2018-05-17 13:50:03 +00:00
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
#include <deque>
|
|
|
|
#include <cgv/utils/progression.h>
|
|
|
|
#include <cgv/math/qem.h>
|
|
|
|
#include <cgv/math/mfunc.h>
|
|
|
|
#include <cgv/media/axis_aligned_box.h>
|
|
|
|
#include "streaming_mesh.h"
|
|
|
|
|
|
|
|
namespace cgv {
|
|
|
|
namespace media {
|
|
|
|
namespace mesh {
|
|
|
|
|
|
|
|
/// information stored per cell
|
|
|
|
template <typename T>
|
|
|
|
struct cell_info {
|
|
|
|
cgv::math::qem<T> Q;
|
|
|
|
cgv::math::fvec<T,3> center;
|
|
|
|
int count;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/** data structure for the information that is cached per volume slice */
|
|
|
|
template <typename T>
|
|
|
|
struct dc_slice_info
|
|
|
|
{
|
|
|
|
unsigned int resx, resy;
|
|
|
|
std::vector<T> values;
|
|
|
|
std::vector<bool> flags;
|
|
|
|
std::vector<int> indices;
|
|
|
|
typedef cgv::math::qem<T> qem_type;
|
|
|
|
typedef cgv::math::fvec<T,3> pnt_type;
|
|
|
|
std::vector<cell_info<T> > cell_infos;
|
|
|
|
///
|
|
|
|
dc_slice_info(unsigned int _resx, unsigned int _resy) : resx(_resx), resy(_resy) {
|
|
|
|
unsigned int n = resx*resy;
|
|
|
|
values.resize(n);
|
|
|
|
flags.resize(n);
|
|
|
|
indices.resize(n);
|
|
|
|
cell_infos.resize(n);
|
|
|
|
}
|
|
|
|
///
|
|
|
|
void init() {
|
|
|
|
int n = resx*resy;
|
|
|
|
for (int i=0; i<n; ++i) {
|
|
|
|
indices[i] = -1;
|
|
|
|
cell_infos[i].Q = qem_type();
|
|
|
|
cell_infos[i].count = 0;
|
|
|
|
cell_infos[i].center = pnt_type();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
///
|
|
|
|
bool flag(int x, int y) const { return flags[y*resx+x]; }
|
|
|
|
///
|
|
|
|
const T& value(int x, int y) const { return values[y*resx+x]; }
|
|
|
|
T& value(int x, int y) { return values[y*resx+x]; }
|
|
|
|
/// set value and flag at once
|
|
|
|
void set_value(int x, int y, T value, T iso_value) {
|
|
|
|
int i = y*resx+x;
|
|
|
|
values[i] = value;
|
|
|
|
flags[i] = value>iso_value;
|
|
|
|
}
|
|
|
|
///
|
|
|
|
const int& index(int x, int y) const { return indices[y*resx+x]; }
|
|
|
|
int& index(int x, int y) { return indices[y*resx+x]; }
|
|
|
|
///
|
|
|
|
const qem_type& get_qem(int x, int y) const { return cell_infos[y*resx+x].Q; }
|
|
|
|
qem_type& ref_qem(int x, int y) { return cell_infos[y*resx+x].Q; }
|
|
|
|
///
|
|
|
|
int count(int x, int y) const { return cell_infos[y*resx+x].count; }
|
|
|
|
int& count(int x, int y) { return cell_infos[y*resx+x].count; }
|
|
|
|
///
|
|
|
|
const pnt_type& center(int x, int y) const { return cell_infos[y*resx+x].center; }
|
|
|
|
pnt_type& center(int x, int y) { return cell_infos[y*resx+x].center; }
|
|
|
|
///
|
|
|
|
const cell_info<T>& info(int x, int y) const { return cell_infos[y*resx+x]; }
|
|
|
|
cell_info<T>& info(int x, int y) { return cell_infos[y*resx+x]; }
|
|
|
|
};
|
|
|
|
|
|
|
|
/// class used to perform the marching cubes algorithm
|
|
|
|
template <typename X, typename T>
|
|
|
|
class dual_contouring : public streaming_mesh<X>
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
typedef streaming_mesh<X> base_type;
|
|
|
|
/// points must have three components
|
|
|
|
typedef cgv::math::fvec<X,3> pnt_type;
|
|
|
|
/// vectors must have three components
|
|
|
|
typedef cgv::math::fvec<X,3> vec_type;
|
|
|
|
/// qem type must have dimension three
|
|
|
|
typedef cgv::math::qem<X> qem_type;
|
|
|
|
/// qem type must have dimension three
|
|
|
|
typedef cell_info<X> cell_info_type;
|
|
|
|
private:
|
|
|
|
pnt_type p, minp;
|
|
|
|
unsigned int resx, resy, resz;
|
|
|
|
vec_type d;
|
|
|
|
T iso_value;
|
|
|
|
protected:
|
|
|
|
const cgv::math::v3_func<X,T>& func;
|
|
|
|
X epsilon;
|
|
|
|
unsigned int max_nr_iters;
|
|
|
|
X consistency_threshold;
|
|
|
|
public:
|
|
|
|
/// construct dual contouring object
|
|
|
|
dual_contouring(const cgv::math::v3_func<X,T>& _func,
|
|
|
|
streaming_mesh_callback_handler* _smcbh,
|
|
|
|
const X& _consistency_threshold = 0.01f, unsigned int _max_nr_iters = 10,
|
|
|
|
const X& _epsilon = 1e-6f) :
|
|
|
|
func(_func), max_nr_iters(_max_nr_iters), consistency_threshold(_consistency_threshold), epsilon(_epsilon)
|
|
|
|
{
|
|
|
|
base_type::set_callback_handler(_smcbh);
|
|
|
|
}
|
|
|
|
/// construct a new vertex on an edge
|
|
|
|
void compute_cell_vertex(dc_slice_info<T> *info_ptr, int i, int j)
|
|
|
|
{
|
|
|
|
if (info_ptr->count(i,j) == 0) {
|
|
|
|
info_ptr->index(i,j) = -1;
|
|
|
|
return;
|
|
|
|
}
|
2018-05-17 14:01:02 +00:00
|
|
|
pnt_type p_ref = info_ptr->center(i,j) / X(info_ptr->count(i,j));
|
|
|
|
pnt_type q = (X*)info_ptr->get_qem(i,j).minarg(p_ref.to_vec(), X(0.1), d.length());
|
2018-05-17 13:50:03 +00:00
|
|
|
info_ptr->index(i,j) = this->new_vertex(q);
|
|
|
|
}
|
|
|
|
/// construct a quadrilateral
|
|
|
|
void generate_quad(unsigned int vi, unsigned int vj, unsigned int vk, unsigned int vl, bool reorient)
|
|
|
|
{
|
|
|
|
if (reorient)
|
|
|
|
base_type::new_quad(vi,vl,vk,vj);
|
|
|
|
else
|
|
|
|
base_type::new_quad(vi,vj,vk,vl);
|
|
|
|
}
|
|
|
|
///
|
|
|
|
void compute_edge_point(const T& _v_1, const T& _v_2, int e, const pnt_type& p, const vec_type& d,
|
|
|
|
pnt_type& q, vec_type& n)
|
|
|
|
{
|
|
|
|
X de = d(e);
|
|
|
|
T v_1 = _v_1;
|
|
|
|
T v_2 = _v_2;
|
|
|
|
pnt_type p_end = p;
|
|
|
|
q = p;
|
|
|
|
unsigned int nr_iters = 0;
|
|
|
|
bool finished;
|
|
|
|
X ref = consistency_threshold*fabs(v_2-v_1);
|
|
|
|
do {
|
|
|
|
finished = false;
|
|
|
|
// compute point on edge
|
|
|
|
X alpha;
|
|
|
|
if (fabs(v_2-v_1) > epsilon) {
|
|
|
|
finished = true;
|
|
|
|
alpha = (X)(iso_value-v_1)/(v_2-v_1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
alpha = (X) 0.5;
|
|
|
|
|
|
|
|
q(e) = p_end(e) - (1-alpha)*de;
|
|
|
|
// compute normal at point
|
|
|
|
n = vec_type(func.evaluate_gradient(q.to_vec()));
|
|
|
|
|
|
|
|
// stop if maximum number of iterations reached
|
|
|
|
if (++nr_iters >= max_nr_iters)
|
|
|
|
break;
|
|
|
|
// check if gradient is in accordance with value difference
|
|
|
|
if (finished) {
|
|
|
|
if (alpha < 0 || alpha > 1) {
|
|
|
|
std::cout << "invalid alpha = " << alpha << std::endl;
|
|
|
|
}
|
|
|
|
X f_e = (v_2 - v_1) / de;
|
|
|
|
if (fabs(f_e - n(e)) > consistency_threshold*f_e) {
|
|
|
|
X v = func.evaluate(q.to_vec());
|
|
|
|
if (fabs(v-iso_value) > ref) {
|
|
|
|
if ((v > iso_value) == (v_2 > iso_value)) {
|
|
|
|
de *= alpha;
|
|
|
|
v_2 = v;
|
|
|
|
p_end(e) = q(e);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
v_1 = v;
|
|
|
|
de *= 1-alpha;
|
|
|
|
}
|
|
|
|
finished = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} while (!finished);
|
|
|
|
if (nr_iters > 15)
|
|
|
|
std::cout << "not converged after " << nr_iters << " iterations" << std::endl;
|
2018-05-17 14:01:02 +00:00
|
|
|
// if gradient does not define normal
|
|
|
|
if (n.length() < 1e-6) {
|
|
|
|
// define normal from edge direction
|
|
|
|
n = vec_type(0, 0, 0);
|
|
|
|
n(e) = T((v_1 < v_2) ? 1 : 0);
|
|
|
|
}
|
2018-05-17 13:50:03 +00:00
|
|
|
else
|
|
|
|
n.normalize();
|
|
|
|
}
|
|
|
|
/// construct plane through edge and add it to the incident qems
|
|
|
|
void process_edge_plane(const T& v_1, const T& v_2, int e,
|
|
|
|
cell_info_type* C1, cell_info_type* C2, cell_info_type* C3, cell_info_type* C4)
|
|
|
|
{
|
|
|
|
pnt_type q;
|
|
|
|
vec_type n;
|
|
|
|
compute_edge_point(v_1, v_2, e, p, d, q, n);
|
|
|
|
// construct qem
|
|
|
|
qem_type Q(q.to_vec(),n.to_vec());
|
|
|
|
// add qem to incident cells
|
|
|
|
if (C1) { if (C1->count == 0) { C1->Q = Q; C1->center = q; } else { C1->Q += Q; C1->center += q; } ++C1->count; }
|
|
|
|
if (C2) { if (C2->count == 0) { C2->Q = Q; C2->center = q; } else { C2->Q += Q; C2->center += q; } ++C2->count; }
|
|
|
|
if (C3) { if (C3->count == 0) { C3->Q = Q; C3->center = q; } else { C3->Q += Q; C3->center += q; } ++C3->count; }
|
|
|
|
if (C4) { if (C4->count == 0) { C4->Q = Q; C4->center = q; } else { C4->Q += Q; C4->center += q; } ++C4->count; }
|
|
|
|
}
|
|
|
|
/// process a slice
|
|
|
|
void process_slice(dc_slice_info<T> *prev_info_ptr, dc_slice_info<T> *info_ptr)
|
|
|
|
{
|
|
|
|
unsigned int i,j;
|
|
|
|
info_ptr->init();
|
|
|
|
for (j = 0, p(1) = minp(1); j < resy; ++j, p(1) += d(1))
|
|
|
|
for (i = 0, p(0) = minp(0); i < resx; ++i, p(0)+=d(0)) {
|
|
|
|
// eval function on slice
|
|
|
|
info_ptr->set_value(i,j,func.evaluate(p.to_vec()),iso_value);
|
|
|
|
// process slice internal edges
|
|
|
|
if (i > 0 && info_ptr->flag(i-1,j) != info_ptr->flag(i,j))
|
|
|
|
process_edge_plane(info_ptr->value(i-1,j),
|
|
|
|
info_ptr->value(i,j), 0,
|
|
|
|
&info_ptr->info(i-1,j),
|
|
|
|
j > 0 ? &info_ptr->info(i-1,j-1) : 0,
|
|
|
|
prev_info_ptr ? &prev_info_ptr->info(i-1,j) : 0,
|
|
|
|
(j > 0 && prev_info_ptr) ? &prev_info_ptr->info(i-1,j-1) : 0);
|
|
|
|
if (j > 0 && info_ptr->flag(i,j-1) != info_ptr->flag(i,j))
|
|
|
|
process_edge_plane(info_ptr->value(i,j-1),
|
|
|
|
info_ptr->value(i,j), 1,
|
|
|
|
&info_ptr->info(i,j-1),
|
|
|
|
i > 0 ? &info_ptr->info(i-1,j-1) : 0,
|
|
|
|
prev_info_ptr ? &prev_info_ptr->info(i,j-1) : 0,
|
|
|
|
(i > 0 && prev_info_ptr) ? &prev_info_ptr->info(i-1,j-1) : 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
///
|
|
|
|
void process_slab(dc_slice_info<T> *info_ptr_1, dc_slice_info<T> *info_ptr_2)
|
|
|
|
{
|
|
|
|
unsigned int i,j;
|
|
|
|
for (j = 0, p(1) = minp(1); j < resy; ++j, p(1) += d(1))
|
|
|
|
for (i = 0, p(0) = minp(0); i < resx; ++i, p(0)+=d(0)) {
|
|
|
|
// process slab edges
|
|
|
|
if (info_ptr_1->flag(i,j) != info_ptr_2->flag(i,j))
|
|
|
|
process_edge_plane(info_ptr_1->value(i,j),
|
|
|
|
info_ptr_2->value(i,j), 2,
|
|
|
|
&info_ptr_1->info(i,j),
|
|
|
|
j > 0 ? &info_ptr_1->info(i,j-1) : 0,
|
|
|
|
i > 0 ? &info_ptr_1->info(i-1,j) : 0,
|
|
|
|
(i > 0 && j > 0) ? &info_ptr_1->info(i-1,j-1) : 0);
|
|
|
|
// compute cell vertices
|
|
|
|
if (i>0 && j>0)
|
|
|
|
compute_cell_vertex(info_ptr_1, i-1,j-1);
|
|
|
|
}
|
|
|
|
// generate the quads of inner edges inside the slab
|
|
|
|
for (j = 1, p(1) = minp(1)+d(1); j < resy-1; ++j, p(1) += d(1))
|
|
|
|
for (i = 1, p(0) = minp(0)+d(0); i < resx-1; ++i, p(0)+=d(0))
|
|
|
|
if (info_ptr_1->flag(i,j) != info_ptr_2->flag(i,j))
|
|
|
|
generate_quad(info_ptr_1->index(i,j),
|
|
|
|
info_ptr_1->index(i-1,j),
|
|
|
|
info_ptr_1->index(i-1,j-1),
|
|
|
|
info_ptr_1->index(i,j-1),
|
|
|
|
info_ptr_1->flag(i,j));
|
|
|
|
}
|
|
|
|
///
|
|
|
|
void generate_slice_quads(dc_slice_info<T> *info_ptr_1, dc_slice_info<T> *info_ptr_2)
|
|
|
|
{
|
|
|
|
unsigned int i,j;
|
|
|
|
for (j = 1, p(1) = minp(1)+d(1); j < resy-1; ++j, p(1) += d(1))
|
|
|
|
for (i = 1, p(0) = minp(0)+d(0); i < resx-1; ++i, p(0)+=d(0)) {
|
|
|
|
if (info_ptr_2->flag(i-1,j) != info_ptr_2->flag(i,j))
|
|
|
|
generate_quad(info_ptr_1->index(i-1,j),
|
|
|
|
info_ptr_2->index(i-1,j),
|
|
|
|
info_ptr_2->index(i-1,j-1),
|
|
|
|
info_ptr_1->index(i-1,j-1),
|
|
|
|
info_ptr_2->flag(i-1,j));
|
|
|
|
if (info_ptr_2->flag(i,j-1) != info_ptr_2->flag(i,j))
|
|
|
|
generate_quad(info_ptr_1->index(i,j-1),
|
|
|
|
info_ptr_1->index(i-1,j-1),
|
|
|
|
info_ptr_2->index(i-1,j-1),
|
|
|
|
info_ptr_2->index(i,j-1),
|
|
|
|
info_ptr_2->flag(i,j-1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/// extract iso surface and send quads to dual contouring handler
|
|
|
|
void extract(const T& _iso_value,
|
|
|
|
const axis_aligned_box<X,3>& box,
|
|
|
|
unsigned int _resx, unsigned int _resy, unsigned int _resz,
|
|
|
|
bool show_progress = false)
|
|
|
|
{
|
|
|
|
// prepare private members
|
|
|
|
resx = _resx; resy = _resy; resz = _resz;
|
|
|
|
minp = p = box.get_min_pnt();
|
|
|
|
d = box.get_extent();
|
|
|
|
d(0) /= (resx-1); d(1) /= (resy-1); d(2) /= (resz-1);
|
|
|
|
iso_value = _iso_value;
|
|
|
|
|
|
|
|
// prepare progression
|
|
|
|
cgv::utils::progression prog;
|
|
|
|
if (show_progress) prog.init("extraction", resz, 10);
|
|
|
|
|
|
|
|
// construct three slice infos
|
|
|
|
dc_slice_info<T> slice_info_1(resx,resy), slice_info_2(resx,resy), slice_info_3(resx,resy);
|
|
|
|
dc_slice_info<T> *slice_info_ptrs[3] = { &slice_info_1, &slice_info_2, &slice_info_3 };
|
|
|
|
|
|
|
|
// iterate through all slices
|
|
|
|
unsigned int nr_vertices[4] = { 0, 0, 0, 0 };
|
|
|
|
unsigned int k, n;
|
|
|
|
|
|
|
|
process_slice(0, slice_info_ptrs[0]);
|
|
|
|
p(2) += d(2);
|
|
|
|
process_slice(slice_info_ptrs[0], slice_info_ptrs[1]);
|
|
|
|
process_slab(slice_info_ptrs[0], slice_info_ptrs[1]);
|
|
|
|
p(2) += d(2);
|
|
|
|
// show progression
|
|
|
|
if (show_progress) {
|
|
|
|
prog.step();
|
|
|
|
prog.step();
|
|
|
|
}
|
|
|
|
for (k=2; k<resz; ++k, p(2) += d(2)) {
|
|
|
|
n = base_type::get_nr_vertices();
|
|
|
|
// evaluate function on next slice and construct slice interior vertices
|
|
|
|
dc_slice_info<T> *info_ptr_0 = slice_info_ptrs[(k-2)%3];
|
|
|
|
dc_slice_info<T> *info_ptr_1 = slice_info_ptrs[(k-1)%3];
|
|
|
|
dc_slice_info<T> *info_ptr_2 = slice_info_ptrs[k%3];
|
|
|
|
process_slice(info_ptr_1, info_ptr_2);
|
|
|
|
process_slab(info_ptr_1, info_ptr_2);
|
|
|
|
generate_slice_quads(info_ptr_0, info_ptr_1);
|
|
|
|
|
|
|
|
n = base_type::get_nr_vertices()-n;
|
|
|
|
nr_vertices[k%4] = n;
|
|
|
|
n = nr_vertices[(k+3)%4];
|
|
|
|
if (n > 0)
|
|
|
|
base_type::drop_vertices(n);
|
|
|
|
// show progression
|
|
|
|
if (show_progress)
|
|
|
|
prog.step();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|