.14159 / (T)180.0;
mat<T> m(3, 3);
m(0, 0) = 1;
m(0, 1) = 0;
m(0, 2) = 0;
m(1, 0) = 0;
m(1, 1) = (T)cos((double)angler);
m(1, 2) = -(T)sin((double)angler);
m(2, 0) = 0;
m(2, 1) = (T)sin((double)angler);
m(2, 2) = (T)cos((double)angler);
2018-05-17 14:01:02 +00:00
2018-06-20 09:18:17 +00:00
return m;
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
///creates a 3x3 rotation matrix around the y axis, the angle is in degree
template <typename T>
const mat<T> rotatey_33(const T &angle)
{
T angler = angle * (T)3.14159 / (T)180.0;
mat<T> m(3, 3);
m(0, 0) = (T)cos((double)angler);
m(0, 1) = 0;
m(0, 2) = (T)sin((double)angler);
m(1, 0) = 0;
m(1, 1) = 1;
m(1, 2) = 0;
m(2, 0) = -(T)sin((double)angler);
m(2, 1) = 0;
m(2, 2) = (T)cos((double)angler);
2018-05-17 14:01:02 +00:00
2018-06-20 09:18:17 +00:00
return m;
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
///creates a 3x3 rotation matrix around the z axis, the angle is in degree
template <typename T>
const mat<T> rotatez_33(const T &angle)
{
T angler = angle * (T)3.14159 / (T)180.0;
mat<T> m(3, 3);
m(0, 0) = (T)cos((double)angler);
m(0, 1) = -(T)sin((double)angler);
m(0, 2) = 0;
m(1, 0) = (T)sin((double)angler);
m(1, 1) = (T)cos((double)angler);
m(1, 2) = 0;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = 1;
return m;
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
///creates a 2x2 rotation matrix around the z axis, the angle is in degree
template <typename T>
const mat<T> rotate_22(const T &angle)
{
T angler = angle * (T)3.14159 / (T)180.0;
mat<T> m(2, 2);
m(0, 0) = (T)cos((double)angler);
m(0, 1) = -(T)sin((double)angler);
m(1, 0) = (T)sin((double)angler);
m(1, 1) = (T)cos((double)angler);
return m;
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> rotate_33(const T &dirx, const T &diry, const T &dirz,
const T &angle)
2018-05-17 14:01:02 +00:00
{
2018-06-20 09:18:17 +00:00
T angler = angle * (T)3.14159 / (T)180.0;
mat<T> m(3, 3);
2018-05-17 14:01:02 +00:00
T rcos = cos(angler);
T rsin = sin(angler);
2018-06-20 09:18:17 +00:00
m(0, 0) = rcos + dirx * dirx * ((T)1 - rcos);
m(0, 1) = -dirz * rsin + diry * dirx * ((T)1 - rcos);
m(0, 2) = diry * rsin + dirz * dirx * ((T)1 - rcos);
2018-05-17 14:01:02 +00:00
2018-06-20 09:18:17 +00:00
m(1, 0) = dirz * rsin + dirx * diry * ((T)1 - rcos);
m(1, 1) = rcos + diry * diry * ((T)1 - rcos);
m(1, 2) = -dirx * rsin + dirz * diry * ((T)1 - rcos);
m(2, 0) = -diry * rsin + dirx * dirz * ((T)1 - rcos);
m(2, 1) = dirx * rsin + diry * dirz * ((T)1 - rcos);
m(2, 2) = rcos + dirz * dirz * ((T)1 - rcos);
2018-05-17 14:01:02 +00:00
return m;
}
2018-06-20 09:18:17 +00:00
///creates a 3x3 euler rotation matrix from yaw, pitch and roll given in degree
template <typename T>
const mat<T> rotate_euler_33(const T &yaw, const T &pitch, const T &roll)
{
T yawd = (T)(yaw * 3.14159 / 180.0);
T pitchd = (T)(pitch * 3.14159 / 180.0);
T rolld = (T)(roll * 3.14159 / 180.0);
T cosy = (T)cos(yawd);
T siny = (T)sin(yawd);
T cosp = (T)cos(pitchd);
T sinp = (T)sin(pitchd);
T cosr = (T)cos(rolld);
T sinr = (T)sin(rolld);
mat<T> m(3, 3);
m(0, 0) = cosr * cosy - sinr * sinp * siny;
m(0, 1) = -sinr * cosp;
m(0, 2) = cosr * siny + sinr * sinp * cosy;
m(1, 0) = sinr * cosy + cosr * sinp * siny;
m(1, 1) = cosr * cosp;
m(1, 2) = sinr * siny - cosr * sinp * cosy;
m(2, 0) = -cosp * siny;
m(2, 1) = sinp;
m(2, 2) = cosp * cosy;
2018-05-17 14:01:02 +00:00
2018-06-20 09:18:17 +00:00
return m;
2018-05-17 14:01:02 +00:00
}
template <typename T>
2018-06-20 09:18:17 +00:00
const mat<T> star(const vec<T> &v)
2018-05-17 14:01:02 +00:00
{
2018-06-20 09:18:17 +00:00
mat<T> m(3, 3);
m(0, 0) = 0;
m(0, 1) = -v(2);
m(0, 2) = v(1);
2018-05-17 14:01:02 +00:00
2018-06-20 09:18:17 +00:00
m(1, 0) = v(2);
m(1, 1) = 0;
m(1, 2) = -v(0);
2018-05-17 14:01:02 +00:00
2018-06-20 09:18:17 +00:00
m(2, 0) = -v(1);
m(2, 1) = v(0);
m(2, 2) = 0;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a 3x3 rotation matrix from a rodrigues vector
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> rotate_rodrigues_33(const vec<T> &r)
2018-05-17 14:01:02 +00:00
{
T theta = length(r);
2018-06-20 09:18:17 +00:00
if (theta == 0)
2018-05-17 14:01:02 +00:00
return identity<T>(3);
2018-06-20 09:18:17 +00:00
vec<T> rn = r / theta;
2018-05-17 14:01:02 +00:00
T cos_theta = cos(theta);
T sin_theta = sin(theta);
2018-06-20 09:18:17 +00:00
return cos_theta * identity<T>(3) + ((T)1 - cos_theta) * dyad(rn, rn) + sin_theta * star(rn);
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> rotate_rodrigues_33(const T &rx, const T &ry, const T &rz)
2018-05-17 14:01:02 +00:00
{
vec<T> r(3);
r(0) = rx;
r(1) = ry;
r(2) = rz;
2018-06-20 09:18:17 +00:00
2018-05-17 14:01:02 +00:00
return rotate_rodrigues_33(r);
}
///creates a homogen 3x3 shear matrix with given shears shx in x direction, and shy in y direction
2018-06-20 09:18:17 +00:00
template <typename T>
2018-05-17 14:01:02 +00:00
const mat<T> shearxy_33(const T &shx, const T &shy)
{
2018-06-20 09:18:17 +00:00
mat<T> m(3, 3);
m(0, 0) = 1;
m(0, 1) = 0;
m(0, 2) = shx;
m(1, 0) = 0;
m(1, 1) = 1;
m(1, 2) = shy;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a homogen 3x3 shear matrix with given shears shx in x direction, and shy in y direction
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> shearxz_33(const T &shx, const T &shz)
{
mat<T> m(3, 3);
m(0, 0) = 1;
m(0, 1) = shx;
m(0, 2) = 0;
m(1, 0) = 0;
m(1, 1) = 1;
m(1, 2) = 0;
m(2, 0) = 0;
m(2, 1) = shz;
m(2, 2) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a homogen 3x3 shear matrix with given shears shy in y direction, and shz in z direction
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> shearyz_33(const T &shy, const T &shz)
{
mat<T> m(3, 3);
m(0, 0) = 1;
m(0, 1) = 0;
m(0, 2) = 0;
m(1, 0) = shy;
m(1, 1) = 1;
m(1, 2) = 0;
m(2, 0) = shz;
m(2, 1) = 0;
m(2, 2) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
2018-06-20 09:18:17 +00:00
///creates a homogen 3x3 shear matrix
template <typename T>
2018-05-17 14:01:02 +00:00
const mat<T> shear_33(const T &syx, const T &szx,
2018-06-20 09:18:17 +00:00
const T &sxy, const T &szy,
const T &sxz, const T &syz)
{
mat<T> m(3, 3);
m(0, 0) = 1;
m(0, 1) = syx;
m(0, 2) = szx;
m(1, 0) = sxy;
m(1, 1) = 1;
m(1, 2) = szy;
m(2, 0) = sxz;
m(2, 1) = syz;
m(2, 2) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a 4x4 translation matrix
template <typename T>
2018-06-20 09:18:17 +00:00
const mat<T> translate_44(const T &x, const T &y, const T &z)
{
mat<T> m(4, 4);
m(0, 0) = 1;
m(0, 1) = 0;
m(0, 2) = 0;
m(0, 3) = x;
m(1, 0) = 0;
m(1, 1) = 1;
m(1, 2) = 0;
m(1, 3) = y;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = 1;
m(2, 3) = z;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a 4x4 translation matrix
template <typename T>
const mat<T> translate_44(const vec<T> &v)
{
2018-06-20 09:18:17 +00:00
mat<T> m(4, 4);
m(0, 0) = 1;
m(0, 1) = 0;
m(0, 2) = 0;
m(0, 3) = v(0);
m(1, 0) = 0;
m(1, 1) = 1;
m(1, 2) = 0;
m(1, 3) = v(1);
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = 1;
m(2, 3) = v(2);
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a 4x4 scale matrix
template <typename T>
2018-06-20 09:18:17 +00:00
const mat<T> scale_44(const T &sx, const T &sy, const T &sz)
{
mat<T> m(4, 4);
m(0, 0) = sx;
m(0, 1) = 0;
m(0, 2) = 0;
m(0, 3) = 0;
m(1, 0) = 0;
m(1, 1) = sy;
m(1, 2) = 0;
m(1, 3) = 0;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = sz;
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
2018-06-20 09:18:17 +00:00
template <typename T>
2018-05-17 14:01:02 +00:00
const mat<T> scale_44(const cgv::math::vec<T> s)
{
assert(s.size() == 3);
2018-06-20 09:18:17 +00:00
return scale_44(s(0), s(1), s(2));
2018-05-17 14:01:02 +00:00
}
///creates a 4x4 uniform scale matrix
template <typename T>
2018-06-20 09:18:17 +00:00
const mat<T> scale_44(const T &s)
{
mat<T> m(4, 4);
m(0, 0) = s;
m(0, 1) = 0;
m(0, 2) = 0;
m(0, 3) = 0;
m(1, 0) = 0;
m(1, 1) = s;
m(1, 2) = 0;
m(1, 3) = 0;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = s;
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
2018-06-20 09:18:17 +00:00
///creates a 4x4 rotation matrix around the x axis, the angle is in degree
template <typename T>
const mat<T> rotatex_44(const T &angle)
{
T angler = angle * (T)3.14159 / (T)180.0;
mat<T> m(4, 4);
m(0, 0) = 1;
m(0, 1) = 0;
m(0, 2) = 0;
m(0, 3) = 0;
m(1, 0) = 0;
m(1, 1) = (T)cos((double)angler);
m(1, 2) = -(T)sin((double)angler);
m(1, 3) = 0;
m(2, 0) = 0;
m(2, 1) = (T)sin((double)angler);
m(2, 2) = (T)cos((double)angler);
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
return m;
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
///creates a 4x4 rotation matrix around the y axis, the angle is in degree
template <typename T>
const mat<T> rotatey_44(const T &angle)
{
T angler = angle * (T)3.14159 / (T)180.0;
mat<T> m(4, 4);
m(0, 0) = (T)cos((double)angler);
m(0, 1) = 0;
m(0, 2) = (T)sin((double)angler);
m(0, 3) = 0;
m(1, 0) = 0;
m(1, 1) = 1;
m(1, 2) = 0;
m(1, 3) = 0;
m(2, 0) = -(T)sin((double)angler);
m(2, 1) = 0;
m(2, 2) = (T)cos((double)angler);
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
return m;
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
///creates a 4x4 rotation matrix around the z axis, the angle is in degree
template <typename T>
const mat<T> rotatez_44(const T &angle)
{
T angler = angle * (T)3.14159 / (T)180.0;
mat<T> m(4, 4);
m(0, 0) = (T)cos((double)angler);
m(0, 1) = -(T)sin((double)angler);
m(0, 2) = 0;
m(0, 3) = 0;
m(1, 0) = (T)sin((double)angler);
m(1, 1) = (T)cos((double)angler);
m(1, 2) = 0;
m(1, 3) = 0;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = 1;
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
return m;
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> rotate_44(const T &dirx, const T &diry, const T &dirz,
const T &angle)
2018-05-17 14:01:02 +00:00
{
2018-06-20 09:18:17 +00:00
T angler = angle * (T)3.14159 / (T)180.0;
mat<T> m(4, 4);
2018-05-17 14:01:02 +00:00
T rcos = cos(angler);
T rsin = sin(angler);
2018-06-20 09:18:17 +00:00
m(0, 0) = rcos + dirx * dirx * ((T)1 - rcos);
m(0, 1) = -dirz * rsin + diry * dirx * ((T)1 - rcos);
m(0, 2) = diry * rsin + dirz * dirx * ((T)1 - rcos);
m(1, 0) = dirz * rsin + dirx * diry * ((T)1 - rcos);
m(1, 1) = rcos + diry * diry * ((T)1 - rcos);
m(1, 2) = -dirx * rsin + dirz * diry * ((T)1 - rcos);
m(2, 0) = -diry * rsin + dirx * dirz * ((T)1 - rcos);
m(2, 1) = dirx * rsin + diry * dirz * ((T)1 - rcos);
m(2, 2) = rcos + dirz * dirz * ((T)1 - rcos);
m(3, 0) = (T)0;
m(3, 1) = (T)0;
m(3, 2) = (T)0;
m(0, 3) = (T)0;
m(1, 3) = (T)0;
m(2, 3) = (T)0;
m(3, 3) = (T)1;
2018-05-17 14:01:02 +00:00
return m;
}
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> rotate_33(const cgv::math::vec<T> &dir, const T &angle)
2018-05-17 14:01:02 +00:00
{
2018-06-20 09:18:17 +00:00
2018-05-17 14:01:02 +00:00
assert(dir.size() == 3);
2018-06-20 09:18:17 +00:00
cgv::math::vec<T> vdir = dir;
2018-05-17 14:01:02 +00:00
vdir.normalize();
2018-06-20 09:18:17 +00:00
return rotate_33<T>(vdir(0), vdir(1), vdir(2), angle);
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> rotate_44(const cgv::math::vec<T> &dir, const T &angle)
2018-05-17 14:01:02 +00:00
{
2018-06-20 09:18:17 +00:00
2018-05-17 14:01:02 +00:00
assert(dir.size() == 3);
2018-06-20 09:18:17 +00:00
cgv::math::vec<T> vdir = dir;
2018-05-17 14:01:02 +00:00
vdir.normalize();
2018-06-20 09:18:17 +00:00
return rotate_44<T>(vdir(0), vdir(1), vdir(2), angle);
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
///creates a 4x4 euler rotation matrix from yaw, pitch and roll given in degree
template <typename T>
const mat<T> rotate_euler_44(const T &yaw, const T &pitch, const T &roll)
{
T yawd = yaw * 3.14159 / 180.0;
T pitchd = pitch * 3.14159 / 180.0;
T rolld = roll * 3.14159 / 180.0;
T cosy = (T)cos(yawd);
T siny = (T)sin(yawd);
T cosp = (T)cos(pitchd);
T sinp = (T)sin(pitchd);
T cosr = (T)cos(rolld);
T sinr = (T)sin(rolld);
mat<T> m(4, 4);
m(0, 0) = cosr * cosy - sinr * sinp * siny;
m(0, 1) = -sinr * cosp;
m(0, 2) = cosr * siny + sinr * sinp * cosy;
m(0, 3) = 0;
m(1, 0) = sinr * cosy + cosr * sinp * siny;
m(1, 1) = cosr * cosp;
m(1, 2) = sinr * siny - cosr * sinp * cosy;
m(1, 3) = 0;
m(2, 0) = -cosp * siny;
m(2, 1) = sinp;
m(2, 2) = cosp * cosy;
m(2, 3) = 0;
m(3, 0) = m(3, 1) = m(3, 2) = 0;
m(3, 3) = 1;
return m;
2018-05-17 14:01:02 +00:00
}
///creates a homogen 4x4 shear matrix with given shears shx in x direction, and shy in y direction
2018-06-20 09:18:17 +00:00
template <typename T>
2018-05-17 14:01:02 +00:00
const mat<T> shearxy_44(const T &shx, const T &shy)
{
2018-06-20 09:18:17 +00:00
mat<T> m(4, 4);
m(0, 0) = 1;
m(0, 1) = 0;
m(0, 2) = shx;
m(0, 3) = 0;
m(1, 0) = 0;
m(1, 1) = 1;
m(1, 2) = shy;
m(1, 3) = 0;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = 1;
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a homogen 4x4 shear matrix with given shears shx in x direction, and shy in y direction
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> shearxz_44(const T &shx, const T &shz)
{
mat<T> m(4, 4);
m(0, 0) = 1;
m(0, 1) = shx;
m(0, 2) = 0;
m(0, 3) = 0;
m(1, 0) = 0;
m(1, 1) = 1;
m(1, 2) = 0;
m(1, 3) = 0;
m(2, 0) = 0;
m(2, 1) = shz;
m(2, 2) = 1;
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a homogen 4x4 shear matrix with given shears shy in y direction, and shz in z direction
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> shearyz_44(const T &shy, const T &shz)
{
mat<T> m(4, 4);
m(0, 0) = 1;
m(0, 1) = 0;
m(0, 2) = 0;
m(0, 3) = 0;
m(1, 0) = shy;
m(1, 1) = 1;
m(1, 2) = 0;
m(1, 3) = 0;
m(2, 0) = shz;
m(2, 1) = 0;
m(2, 2) = 1;
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
2018-06-20 09:18:17 +00:00
///creates a homogen 4x4 shear matrix
template <typename T>
2018-05-17 14:01:02 +00:00
const mat<T> shear_44(const T &syx, const T &szx,
2018-06-20 09:18:17 +00:00
const T &sxy, const T &szy,
const T &sxz, const T &syz)
{
mat<T> m(4, 4);
m(0, 0) = 1;
m(0, 1) = syx;
m(0, 2) = szx;
m(0, 3) = 0;
m(1, 0) = sxy;
m(1, 1) = 1;
m(1, 2) = szy;
m(1, 3) = 0;
m(2, 0) = sxz;
m(2, 1) = syz;
m(2, 2) = 1;
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a perspective transformation matrix in the same way as gluPerspective does
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> perspective_44(const T &fovy, const T &aspect, const T &znear,
const T &zfar)
{
T fovyr = (T)(fovy * 3.14159 / 180.0);
T f = (T)(cos(fovyr / 2.0f) / sin(fovyr / 2.0f));
mat<T> m(4, 4);
m(0, 0) = f / aspect;
m(0, 1) = 0;
m(0, 2) = 0;
m(0, 3) = 0;
m(1, 0) = 0;
m(1, 1) = f;
m(1, 2) = 0;
m(1, 3) = 0;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = (zfar + znear) / (znear - zfar);
m(2, 3) = (2 * zfar * znear) / (znear - zfar);
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = -1;
m(3, 3) = 0;
2018-05-17 14:01:02 +00:00
return m;
}
2018-06-20 09:18:17 +00:00
///creates a viewport transformation matrix
2018-05-17 14:01:02 +00:00
template <typename T>
2018-06-20 09:18:17 +00:00
mat<T> viewport_44(const T &xoff, const T yoff, const T &width,
const T &height)
{
mat<T> m(4, 4);
T a = width / (T)2.0;
T b = height / (T)2.0;
m(0, 0) = a;
m(0, 1) = 0;
m(0, 2) = 0;
m(0, 3) = xoff + (T)0.5;
m(1, 0) = 0;
m(1, 1) = b;
m(1, 2) = 0;
m(1, 3) = yoff + (T)0.5;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = (T)0.5;
m(2, 3) = (T)0.5;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
2018-05-17 14:01:02 +00:00
return m;
}
///creates a look at transformation matrix in the same way as gluLookAt does
2018-06-20 09:18:17 +00:00
template <typename T>
2018-05-17 14:01:02 +00:00
const mat<T> look_at_44(const T &eyex, const T &eyey, const T &eyez,
2018-06-20 09:18:17 +00:00
const T &centerx, const T &centery, const T &centerz,
const T &upx, const T &upy, const T &upz)
{
vec<T> center(centerx, centery, centerz);
vec<T> eye(eyex, eyey, eyez);
vec<T> up(upx, upy, upz);
vec<T> f = normalize(center - eye);
up = normalize(up);
vec<T> s = normalize(cross(f, up));
vec<T> u = normalize(cross(s, f));
mat<T> m(4, 4);
m(0, 0) = s(0);
m(0, 1) = s(1);
m(0, 2) = s(2);
m(0, 3) = 0;
m(1, 0) = u(0);
m(1, 1) = u(1);
m(1, 2) = u(2);
m(1, 3) = 0;
m(2, 0) = -f(0);
m(2, 1) = -f(1);
m(2, 2) = -f(2);
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
m = m * translate_44(-eyex, -eyey, -eyez);
2018-05-17 14:01:02 +00:00
return m;
}
2018-06-20 09:18:17 +00:00
template <typename T>
2018-05-17 14:01:02 +00:00
const mat<T> look_at_44(vec<T> eye, vec<T> center, vec<T> up)
{
2018-06-20 09:18:17 +00:00
vec<T> f = normalize(center - eye);
up = normalize(up);
vec<T> s = normalize(cross(f, up));
vec<T> u = normalize(cross(s, f));
mat<T> m(4, 4);
m(0, 0) = s(0);
m(0, 1) = s(1);
m(0, 2) = s(2);
m(0, 3) = 0;
m(1, 0) = u(0);
m(1, 1) = u(1);
m(1, 2) = u(2);
m(1, 3) = 0;
m(2, 0) = -f(0);
m(2, 1) = -f(1);
m(2, 2) = -f(2);
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
m = m * translate_44(-eye);
2018-05-17 14:01:02 +00:00
return m;
}
///creates a frustrum projection matrix in the same way as glFrustum does
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> frustrum_44(const T &left, const T &right,
const T &bottom, const T &top,
const T &znear, const T &zfar)
{
T e = 2 * znear / (right - left);
T f = 2 * znear / (top - bottom);
T A = (right + left) / (right - left);
T B = (top + bottom) / (top - bottom);
T C = -(zfar + znear) / (zfar - znear);
T D = -(2 * zfar * znear) / (zfar - znear);
mat<T> m(4, 4);
m(0, 0) = e;
m(0, 1) = 0;
m(0, 2) = A;
m(0, 3) = 0;
m(1, 0) = 0;
m(1, 1) = f;
m(1, 2) = B;
m(1, 3) = 0;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = C;
m(2, 3) = D;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = -1;
m(3, 3) = 0;
2018-05-17 14:01:02 +00:00
return m;
}
2018-06-20 09:18:17 +00:00
///creates an orthographic projection matrix in the same way as glOrtho does
template <typename T>
const mat<T> ortho_44(const T &left, const T &right,
const T &bottom, const T &top,
const T &znear, const T &zfar)
{
T a = 2 / (right - left);
T b = 2 / (top - bottom);
T c = -2 / (zfar - znear);
T tx = (right + left) / (right - left);
T ty = (top + bottom) / (top - bottom);
T tz = (zfar + znear) / (zfar - znear);
mat<T> m(4, 4);
m(0, 0) = a;
m(0, 1) = 0;
m(0, 2) = 0;
m(0, 3) = -tx;
m(1, 0) = 0;
m(1, 1) = b;
m(1, 2) = 0;
m(1, 3) = -ty;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = c;
m(2, 3) = -tz;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
return m;
}
2018-05-17 14:01:02 +00:00
///creates an orthographic projection matrix in the same way as glOrtho2d does
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> ortho2d_44(const T &left, const T &right,
const T &bottom, const T &top)
{
return ortho_44<T>(left, right, bottom, top, (T)-1.0, (T)1.0);
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
///creates a picking matrix like gluPickMatrix with pixel (0,0) in the lower left corner if flipy=false
template <typename T>
const mat<T> pick_44(const T &x, const T &y, const T &width, const T &height, int viewport[4], const mat<double> &modelviewproj, bool flipy = true)
{
mat<T> m(4, 4);
T sx, sy;
T tx, ty;
sx = viewport[2] / width;
sy = viewport[3] / height;
tx = (T)(viewport[2] + 2.0 * (viewport[0] - x)) / width;
if (flipy)
ty = (T)(viewport[3] + 2.0 * (viewport[1] - (viewport[3] - y))) / height;
else
ty = (T)(viewport[3] + 2.0 * (viewport[1] - y)) / height;
m(0, 0) = sx;
m(0, 1) = 0;
m(0, 2) = 0;
m(0, 3) = tx;
m(1, 0) = 0;
m(1, 1) = sy;
m(1, 2) = 0;
m(1, 3) = ty;
m(2, 0) = 0;
m(2, 1) = 0;
m(2, 2) = 1;
m(2, 3) = 0;
m(3, 0) = 0;
m(3, 1) = 0;
m(3, 2) = 0;
m(3, 3) = 1;
return m * modelviewproj;
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
//extract rotation angles from combined rotation matrix
template <typename T>
void decompose_R_2_RxRyRz(const mat<T> &R33, T &angle_x, T &angle_y, T &angle_z)
{
angle_y = asin(R33(0, 2)); /* Calculate Y-axis angle */
T C = cos(angle_y);
T trx, atry;
angle_y *= (T)(180 / 3.14159);
if (std::abs(C) > (T)0.005) /* Gimbal lock? */
{
trx = R33(2, 2) / C; /* No, so get X-axis angle */
atry = -R33(1, 2) / C;
angle_x = atan2(atry, trx) * (T)(180 / 3.14159);
trx = R33(0, 0) / C; /* Get Z-axis angle */
atry = -R33(0, 1) / C;
angle_z = atan2(atry, trx) * (T)(180 / 3.14159);
}
else /* Gimbal lock has occurred */
{
angle_x = 0; /* Set X-axis angle to zero */
trx = R33(1, 1); /* And calculate Z-axis angle */
atry = R33(1, 0);
angle_z = atan2(atry, trx) * (T)(180 / 3.14159);
}
/* return only positive angles in [0,360] */
if (angle_x < 0)
angle_x += (T)360;
if (angle_y < 0)
angle_y += (T)360;
if (angle_z < 0)
angle_z += (T)360;
//std::cout << angle_x << " "<< angle_y << " " <<angle_z <<std::endl;
2018-05-17 14:01:02 +00:00
}
2018-06-20 09:18:17 +00:00
template <typename T>
const mat<T> extract_frustrum_planes(const mat<T> &modelviewprojection)
{
mat<T> frustrum_planes(4, 6);
frustrum_planes.set_col(0, modelviewprojection.row(3) - modelviewprojection.row(0)); //right
frustrum_planes.set_col(1, modelviewprojection.row(3) + modelviewprojection.row(0)); //left
frustrum_planes.set_col(2, modelviewprojection.row(3) - modelviewprojection.row(1)); //top
frustrum_planes.set_col(3, modelviewprojection.row(3) + modelviewprojection.row(1)); //bottom
frustrum_planes.set_col(4, modelviewprojection.row(3) - modelviewprojection.row(2)); //far
frustrum_planes.set_col(5, modelviewprojection.row(3) + modelviewprojection.row(2)); //near
// Normalize all planes
for (unsigned i = 0; i < 6; i++)
frustrum_planes.set_col(i, frustrum_planes.col(i) / length(frustrum_planes.col(i).sub_vec(0, 3)));
return frustrum_planes;
}
2018-05-17 14:01:02 +00:00
2018-06-20 09:18:17 +00:00
} // namespace math
} // namespace cgv