
TECHNISCHE
UNIVERSITÄT
DRESDEN

Computer Graphics
and Visualization

Inverse

Kinematics &

Motion Capturing

Computer Graphics II

S. Gumhold – CGII SS18 – Inverse Kinematics 1

Computer Graphics
and Visualizationcontents

 Inverse Kinematics Problem

 Cyclic Coordinate Descent

 Unconstrained IK

 Constrained IK

 Motion Capturing

 Skeleton Fitting

S. Gumhold – CGII SS18 – Inverse Kinematics 2

Computer Graphics
and Visualization

INVERSE KINEMATICS
PROBLEM

S. Gumhold – CGII SS18 – Inverse Kinematics 3

Computer Graphics
and VisualizationInverse Kinematics Problem

 Given a kinematic chain
with forward kinematics

𝒑𝐸𝐸 = 𝒇 𝑞𝑗 , 𝝎𝐸𝐸 = 𝑭 𝑞𝑗
depending on generalized
coordinates 𝑞𝑗 and a target

pose 𝒙∗, 𝝎∗ , the inverse
kinematics problems solves

𝒑∗ = 𝒇 𝑞𝑗
∗ ∧ 𝝎∗ = 𝑭 𝑞𝑗

∗

for the 𝑞𝑗
∗

 The parameters qj are also
called state vector.

 The parameters [𝒑,𝝎] of

the end effector pose are
called the dependent
variables

S. Gumhold – CGII SS18 – Inverse Kinematics 4

𝑞1
∗

𝑞2
∗

𝑞3
∗

𝒙∗

Computer Graphics
and VisualizationInverse Kinematics Problem

 The number of generalized
coordinates give the
degrees of freedom (DOF)

 In most cases the DOFs
does not match the
number of dependent
variables and IK becomes
ill-posed (as in example on
the right) or unsolvable

 The inverse kinematics
problem is often posed in
form of a least squares
energy minimization as
detailed on slides 20 & 21.

S. Gumhold – CGII SS18 – Inverse Kinematics

EE
p

5

Computer Graphics
and VisualizationInverse Kinematics

 In so called degenerate or
singular configurations the
end effector looses one or
several degrees of
freedom

 Close to singular positions
the distance in the state
space can become
extremely large compared
to the distance in world
space leading to
oscillations during IK

S. Gumhold – CGII SS18 – Inverse Kinematics 6

Computer Graphics
and VisualizationInverse Kinematics

Contraints

 for realistic behavior it is necessary to consider different
constraints:

 collision constraints to avoid self-collisions and collisions
with environment. These can only locally be captured in
formula.

 joint angle constraints given by the limitations of the joints
and written in the form 𝑙𝑗 ≤ 𝑞𝑗 ≤ 𝑢𝑗

 position constraints to restrict the movement of the end
effector. Typically point, line or plane constraints.

 orientation constraints to restrict the orientation of the
end effector, for example in case of special demands for
grasping.

S. Gumhold – CGII SS18 – Inverse Kinematics 7

Computer Graphics
and VisualizationInverse Kinematics

Overall strategy

 Most solvers for non linear
optimization problems are iterative
and start with some initial guess 𝒒0
for the parameter vector. This can
be
 the default state

 the state of the previous time step
in an animation

 the result of a previous
optimization phase

 At the current guess some descent
direction 𝑑𝒒𝑘 is found in parameter
space

 A step size ℎ𝑘 is estimated from
the energy function

 Steps 𝒒𝑘+1 = 𝒒𝑘 + ℎ𝑘𝑑𝒒𝑘 are taken
until no further improvement in
energy is possible.

S. Gumhold – CGII SS18 – Inverse Kinematics 8

𝒒0

𝒒1
𝒒2

𝒒3

𝒒4
𝒒𝐸𝐸

𝒙4𝒙3

𝒒0
𝒙2

𝒙1

𝒙0

𝒙𝐸𝐸

𝑑𝒙0

Computer Graphics
and VisualizationForward Kinematics

 Each joint in a kinematic chain has a relative

transformation 𝑖−1෩𝑻𝑖 𝑞𝑖1, … , 𝑞𝑖𝑛𝑖 with 𝑛𝑖 parameters

 Gathering all 𝑛 = σ𝑖 𝑛𝑖 parameters in the parameter
vector 𝒒 the chain transform is

0෩𝑻𝑁 𝒒 = 0෩𝑻1
1෩𝑻2 ⋅ … ⋅ 𝑁−1෩𝑻𝑁

 Transformations are in homogenous notation

0෩𝑻𝑁 =
0𝑹𝑁

0Ԧ𝒕𝑁

𝟎𝑇 1
and contain rotation 0𝑹𝑁 and translation 0Ԧ𝒕𝑁.

 The columns of 0𝑹𝑁 define the coordinate
axes of the end effector frame with respect
to world coordinates

 If the end effector is in the origin of frame 𝑁, 0Ԧ𝒕𝑁 is the
location of the end effector in world coordinates, in
general we have 𝒑𝐸𝐸

0 = 0𝑹𝑁𝒑𝐸𝐸
𝑁 + 0Ԧ𝒕𝑁

S. Gumhold – CGII SS18 – Inverse Kinematics 9

{0}

{1}

{2}

{3}

EE
p

Computer Graphics
and VisualizationInverse Kinematics

Euler Angle Formulation

 Representing the orientation as Euler angles, the pose 𝒙
of the end effector is a 6-dimensional vector

𝒙𝐸𝐸 = 𝒑𝐸𝐸
0 , 𝝎𝐸𝐸

0 = 𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓 𝑇 ∈ 𝑹6

 The forward kinematics is described as a function 𝒇 that
maps the 𝑛-dimensional parameter vector 𝒒 to a 6D pose:

𝒙 = 𝒇 𝒒

 The inverse kinematic problem for a given end effector
pose is to find the parameters that best match the pose:

𝒒∗ = minarg
𝒒

𝐸 𝒒; 𝒙𝐸𝐸 with 𝐸 𝒒; 𝒙𝐸𝐸 =
1

2
𝒇 𝒒 − 𝒙𝐸𝐸

2

 This is a non linear least squares problem. One can
introduce weights 𝑤𝑖 for the residua 𝑟𝑖 𝒒 = 𝑓𝑖(𝒒) − 𝑥𝐸𝐸,𝑖:

𝐸 𝒒; 𝒙𝐸𝐸 =
1

2
෍

𝑖

𝑤𝑖𝑟𝑖
2 𝒒

S. Gumhold – CGII SS18 – Inverse Kinematics 10

Computer Graphics
and VisualizationInverse Kinematics

Orientation Matrix Formulation

S. Gumhold – CGII SS18 – Inverse Kinematics 11

𝒐𝑥 𝒒 𝑇𝒐𝑥,𝐸𝐸 = cos𝜓1
𝒐𝑦 𝒒 𝑇𝒐𝑦,𝐸𝐸 = cos𝜓2

𝒐𝑧 𝒒 𝑇𝒐𝑧,𝐸𝐸 = cos𝜓3

= 𝒐𝑥

= 𝒐𝑦

𝒐𝑧 =

𝒐𝑥,𝐸𝐸 =

= 𝒐𝑦,𝐸𝐸

= 𝒐𝑧,𝐸𝐸

Computer Graphics
and VisualizationInverse Kinematics

Orientation Matrix Formulation

 Using an orthonormal matrix 𝑶 = 𝒐𝑥 𝒐𝑦 𝒐𝑧 to represent
orientation, the pose 𝒙 of the end effector is 12D and
defined as concatenation of position columns of 𝑶:

𝒙𝐸𝐸 = 𝒑𝐸𝐸
0 𝑇

𝒐𝑥,𝐸𝐸
𝑇 𝒐𝑦,𝐸𝐸

𝑇 𝒐𝑧,𝐸𝐸
𝑇

𝑇
∈ 𝑹12

 The forward kinematics is described as a function 𝒇 that
maps the 𝑛-dimensional parameter vector 𝒒 to a pose:

𝒙 = 𝒇 𝒒 , with 𝒇 = 𝒑𝑇 𝒐𝑥
𝑇 𝒐𝑦

𝑇 𝒐𝑧
𝑇

𝑇

 The inverse kinematic problem is again based on an
energy function: 𝒒∗ = minarg

𝒒
𝐸 𝒒; 𝒙𝐸𝐸 with weights

𝐸 𝒒; 𝒙𝐸𝐸 =
1

2
𝒑 𝒒 − 𝒑𝐸𝐸

0
2
+
1

2
෍

𝛼=𝑥

𝑧

𝑤𝛼 1 − 𝒐𝛼 𝒒 𝑇𝒐𝛼,𝐸𝐸
2

 The weights 𝑤𝛼 can be used to blend out orientation
constraints for individual axes

S. Gumhold – CGII SS18 – Inverse Kinematics 12

Computer Graphics
and VisualizationInverse Kinematics

Quaternion Formulation

 With a normalized quaternion ො𝑞 = 𝑠 𝑥 𝑦 𝑧 the pose is 7D:

𝒙𝐸𝐸 = 𝒑𝐸𝐸
0 𝑇

ො𝑞𝐸𝐸
0 𝑇 𝑇

∈ 𝑹7, 𝒇 𝒒 = 𝒑𝑇 ො𝑞𝑇
𝑇

 Care needs to be taken with the least squares energy

𝐸 𝒒; 𝒙𝐸𝐸 =
1

2
𝒑 𝒒 − 𝒑𝐸𝐸

0
2
+
1

2
𝑤𝑞 ො𝑞 𝒒 − ො𝑞𝐸𝐸

0 2

as ො𝑞 and −ො𝑞 represent the same rotation.

 Solution 1:
 during iterative optimization compute ො𝑞 𝒒𝑖 for current 𝒒𝑖.

 test if ො𝑞 𝒒𝑖 , ො𝑞𝐸𝐸
0 < 0

 if yes replace ො𝑞𝐸𝐸
0 with −ො𝑞𝐸𝐸

0 in energy

 compute the next 𝒒𝑖+1.

 Solution 2: use energy function that ignores sign:

𝐸 𝒒; 𝒙𝐸𝐸 =
1

2
𝒑 𝒒 − 𝒑𝐸𝐸

0
2
−𝑤𝑞 ො𝑞 𝒒𝑖 , ො𝑞𝐸𝐸

0 2

S. Gumhold – CGII SS18 – Inverse Kinematics 13

Computer Graphics
and VisualizationSkeleton IK

 multiple target locations are important in applications with
skeletons like transforming point based motion capture
data to skeleton parameters or when working with
multiple end effectors

 a fixed base joint can only be used in the very special case
of two constraints – one at a base node and one at an
endeffector node

 otherwise we can alternatingly optimize
 the rigid body transform of the root node

by minimizing the squared sum of the
end effector constraints with the
Kabsch algorithm

 the joint parameters by a joined IK problem
minimizing an energy that sums over the
squared endeffector-constraint distances
where the endeffector locations are computed
along kinematic chains from the fixed root node

S. Gumhold – CGII SS18 – Inverse Kinematics 14

Computer Graphics
and VisualizationDiscussion

 In an interactive editor one has to define kinematic chains
based on user input. This can be done by adding fixation
points (in the simplest case one at the root node)

 For a climbing figure we need several end
effector constraints. This is discussed by
Chris Hecker on his inverse kinematics page

 Dual quaternion IK was presented by
Ben Kenwright in 2013: Inverse Kinematics
with Dual-Quaternions, Exponential-Maps,
and Joint Limits

S. Gumhold – CGII SS18 – Inverse Kinematics 15

http://chrishecker.com/Inverse_kinematics
http://www.thinkmind.org/download.php?articleid=intsys_v6_n12_2013_5

Computer Graphics
and Visualization

CYCLIC COORDINATE DESCENT

S. Gumhold – CGII SS18 – Inverse Kinematics 16

Computer Graphics
and VisualizationIterative Methods

 Iterative algorithms need an initial guess 𝒙0
𝒙0, 𝒙1, 𝒙2, … ⇒ 𝑓𝑘 = 𝑓 𝒙𝑘 , 𝛁𝑓𝑘 = 𝛁𝑓 𝒙𝑘 , 𝛁2𝑓𝑘 = 𝛁2𝑓 𝒙𝑘 ,

 sequence chosen monoton with termination criterion:
𝑓0 ≥ 𝑓1 ≥ 𝑓2 ≥ ⋯ 𝛁𝑓𝑘 < 𝜀

S. Gumhold – CGII SS18 – Inverse Kinematics 17

Line Search Approach

choose search direction 𝒉𝑘
𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒉𝑘

choose step width 𝛼𝑘 to

minimize 𝑓 along line:

𝜙𝑘 𝛼 = 𝑓 𝒙𝑘 + 𝛼𝒉𝑘 ,

𝛼𝑘 = minarg
𝛼>0

𝜙𝑘 𝛼

Trust Region Approach

choose model 𝑚𝑘 to

approximate 𝑓 inside trust

region 𝑇 around 𝒙𝑘
𝒙𝑘+1 = 𝒙𝑘 + 𝒉𝑘 ,
𝒉𝑘 = minarg

𝒉∈𝑇
𝑚𝑘 𝒙𝑘 + 𝒉

example:

𝑚𝑘 𝒙𝑘 + 𝒉 = 𝑓𝑘 + 𝛁𝑓𝑘
𝑇𝒉 +

1

2
𝒉𝑇𝑩𝑘𝒉

approximates

Hessian

CG1 recap 𝒒 → 𝒙, 𝐸 → 𝑓

Computer Graphics
and Visualization

0x

1x

2x

© John H. Mathews 2004

Coordinate Descent & Powell‘s Method

 Coordinate Descent:
 Search directions are standard basis vectors ො𝒆𝑖
 line search along search directions

 Stop if no improvement in one complete cycle

 Powell‘s method:
 start with standard basis as set of search

directions and do line search

 after one cycle add new direction 𝒉new = 𝒙𝑖 − 𝒙𝑖−𝑛
 remove search direction with largest improve-

ment (closest to new search direction 𝒉new) to
avoid degenerated set of search directions

 Both are derivative free methods!

 Another mentionable derivative-free
alternative is the Downhill-Simplex method
of Nelder and Mead

S. Gumhold – CGII SS18 – Inverse Kinematics 18

0x

1x
2x

0a 1a

2a

© John H. Mathews 2004

CG1 recap 𝒒 → 𝒙, 𝐸 → 𝑓

Computer Graphics
and VisualizationCyclic Coordinate Descent (CCD)

 In IK coordinate descent is often used to generate initial
guess for secondary method with fast convergence rate
close to optimum

 coordinate descent can be implemented efficiently as the
line search problem can be solved analytically

Cyclic Coordinate Descent Algorithm

 start with initial guess 𝒒0 for joint parameters

 for increasing 𝑗 = 1… do
 for each joint parameter 𝑖 (typically from end
effector to base)

reduce IK to parameter 𝑞𝑖
𝑗

solve line search IK analytically to get 𝑞𝑖
𝑗+1

 until convergence, i.e. 𝒇 𝒒𝑗+1 − 𝒇 𝒒𝑗 < 𝜀

S. Gumhold – CGII SS18 – Inverse Kinematics 19

Computer Graphics
and VisualizationCCD – Line Search – Simplified

 First approach: only optimize end
effector position 𝒑 → 𝒑𝐸𝐸

 For given joint 𝑖 transform
positions into joint coordinate

system ⇒ 𝒑𝑖 , 𝒑𝐸𝐸
𝑖

 Update joint parameter 𝑞𝑖
𝑗

such

that end effector comes as close
to target position as possible

 Revolute joint: 𝑞𝑖
𝑗
≡ 𝜙 rotation

𝑑𝜙 makes position vector 𝒑𝑖

parallel to 𝒑𝐸𝐸
𝑖

 Prismatic joint: 𝑞𝑖
𝑗
≡ 𝑣

translation 𝑑𝑣 moves 𝒑𝑖 to the

orthogonal projection of 𝒑𝐸𝐸
𝑖 onto

z-direction.
S. Gumhold – CGII SS18 – Inverse Kinematics

revolute joint

prismatic joint

𝑑𝜙

𝑑𝑣

20

𝒑𝑖

𝒑𝐸𝐸
𝑖

𝒑𝑖

𝒑𝐸𝐸
𝑖

Computer Graphics
and VisualizationCCD – Line Search – Full Approach (1)

 Prismatic joints do not affect orientation and optimization is done as
in the case without orientation

 For a revolute joint 𝑖 they reformulate energy minimization in local
coordinates according to Orientation Matrix Formulation

𝐸 𝑑𝜙 =
1

2
𝒑𝑖 𝜙𝑖 + 𝑑𝜙 − 𝒑𝐸𝐸

𝑖
2

𝐸1 𝑑𝜙

+
1

2
෍

𝛼=𝑥

𝑧

𝑤𝛼 1 − 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 𝑇𝒐𝛼,𝐸𝐸

𝑖 2

𝐸2 𝑑𝜙

into the maximization of a derived function 𝑔 = 𝑔1 + 𝑔2

 Position term: 2𝐸1 𝑑𝜙 = 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 − 𝒑𝐸𝐸
𝑖

2

= 𝒑𝑖 𝜙𝑖 + 𝑑𝜙
2
+ 𝒑𝐸𝐸

𝑖
2
− 2 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒑𝐸𝐸

𝑖

The first two terms on the right side are not affected by the joint

rotation, such that we can choose 𝑔1 𝑑𝜙 := 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒑𝐸𝐸
𝑖 and it

holds: minarg𝑑𝜙 𝐸1 𝑑𝜙 = maxarg𝑑𝜙 𝑔1 𝑑𝜙

S. Gumhold – CGII SS18 – Inverse Kinematics 21

Computer Graphics
and VisualizationCCD – Line Search – Full Approach (1)

 Revolute Joint transform 𝐸 = 𝐸1 + 𝐸2 into 𝑔 = 𝑔1 + 𝑔2

 Position term: 𝑔1 𝑑𝜙 = 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒑𝐸𝐸
𝑖

 Orientation term:

2𝐸2,𝛼 𝑑𝜙 = 𝑤𝛼 1 − 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 𝑇𝒐𝛼,𝐸𝐸

𝑖 2

= 𝑤𝛼 1 − 2 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒐𝛼,𝐸𝐸

𝑖 + 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 𝑇𝒐𝛼,𝐸𝐸

𝑖 2

 Ignoring 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 𝑇𝒐𝛼,𝐸𝐸

𝑖 2
one

can set 𝑔2 𝑑𝜙 := 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒐𝛼,𝐸𝐸

𝑖

 Careful: Only in case the IK problem
has a solution, it can be shown that
minarg𝑑𝜙 𝐸2 𝑑𝜙 = maxarg𝑑𝜙 𝑔2 𝑑𝜙

S. Gumhold – CGII SS18 – Inverse Kinematics 22

𝑥 = 𝒐𝛼
𝑖 𝑞𝑖 , 𝒐𝛼,𝐸𝐸

𝑖

𝑔2 𝒙

𝐸2 𝒙

Computer Graphics
and VisualizationCCD – Line Search – Full Approach (1)

 Revolute Joint transform 𝐸 = 𝐸1 + 𝐸2 into 𝑔 = 𝑔1 + 𝑔2

 applying joint rotation: 𝑹 𝑑𝜙 =
cos 𝑑𝜙 −sin 𝑑𝜙 0
sin 𝑑𝜙 cos 𝑑𝜙 0
0 0 1

gives 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 = 𝑹 𝑑𝜙 𝒑𝑖 𝜙𝑖 and

𝑔1 𝑑𝜙 = 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒑𝐸𝐸
𝑖

= 𝑎𝑝 ⋅ cos 𝑑𝜙 + 𝑏𝑝 ⋅ sin 𝑑𝜙 + 𝑐𝑝

 similarly we get

𝑔2 𝑑𝜙 = 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒐𝛼,𝐸𝐸

𝑖

= 𝑎𝑜,𝛼 ⋅ cos 𝑑𝜙 + 𝑏𝑜,𝛼 ⋅ sin 𝑑𝜙 + 𝑐𝑜,𝛼
 gathering all we get

𝑔 𝑑𝜙 = 𝑔1 𝑑𝜙 + 𝑔2 𝑑𝜙 = 𝑎 ⋅ cos 𝑑𝜙 + 𝑏 ⋅ sin 𝑑𝜙 + 𝑐

 we get optimal 𝑑𝜙 from 𝜕𝑑𝜙𝑔 𝑑𝜙 = 0 and 𝜕𝑑𝜙
2 𝑔 𝑑𝜙 < 0

S. Gumhold – CGII SS18 – Inverse Kinematics 23

𝑎𝑝 = 𝑝𝑥
𝑖 𝑝𝐸𝐸,𝑥

𝑖 + 𝑝𝑦
𝑖 𝑝𝐸𝐸,𝑦

𝑖 𝑏𝑝 = 𝑝𝑥
𝑖 𝑝𝐸𝐸,𝑦

𝑖 − 𝑝𝑦
𝑖 𝑝𝐸𝐸,𝑥

𝑖 𝑐𝑝 = 𝑝𝑧
𝑖𝑝𝐸𝐸,𝑧

𝑖with

Computer Graphics
and VisualizationCCD – Degenerate Case

 the CCD can get stuck in degenerate situations

 solution strategy:
 per iteration add a random offset to each joint parameter

 decrease (i.e. divide by 2) amplitude of random offset after each
iteration

S. Gumhold – CGII SS18 – Inverse Kinematics

target

24

Computer Graphics
and Visualization

UNCONSTRAINED IK

S. Gumhold – CGII SS18 – Inverse Kinematics 25

Computer Graphics
and VisualizationSteepest Descent

 In the steepest descent
method the search direction is
the negative gradient which
points in direction of steepest
descent of the function

𝒉𝑘
SD = −𝛁𝑓𝑘

 In case of a linear least
squares problem
𝑓 𝒑 = 𝒓𝑇𝑾𝒓, with 𝒓 = 𝑨𝒑 − 𝒃
gradient is 𝛁𝑓𝑘 = 2𝑨𝑇𝑾𝒓𝑘
and the optimal step width
can be computed exactly to

𝛼𝑘 = −
𝒓𝑇𝑾𝑨𝛁𝑓𝑘

𝛁𝑓𝑘
𝑇𝑨𝑇𝑾𝑨𝛁𝑓𝑘

 otherwise line search
needed.

S. Gumhold – CGII SS18 – Inverse Kinematics 26

All directions that have a positive scalar

product with negative gradient are descent

and therefore valid search directions

𝒉𝑘
SD, 𝒉𝑘

valid > 0

𝒉𝑘

𝒙𝑘

CG1 recap 𝒒 → 𝒙, 𝐸 → 𝑓

Computer Graphics
and VisualizationNewton direction

 The Newton direction
follows from the Taylor
expansion up to second
order

 The direction is computed
from setting the gradient
of the second order
approximation to zero

 optionally one can solve
linear system for 𝒉𝑘

𝑁

 natural step length: 𝛼𝑘 = 1

 𝒉𝑘
𝑁 is descent direction if

Hessian is positive definite

𝑚𝑘 𝒙𝑘 + 𝒉 = 𝑓𝑘 + 𝛁𝑓𝑘
𝑇𝒉 +

1

2
𝒉𝑇𝛁2𝑓𝑘𝒉

𝟎 = 𝛁𝒉𝑚𝑘 𝒙𝑘 + 𝒉𝑘
𝑁

= 𝛁𝑓𝑘 + 𝛁2𝑓𝑘𝒉𝑘
𝑁

𝒉𝑘
𝑁 = − 𝛁2𝑓𝑘

−1𝛁𝑓𝑘

𝛁2𝑓𝑘𝒉𝑘
𝑁 = −𝛁𝑓𝑘

 convergence rate near
local minimum quadratic

S. Gumhold – CGII SS18 – Inverse Kinematics 27

CG1 recap 𝒒 → 𝒙, 𝐸 → 𝑓

Computer Graphics
and VisualizationQuasi Newton methods

 Quasi Newton methods track
approximation of Hessian or
its inverse

 Taylor expansion of gradient
gives secant equation as
constraint

 Furthermore, Bk+1 should be
symmetric, positive def. and
minimize difference to Bk in
Frob. norm yielding Davidon,

Fletcher, Powell (DFP) update

 same idea for Hk yields the
better Broyden, Fletcher, Goldfarb, Shanno

(BFGS) update

 Low memory implementation
represents Hk through few
vectors  L-BFGS

S. Gumhold – CGII SS18 – Inverse Kinematics 28

 


k

k1kk

2

k

k1k fff

s

xx

y

 

k

2

k fB 1

k

2

k f H or

kk1k ysB  

    T

kkk

T

kkkk

T

kkk1k yyysIBsyIB  

k

T

k

k

1

sy
 with

(DFP)

    T

kkk

T

kkkk

T

kkk1k sssyIHysIH  

(BFGS)

𝒒 → 𝒙, 𝐸 → 𝑓

Computer Graphics
and VisualizationWeighted Non Linear Least SquaresWNLLS

 𝑛-dim. parameter space 𝑃 = 𝑅𝑛: 𝑞𝑗=1…𝑛 or 𝒒 ∈ 𝑃

𝑚-dim. target space 𝑇 = 𝑅𝑚: 𝑥𝑖=1…𝑚 or 𝒙 ∈ 𝑇

 forward kinematic function 𝒇: 𝒒 ↦ 𝑓𝑖(𝒒) or 𝒇 𝒒 ∈ 𝑇

 gradient is Jacobian matrix: 𝑱 𝒒 =
𝜕𝑓𝑖 𝒒

𝜕𝑞𝑗 𝑖𝑗

∈ 𝑅𝑚×𝑛

 Taylor series: 𝒇 𝒒0 + 𝑑𝒒 = 𝒇 𝒒0 + 𝑱 𝒒 𝑑𝒒 + 𝑶 𝑑𝒒2

 Residua: 𝑟𝑖 𝒒 = 𝑓𝑖 𝒒 − 𝑥𝑖 or 𝒓 𝒒 = 𝒇 𝒒 − 𝒙

 objective function: 𝐸 𝒒 =
1

2
σ𝑖=1
𝑛 𝑤𝑖𝑟𝑖

2 or 𝐸 𝒒 =
1

2
𝒓𝑇𝑾𝒓

with 𝑾 = diag 𝑤𝑖
being the weight matrix

S. Gumhold – CGII SS18 – Inverse Kinematics 29

Computer Graphics
and VisualizationComputing the Jacobian

 In matrix representation:

𝒑𝐸𝐸
0 = 0𝑹𝑁𝒑𝐸𝐸

𝑁 + 0Ԧ𝒕𝑁

0𝑻𝑁 𝒒 = 0𝑻1
1𝑻2 ⋅ … ⋅ 𝑁−1𝑻𝑁 =

0𝑹𝑁
0Ԧ𝒕𝑁

𝟎𝑇 1

 We exploit the fact that only
𝑗−1

𝑻𝑗(𝑞𝑗) depends on 𝑞𝑗.
Therefore we have

𝜕0𝑻𝑁 𝒒

𝜕𝑞𝑗
= 0𝑻𝑗−1

𝜕𝑗−1𝑻𝑗 𝑞𝑗
𝜕𝑞𝑗

𝑗𝑻𝑁

 For a rotation around an axis we get in 3D:
𝜕

𝜕𝜑
Rot𝒛 𝜑 =

𝜕

𝜕𝜑

cos𝜑 −sin𝜑 0
sin𝜑 cos𝜑 0
0 0 1

=
−sin𝜑 −cos𝜑 0
cos𝜑 −sin𝜑 0
0 0 0

 This can be used in DH-notation:
𝜕

𝜕𝜑
𝑗−1

𝑻𝑗 = Rot𝒙 𝛼𝑗−1 ∙ Trans𝒙 𝑎𝑗−1 ∙ Trans𝒛 𝑑𝑗
𝑖−1𝑪𝑖

∙
𝜕

𝜕𝜑𝑗
Rot𝒛 𝜑𝑗

S. Gumhold – CGII SS18 – Inverse Kinematics 30

Computer Graphics
and VisualizationWNLLS – Descent Directions

 energy: 𝐸 𝒒 =
1

2
σ𝑖=1
𝑛 𝑤𝑖𝑟𝑖

2, with 𝑟𝑖 𝒒 = 𝑓𝑖 𝒒 − 𝑥𝑖

 gradient:
𝜕

𝜕𝑞𝑗
𝐸 = σ𝑖𝑤𝑖𝑟𝑖

𝜕𝑓𝑖

𝜕𝑞𝑗
or 𝛁𝒒𝐸 = 𝒓𝑇𝑾𝑱 (row vector)

Descent directions:

 steepest descent direction:

𝒉𝑘
SD = −𝛁𝒒

𝑇𝐸𝑘 = −𝑱𝑘
𝑇𝑾𝒓𝑘

 approximate Hessian ෩𝑯 (assume 𝑱 in 𝛁𝒒𝐸 to be constant):

𝑯𝑘: = 𝛁𝒒𝛁𝒒
𝑇𝐸𝑘 ≈ 𝑱𝑘

𝑇𝑾𝑱𝑘 =: ෩𝑯𝑘

 approximate also Newton direction (this direction is then
called Gauss-Newton method):

෩𝑯𝑘𝒉𝑘
GN = −𝛁𝒒

𝑇𝐸𝑘 ⇒ 𝑱𝑘
𝑇𝑾𝑱𝑘𝒉𝑘

GN = −𝑱𝑘
𝑇𝑾𝒓𝑘

 as 𝑱 can become singular at singular configurations, solve
for Gauss-Newton direction with truncated SVD.

S. Gumhold – CGII SS18 – Inverse Kinematics 31

Computer Graphics
and VisualizationWNLLS – Drawback with Gauss-Newton

 One problem with the
Gauss-Newton method is
that the Pseudo inverse
becomes unstable in
degenerate positions

 These arise in IK for
example when the robot
arm is fully extended

 This problem does not
arise in the steepest
descent method where
only the transposed of the
Jacobian is used

 Idea: combine both
methods optimally

S. Gumhold – CGII SS18 – Inverse Kinematics

target















060080

970950

..

..
























21 qq

ff
J

















17590

27450
1

..

..
J











50

0
d

.
x














53

63
d

.

.
q


32

Computer Graphics
and VisualizationLevenberg Marquardt

 Idea: combine steepest descent 𝒉𝑘
SD = −𝑱𝑘

𝑇𝑾𝒓𝑘 with

Gauss-Newton approach 𝑱𝑘
𝑇𝑾𝑱𝑘𝒉𝑘

GN = −𝑱𝑘
𝑇𝑾𝒓𝑘 with a

weighting factor 𝜆:

𝑱𝑘
𝑇𝑾𝑱𝑘 + 𝜆𝑰 𝒉𝑘

LM = −𝑱𝑘
𝑇𝑾𝒓𝑘

 Large 𝜆 result in steepest descent update and small 𝜆 in
Gauss-Newton update. 𝜆 is initialized to large values and
decreased close to the optimum, which leads to fast
convergence (quadratic in best case).

 The simplest approach with quadratic convergence close
to solution is to set 𝜆 = 𝒓𝑘

 Levenberg Marquardt suggest to adapt 𝜆-control to the
directional curvature by the generalization

𝑱𝑘
𝑇𝑾𝑱𝑘 + 𝜆diag 𝑱𝑘

𝑇𝑾𝑱𝑘 𝒉𝑘
LM = −𝑱𝑘

𝑇𝑾𝒓𝑘

S. Gumhold – CGII SS18 – Inverse Kinematics 33

[1]

[2]

Computer Graphics
and VisualizationSelf-adapting Levenberg Marquardt

 An important criterion to control 𝜆 is the fraction between
the real improvement and the improvement predicted by
the quadratic approximation with 𝑱 and ෩𝑯:

𝜌𝑘 𝒒 =
𝐸 𝒒 − 𝐸 𝒒 + 𝒉𝑘

LM

2𝒉𝑘
LMT

𝜆𝑘𝒉𝑘
LM − 𝑱𝑘

𝑇𝑾𝒓𝑘
 One can update a factor 𝛼𝑘 in 𝜆𝑘 = 𝛼𝑘 𝒓𝑘 over the

optimization resulting in the self-adaptive LM method:

 input from user: 𝒒0, 𝛼0
1. compute 𝒓𝑘 and check for convergence

2. set 𝜆𝑘 = 𝛼𝑘 𝒓𝑘
3. solve [1] or [2] for 𝒉𝑘

LM and set 𝒒𝑘+1 = 𝒒𝑘 + 𝒉𝑘
LM

4. compute 𝜌𝑘 from [3]

5. set 𝛼𝑘+1 = 𝛼𝑘 ⋅ max
1

4
, 1 − 2 2𝜌𝑘 − 1 3 and goto 1.

S. Gumhold – CGII SS18 – Inverse Kinematics 34

[3]

Computer Graphics
and VisualizationIK Methods

 Descent with steepest descend direction is also called
transposed Jacobian method in IK literature. It needs to
be combined with a line search method. As no SVD is
necessary, a single iteration is fast. The method is
therefore often used in interactive IK approaches, e.g. in
character pose editors.

 Descent with the Newton direction computed from the
approximate Hessian is called Gauss-Newton method or
non linear least squares in math and inverse Jacobian
method in IK. The natural step width of 1 simplifies line
search. One can simply check for decrease in energy and
half the step width until an energy decrease is achieved.

 The taxi cab method corresponds to iteratively optimize
only one joint parameter at the time. This is called cyclic
coordinate descent method in IK and often implemented
as the optimal step width can be computed analytically.

S. Gumhold – CGII SS18 – Inverse Kinematics 35

Computer Graphics
and VisualizationIK Methods

 Levenberg-Marquardt and BFGS are better than inverse
Jacobian and often used for IK. Furthermore, one can use
the non linear conjugate gradient method discussed in
CG1.

 Another strategy is to start with cyclic coordinate descent
and continue with Levenberg-Marquardt or BFGS.

S. Gumhold – CGII SS18 – Inverse Kinematics 36

Computer Graphics
and Visualization

CONSTRAINED IK

S. Gumhold – CGII SS18 – Inverse Kinematics 37

Computer Graphics
and VisualizationParameter Constraints

 Most joints have constraints on their parameters which
can be defined with a lower and upper bound:

𝑙𝑗 ≤ 𝑞𝑗 ≤ 𝑢𝑗
 such constraints are often called simple constraints and

the optimization problem is called bound constrained.

 In all descent approaches – including the cyclic coordinate
descent – these constraints can be easily incorporated by
the gradient projection method:
 First one defines the projection operation Π on the parameter

space 𝑃:

Π 𝒒, Ԧ𝒍, 𝒖
𝑗
= median 𝑙𝑗 , 𝑞𝑗 , 𝑢𝑗

 And uses this to project descent directions to the feasible region:
ഥ
𝒉 = Π 𝒒 + 𝒉, Ԧ𝒍, 𝒖 − 𝒒

 The rest of the algorithms stays the same

 Bound constrained versions exists for L-BFGS-B, (C++)

S. Gumhold – CGII SS18 – Inverse Kinematics 38

http://users.iems.northwestern.edu/~nocedal/lbfgsb.html
https://github.com/PatWie/CppNumericalSolvers

Computer Graphics
and VisualizationGeneral Constraints

 Positional constraints like that a foot should stay on the
floor are non linear in the parameters.

 Such general constraints can be written in the form of
equalities or inequalities:

𝑐𝑙 𝒒 = 0 or ℎ𝑜 𝒒 ≥ 0

 approaches to incorporate equality constraints:
 Lagrangian multiplier method incorporates constraints into

objective function and adds multipliers as additional parameters

 constraint forces can be derived from constraints and also be
used to reinforce constraints in case of numerical deviations or
initialization that violates constraints

 approaches to incorporate inequality constraints
 Linear complementary problems (LCP)

S. Gumhold – CGII SS18 – Inverse Kinematics 39

Computer Graphics
and Visualization

MOTION CAPTURING

S. Gumhold – CGII SS18 – Inverse Kinematics 40

Computer Graphics
and VisualizationStandard Motion Capturing

 Standard MoCap Approach
 add markers at joints

 illuminate markers from all
directions

 acquire views from several
synchronized cameras

 detect markers in each
acquired view

 match markers between views

 reconstruct 3D positions

 track points over time

 per frame match points to
skeleton and fit skeleton

 extension: use light emitters
of different frequency as
markers with id (no matching
necessary)

S. Gumhold – CGII SS18 – Inverse Kinematics 41

http://www.youtube.com/watch?v=DaOAZA0xSMY

Computer Graphics
and VisualizationStyle-Based Inverse Kinematics

Keith Grochow, Steven L. Martin, Aaron Hertzmann, Zoran Popovic,
Siggraph 2004

Idea

 use motion capture data to disambiguate IK

Overview

 capture different motion sequences

 map each pose to a feature space

 learn distribution of poses in reduced feature space

 solve IK problem by maximizing pose probability

S. Gumhold – CGII SS18 – Inverse Kinematics 42

Computer Graphics
and VisualizationStyle-Based Inverse Kinematics

S. Gumhold – CGII SS18 – Inverse Kinematics 43

Example for

learned pose

spaces of

jump shot (left)

and baseball

pitch (right)

sequences

and their pose

probability

distributions.

Red points are

training poses,

orange connec-

tions mark some

training poses and

green connections

show extrapolated

poses

https://www.youtube.com/watch?v=X5Z7ZJ39zAA

Computer Graphics
and VisualizationStyle-Based Inverse Kinematics

S. Gumhold – CGII SS18 – Inverse Kinematics 44

www.youtube.com/watch?v=X5Z7ZJ39zAA

http://www.youtube.com/watch?v=X5Z7ZJ39zAA

Computer Graphics
and VisualizationRGBD Motion Capturing

 uses depth camera with a
machine learning approach

 learning
 2D parameterized template

human mesh (vitruvian
manifold)

 generate a huge number of
depth images from different
poses of vitruvian manifold
(render depth & texture
coords.)

 learn local image features with
decision tree to map each
depth image pixel to texture
coordinates

 recognition
 use decision tree to estimate

per pixel texcoords

 fit pose to depth and texcoord
image

S. Gumhold – CGII SS18 – Inverse Kinematics 45

© Ludwig Schmutzler

kinect skeleton
vitruvian manifold

Taylor, Shotton, Sharp, Fitzgibbon

CVPR 2012

http://research.microsoft.com/apps/pubs/default.aspx?id=162510

Computer Graphics
and VisualizationInteractive Motion Mapping

S. Gumhold – CGII SS18 – Inverse Kinematics 46

 Helge Rhodin, James Tompkin, Kwang In Kim, Kiran
Varanasi, Hans-Peter Seidel, Christian Theobalt,
Eurographics 2014 (http)

Idea

 use Kinect skeleton tracking to steer character with
different skeleton

Overview

 Given sparse pose mapping from source to target,
learn pose mapping without rigging and skinning

 Allows interactive control of virtual character

http://gvv.mpi-inf.mpg.de/projects/DirectMotionMapping/

Computer Graphics
and VisualizationInteractive Motion Mapping

S. Gumhold – CGII SS18 – Inverse Kinematics 47

www.youtube.com/watch?v=SG5D12tBBAk

https://www.youtube.com/watch?v=SG5D12tBBAk

Computer Graphics
and Visualization

SKELETON FITTING

S. Gumhold – CGII SS18 – Inverse Kinematics 48

Computer Graphics
and VisualizationProblem Statement

 Input: set of 3D marker
points tracked over time
where markers can be
occluded and re-appearing
markers are not identified
but receive a new label

 Output: skeleton topology,
bone lengths, joint
locations in rotation
centers (markers are
placed on surface)

Reference: Adam G. Kirk James F. O’Brien David A. Forsyth,
Skeletal Parameter Estimation from Optical Motion Capture
Data, CVPR 2015

S. Gumhold – CGII SS18 – Inverse Kinematics 49

Computer Graphics
and VisualizationSolution approach

 filter erroneous marker
information before
vanishing and after their
re-appearance

 build matrix of marker pair
distances and measure
pair distance variance
over time

 segment markers into
rigid components by
spectral clustering

 build all segment pairs
and fit joint locations to
minimize variance of
distance to both segment
markers over time

 extract topology by
minimum spanning tree

 match marker time slabs

 use IK to extract joint
parameters

S. Gumhold – CGII SS18 – Inverse Kinematics 50

http://graphics.berkeley.edu/papers/Kirk-SPE-2005-06

http://graphics.berkeley.edu/papers/Kirk-SPE-2005-06

Computer Graphics
and VisualizationReferences

(1) Wang, L-CT, and Chih-Cheng Chen. "A combined optimization method for solving the
inverse kinematics problems of mechanical manipulators." Robotics and Automation,
IEEE Transactions on 7.4 (1991): 489-499.

(2) Welman, Chris. Inverse kinematics and geometric constraints for articulated figure
manipulation. Diss. Simon Fraser University, 1993.

(3) Meredith, Michael, and Steve Maddock. Real-time inverse kinematics: The return of
the Jacobian. Technical Report No. CS-04-06, Department of Computer Science,
University of Sheffield, 2004.

(4) Hess, Peter, et al. "Style-Based Inverse Kinematics." (2005).

(5) Shan, Shidong. A Levenberg-Marquardt method for large-scale bound-constrained
nonlinear least-squares. Diss. The University of British Columbia (Vancouver), 2008.

(6) Taylor, Jonathan, et al. "The Vitruvian manifold: Inferring dense correspondences for
one-shot human pose estimation." Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE, 2012.

(7) Kenwright, Ben. "Inverse Kinematics with Dual-Quaternions, Exponential-Maps, and
Joint Limits." International Journal On Advances in Intelligent Systems 6.1 and 2
(2013): 53-65.

(8) Rhodin, Helge, et al. "Interactive motion mapping for real‐time character control."
Computer Graphics Forum. Vol. 33. No. 2. 2014.

(9) Adam G. Kirk James F. O’Brien David A. Forsyth, Skeletal Parameter Estimation from
Optical Motion Capture Data, CVPR 2015

(10) http://chrishecker.com/Inverse_kinematics

(11) https://github.com/PatWie/CppNumericalSolvers (L-BFGS-B Solver in C++)

S. Gumhold – CGII SS18 – Inverse Kinematics 51

http://chrishecker.com/Inverse_kinematics
https://github.com/PatWie/CppNumericalSolvers

