
TECHNISCHE
UNIVERSITÄT
DRESDEN

Computer Graphics
and Visualization

Inverse 

Kinematics & 

Motion Capturing

Computer Graphics II

S. Gumhold – CGII SS18 – Inverse Kinematics 1



Computer Graphics
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 Inverse Kinematics Problem

 Cyclic Coordinate Descent

 Unconstrained IK

 Constrained IK

 Motion Capturing

 Skeleton Fitting
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Computer Graphics
and VisualizationInverse Kinematics Problem

 Given a kinematic chain 
with forward kinematics 

𝒑𝐸𝐸 = 𝒇 𝑞𝑗 , 𝝎𝐸𝐸 = 𝑭 𝑞𝑗
depending on generalized 
coordinates 𝑞𝑗 and a target

pose 𝒙∗, 𝝎∗ , the inverse 
kinematics problems solves

𝒑∗ = 𝒇 𝑞𝑗
∗ ∧ 𝝎∗ = 𝑭 𝑞𝑗

∗

for the 𝑞𝑗
∗

 The parameters qj are also 
called state vector.

 The parameters [𝒑,𝝎] of 

the end effector pose are 
called the dependent 
variables
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and VisualizationInverse Kinematics Problem

 The number of generalized 
coordinates give the
degrees of freedom (DOF)

 In most cases the DOFs 
does not match the 
number of dependent 
variables and IK becomes 
ill-posed (as in example on 
the right) or unsolvable

 The inverse kinematics
problem is often posed in 
form of a least squares
energy minimization as
detailed on slides 20 & 21.
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and VisualizationInverse Kinematics

 In so called degenerate or 
singular configurations the 
end effector looses one or 
several degrees of 
freedom

 Close to singular positions 
the distance in the state 
space can become 
extremely large compared 
to the distance in world 
space leading to 
oscillations during IK
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Contraints

 for realistic behavior it is necessary to consider different 
constraints:

 collision constraints to avoid self-collisions and collisions 
with environment. These can only locally be captured in 
formula.

 joint angle constraints given by the limitations of the joints 
and written in the form 𝑙𝑗 ≤ 𝑞𝑗 ≤ 𝑢𝑗

 position constraints to restrict the movement of the end 
effector. Typically point, line or plane constraints.

 orientation constraints to restrict the orientation of the 
end effector, for example in case of special demands for 
grasping.
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Overall strategy

 Most solvers for non linear 
optimization problems are iterative 
and start with some initial guess 𝒒0
for the parameter vector. This can 
be
 the default state 

 the state of the previous time step 
in an animation

 the result of a previous 
optimization phase

 At the current guess some descent 
direction 𝑑𝒒𝑘 is found in parameter 
space

 A step size ℎ𝑘 is estimated from 
the energy function

 Steps 𝒒𝑘+1 = 𝒒𝑘 + ℎ𝑘𝑑𝒒𝑘 are taken 
until no further improvement in 
energy is possible.
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 Each joint in a kinematic chain has a relative 

transformation 𝑖−1෩𝑻𝑖 𝑞𝑖1, … , 𝑞𝑖𝑛𝑖 with 𝑛𝑖 parameters

 Gathering all 𝑛 = σ𝑖 𝑛𝑖 parameters in the parameter 
vector 𝒒 the chain transform is

0෩𝑻𝑁 𝒒 = 0෩𝑻1
1෩𝑻2 ⋅ … ⋅ 𝑁−1෩𝑻𝑁

 Transformations are in homogenous notation

0෩𝑻𝑁 =
0𝑹𝑁

0Ԧ𝒕𝑁

𝟎𝑇 1
and contain rotation 0𝑹𝑁 and translation 0Ԧ𝒕𝑁.

 The columns of 0𝑹𝑁 define the coordinate
axes of the end effector frame with respect 
to world coordinates

 If the end effector is in the origin of frame 𝑁, 0Ԧ𝒕𝑁 is the 
location of the end effector in world coordinates, in 
general we have 𝒑𝐸𝐸

0 = 0𝑹𝑁𝒑𝐸𝐸
𝑁 + 0Ԧ𝒕𝑁
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Euler Angle Formulation

 Representing the orientation as Euler angles, the pose 𝒙
of the end effector is a 6-dimensional vector

𝒙𝐸𝐸 = 𝒑𝐸𝐸
0 , 𝝎𝐸𝐸

0 = 𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓 𝑇 ∈ 𝑹6

 The forward kinematics is described as a function 𝒇 that 
maps the 𝑛-dimensional parameter vector 𝒒 to a 6D pose:

𝒙 = 𝒇 𝒒

 The inverse kinematic problem for a given end effector 
pose is to find the parameters that best match the pose:

𝒒∗ = minarg
𝒒

𝐸 𝒒; 𝒙𝐸𝐸 with 𝐸 𝒒; 𝒙𝐸𝐸 =
1

2
𝒇 𝒒 − 𝒙𝐸𝐸

2

 This is a non linear least squares problem. One can 
introduce weights 𝑤𝑖 for the residua 𝑟𝑖 𝒒 = 𝑓𝑖(𝒒) − 𝑥𝐸𝐸,𝑖:

𝐸 𝒒; 𝒙𝐸𝐸 =
1

2
෍

𝑖

𝑤𝑖𝑟𝑖
2 𝒒
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Orientation Matrix Formulation
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𝒐𝑥 𝒒 𝑇𝒐𝑥,𝐸𝐸 = cos𝜓1
𝒐𝑦 𝒒 𝑇𝒐𝑦,𝐸𝐸 = cos𝜓2

𝒐𝑧 𝒒 𝑇𝒐𝑧,𝐸𝐸 = cos𝜓3

= 𝒐𝑥

= 𝒐𝑦

𝒐𝑧 =

𝒐𝑥,𝐸𝐸 =

= 𝒐𝑦,𝐸𝐸

= 𝒐𝑧,𝐸𝐸
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Orientation Matrix Formulation

 Using an orthonormal matrix 𝑶 = 𝒐𝑥 𝒐𝑦 𝒐𝑧 to represent 
orientation, the pose 𝒙 of the end effector is 12D and 
defined as concatenation of position columns of 𝑶:

𝒙𝐸𝐸 = 𝒑𝐸𝐸
0 𝑇

𝒐𝑥,𝐸𝐸
𝑇 𝒐𝑦,𝐸𝐸

𝑇 𝒐𝑧,𝐸𝐸
𝑇

𝑇
∈ 𝑹12

 The forward kinematics is described as a function 𝒇 that 
maps the 𝑛-dimensional parameter vector 𝒒 to a pose:

𝒙 = 𝒇 𝒒 , with 𝒇 = 𝒑𝑇 𝒐𝑥
𝑇 𝒐𝑦

𝑇 𝒐𝑧
𝑇

𝑇

 The inverse kinematic problem is again based on an 
energy function: 𝒒∗ = minarg

𝒒
𝐸 𝒒; 𝒙𝐸𝐸 with weights

𝐸 𝒒; 𝒙𝐸𝐸 =
1

2
𝒑 𝒒 − 𝒑𝐸𝐸

0
2
+
1

2
෍

𝛼=𝑥

𝑧

𝑤𝛼 1 − 𝒐𝛼 𝒒 𝑇𝒐𝛼,𝐸𝐸
2

 The weights 𝑤𝛼 can be used to blend out orientation 
constraints for individual axes
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Quaternion Formulation

 With a normalized quaternion ො𝑞 = 𝑠 𝑥 𝑦 𝑧 the pose is 7D:

𝒙𝐸𝐸 = 𝒑𝐸𝐸
0 𝑇

ො𝑞𝐸𝐸
0 𝑇 𝑇

∈ 𝑹7, 𝒇 𝒒 = 𝒑𝑇 ො𝑞𝑇
𝑇

 Care needs to be taken with the least squares energy

𝐸 𝒒; 𝒙𝐸𝐸 =
1

2
𝒑 𝒒 − 𝒑𝐸𝐸

0
2
+
1

2
𝑤𝑞 ො𝑞 𝒒 − ො𝑞𝐸𝐸

0 2

as ො𝑞 and −ො𝑞 represent the same rotation.

 Solution 1: 
 during iterative optimization compute ො𝑞 𝒒𝑖 for current 𝒒𝑖. 

 test if ො𝑞 𝒒𝑖 , ො𝑞𝐸𝐸
0 < 0

 if yes replace ො𝑞𝐸𝐸
0 with −ො𝑞𝐸𝐸

0 in energy 

 compute the next 𝒒𝑖+1.

 Solution 2: use energy function that ignores sign:

𝐸 𝒒; 𝒙𝐸𝐸 =
1

2
𝒑 𝒒 − 𝒑𝐸𝐸

0
2
−𝑤𝑞 ො𝑞 𝒒𝑖 , ො𝑞𝐸𝐸

0 2
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 multiple target locations are important in applications with 
skeletons like transforming point based motion capture 
data to skeleton parameters or when working with 
multiple end effectors

 a fixed base joint can only be used in the very special case 
of two constraints – one at a base node and one at an 
endeffector node

 otherwise we can alternatingly optimize 
 the rigid body transform of the root node

by minimizing the squared sum of the
end effector constraints with the 
Kabsch algorithm

 the joint parameters by a joined IK problem
minimizing an energy that sums over the
squared endeffector-constraint distances
where the endeffector locations are computed
along kinematic chains from the fixed root node
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Computer Graphics
and VisualizationDiscussion

 In an interactive editor one has to define kinematic chains 
based on user input. This can be done by adding fixation 
points (in the simplest case one at the root node) 

 For a climbing figure we need several end
effector constraints. This is discussed by
Chris Hecker on his inverse kinematics page

 Dual quaternion IK was presented by 
Ben Kenwright in 2013: Inverse Kinematics 
with Dual-Quaternions, Exponential-Maps, 
and Joint Limits
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http://chrishecker.com/Inverse_kinematics
http://www.thinkmind.org/download.php?articleid=intsys_v6_n12_2013_5
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CYCLIC COORDINATE DESCENT
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 Iterative algorithms need an initial guess 𝒙0
𝒙0, 𝒙1, 𝒙2, … ⇒ 𝑓𝑘 = 𝑓 𝒙𝑘 , 𝛁𝑓𝑘 = 𝛁𝑓 𝒙𝑘 , 𝛁2𝑓𝑘 = 𝛁2𝑓 𝒙𝑘 ,

 sequence chosen monoton with termination criterion:
𝑓0 ≥ 𝑓1 ≥ 𝑓2 ≥ ⋯ 𝛁𝑓𝑘 < 𝜀
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Line Search Approach

choose search direction 𝒉𝑘
𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒉𝑘

choose step width 𝛼𝑘 to 

minimize 𝑓 along line:

𝜙𝑘 𝛼 = 𝑓 𝒙𝑘 + 𝛼𝒉𝑘 ,

𝛼𝑘 = minarg
𝛼>0

𝜙𝑘 𝛼

Trust Region Approach

choose model 𝑚𝑘 to 

approximate 𝑓 inside trust 

region 𝑇 around 𝒙𝑘
𝒙𝑘+1 = 𝒙𝑘 + 𝒉𝑘 ,
𝒉𝑘 = minarg

𝒉∈𝑇
𝑚𝑘 𝒙𝑘 + 𝒉

example:

𝑚𝑘 𝒙𝑘 + 𝒉 = 𝑓𝑘 + 𝛁𝑓𝑘
𝑇𝒉 +

1

2
𝒉𝑇𝑩𝑘𝒉

approximates

Hessian

CG1 recap 𝒒 → 𝒙, 𝐸 → 𝑓
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0x

1x

2x

© John H. Mathews 2004 

Coordinate Descent & Powell‘s Method

 Coordinate Descent: 
 Search directions are standard basis vectors ො𝒆𝑖
 line search along search directions

 Stop if no improvement in one complete cycle

 Powell‘s method:
 start with standard basis as set of search 

directions and do line search

 after one cycle add new direction 𝒉new = 𝒙𝑖 − 𝒙𝑖−𝑛
 remove search direction with largest improve-

ment (closest to new search direction 𝒉new) to 
avoid degenerated set of search directions

 Both are derivative free methods! 

 Another mentionable derivative-free 
alternative is the Downhill-Simplex method
of Nelder and Mead
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CG1 recap 𝒒 → 𝒙, 𝐸 → 𝑓
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and VisualizationCyclic Coordinate Descent (CCD)

 In IK coordinate descent is often used to generate initial 
guess for secondary method with fast convergence rate 
close to optimum 

 coordinate descent can be implemented efficiently as the 
line search problem can be solved analytically

Cyclic Coordinate Descent Algorithm

 start with initial guess 𝒒0 for joint parameters

 for increasing 𝑗 = 1… do
 for each joint parameter 𝑖 (typically from end 
effector to base)

reduce IK to parameter 𝑞𝑖
𝑗

solve line search IK analytically to get 𝑞𝑖
𝑗+1

 until convergence, i.e. 𝒇 𝒒𝑗+1 − 𝒇 𝒒𝑗 < 𝜀

S. Gumhold – CGII SS18 – Inverse Kinematics 19
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and VisualizationCCD – Line Search – Simplified

 First approach: only optimize end 
effector position 𝒑 → 𝒑𝐸𝐸

 For given joint 𝑖 transform 
positions into joint coordinate 

system ⇒ 𝒑𝑖 , 𝒑𝐸𝐸
𝑖

 Update joint parameter 𝑞𝑖
𝑗

such 

that end effector comes as close 
to target position as possible

 Revolute joint: 𝑞𝑖
𝑗
≡ 𝜙 rotation 

𝑑𝜙 makes position vector 𝒑𝑖

parallel to 𝒑𝐸𝐸
𝑖

 Prismatic joint: 𝑞𝑖
𝑗
≡ 𝑣

translation 𝑑𝑣 moves  𝒑𝑖 to the 

orthogonal projection of 𝒑𝐸𝐸
𝑖 onto 

z-direction.
S. Gumhold – CGII SS18 – Inverse Kinematics

revolute joint

prismatic joint

𝑑𝜙

𝑑𝑣
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𝒑𝑖

𝒑𝐸𝐸
𝑖

𝒑𝑖

𝒑𝐸𝐸
𝑖
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 Prismatic joints do not affect orientation and optimization is done as
in the case without orientation

 For a revolute joint 𝑖 they reformulate energy minimization in local 
coordinates according to Orientation Matrix Formulation

𝐸 𝑑𝜙 =
1

2
𝒑𝑖 𝜙𝑖 + 𝑑𝜙 − 𝒑𝐸𝐸

𝑖
2

𝐸1 𝑑𝜙

+
1

2
෍

𝛼=𝑥

𝑧

𝑤𝛼 1 − 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 𝑇𝒐𝛼,𝐸𝐸

𝑖 2

𝐸2 𝑑𝜙

into the maximization of a derived function 𝑔 = 𝑔1 + 𝑔2

 Position term: 2𝐸1 𝑑𝜙 = 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 − 𝒑𝐸𝐸
𝑖

2

= 𝒑𝑖 𝜙𝑖 + 𝑑𝜙
2
+ 𝒑𝐸𝐸

𝑖
2
− 2 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒑𝐸𝐸

𝑖

The first two terms on the right side are not affected by the joint 

rotation, such that we can choose 𝑔1 𝑑𝜙 := 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒑𝐸𝐸
𝑖 and it 

holds: minarg𝑑𝜙 𝐸1 𝑑𝜙 = maxarg𝑑𝜙 𝑔1 𝑑𝜙

S. Gumhold – CGII SS18 – Inverse Kinematics 21



Computer Graphics
and VisualizationCCD – Line Search – Full Approach (1)

 Revolute Joint transform 𝐸 = 𝐸1 + 𝐸2 into 𝑔 = 𝑔1 + 𝑔2

 Position term: 𝑔1 𝑑𝜙 = 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒑𝐸𝐸
𝑖

 Orientation term:

2𝐸2,𝛼 𝑑𝜙 = 𝑤𝛼 1 − 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 𝑇𝒐𝛼,𝐸𝐸

𝑖 2

= 𝑤𝛼 1 − 2 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒐𝛼,𝐸𝐸

𝑖 + 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 𝑇𝒐𝛼,𝐸𝐸

𝑖 2

 Ignoring 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 𝑇𝒐𝛼,𝐸𝐸

𝑖 2
one

can set 𝑔2 𝑑𝜙 := 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒐𝛼,𝐸𝐸

𝑖

 Careful: Only in case the IK problem 
has a solution, it can be shown that
minarg𝑑𝜙 𝐸2 𝑑𝜙 = maxarg𝑑𝜙 𝑔2 𝑑𝜙

S. Gumhold – CGII SS18 – Inverse Kinematics 22

𝑥 = 𝒐𝛼
𝑖 𝑞𝑖 , 𝒐𝛼,𝐸𝐸

𝑖

𝑔2 𝒙

𝐸2 𝒙
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and VisualizationCCD – Line Search – Full Approach (1)

 Revolute Joint transform 𝐸 = 𝐸1 + 𝐸2 into 𝑔 = 𝑔1 + 𝑔2

 applying joint rotation: 𝑹 𝑑𝜙 =
cos 𝑑𝜙 −sin 𝑑𝜙 0
sin 𝑑𝜙 cos 𝑑𝜙 0
0 0 1

gives 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 = 𝑹 𝑑𝜙 𝒑𝑖 𝜙𝑖 and

𝑔1 𝑑𝜙 = 𝒑𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒑𝐸𝐸
𝑖

= 𝑎𝑝 ⋅ cos 𝑑𝜙 + 𝑏𝑝 ⋅ sin 𝑑𝜙 + 𝑐𝑝

 similarly we get

𝑔2 𝑑𝜙 = 𝒐𝛼
𝑖 𝜙𝑖 + 𝑑𝜙 , 𝒐𝛼,𝐸𝐸

𝑖

= 𝑎𝑜,𝛼 ⋅ cos 𝑑𝜙 + 𝑏𝑜,𝛼 ⋅ sin 𝑑𝜙 + 𝑐𝑜,𝛼
 gathering all we get

𝑔 𝑑𝜙 = 𝑔1 𝑑𝜙 + 𝑔2 𝑑𝜙 = 𝑎 ⋅ cos 𝑑𝜙 + 𝑏 ⋅ sin 𝑑𝜙 + 𝑐

 we get optimal 𝑑𝜙 from 𝜕𝑑𝜙𝑔 𝑑𝜙 = 0 and 𝜕𝑑𝜙
2 𝑔 𝑑𝜙 < 0
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𝑎𝑝 = 𝑝𝑥
𝑖 𝑝𝐸𝐸,𝑥

𝑖 + 𝑝𝑦
𝑖 𝑝𝐸𝐸,𝑦

𝑖 𝑏𝑝 = 𝑝𝑥
𝑖 𝑝𝐸𝐸,𝑦

𝑖 − 𝑝𝑦
𝑖 𝑝𝐸𝐸,𝑥

𝑖 𝑐𝑝 = 𝑝𝑧
𝑖𝑝𝐸𝐸,𝑧

𝑖with
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and VisualizationCCD – Degenerate Case

 the CCD can get stuck in degenerate situations

 solution strategy:
 per iteration add a random offset to each joint parameter 

 decrease (i.e. divide by 2) amplitude of random offset after each 
iteration

S. Gumhold – CGII SS18 – Inverse Kinematics
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UNCONSTRAINED IK
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Computer Graphics
and VisualizationSteepest Descent

 In the steepest descent 
method the search direction is 
the negative gradient which 
points in direction of steepest 
descent of the function

𝒉𝑘
SD = −𝛁𝑓𝑘

 In case of a linear least 
squares problem
𝑓 𝒑 = 𝒓𝑇𝑾𝒓, with 𝒓 = 𝑨𝒑 − 𝒃
gradient is 𝛁𝑓𝑘 = 2𝑨𝑇𝑾𝒓𝑘
and the optimal step width 
can be computed exactly to 

𝛼𝑘 = −
𝒓𝑇𝑾𝑨𝛁𝑓𝑘

𝛁𝑓𝑘
𝑇𝑨𝑇𝑾𝑨𝛁𝑓𝑘

 otherwise line search  
needed.
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All directions that have a positive scalar 

product with negative gradient are descent 

and therefore valid search directions

𝒉𝑘
SD, 𝒉𝑘

valid > 0

𝒉𝑘

𝒙𝑘

CG1 recap 𝒒 → 𝒙, 𝐸 → 𝑓



Computer Graphics
and VisualizationNewton direction

 The Newton direction 
follows from the Taylor 
expansion up to second 
order

 The direction is computed 
from setting the gradient 
of the second order 
approximation to zero

 optionally one can solve 
linear system for 𝒉𝑘

𝑁

 natural step length: 𝛼𝑘 = 1

 𝒉𝑘
𝑁 is descent direction if 

Hessian is positive definite

𝑚𝑘 𝒙𝑘 + 𝒉 = 𝑓𝑘 + 𝛁𝑓𝑘
𝑇𝒉 +

1

2
𝒉𝑇𝛁2𝑓𝑘𝒉

𝟎 = 𝛁𝒉𝑚𝑘 𝒙𝑘 + 𝒉𝑘
𝑁

= 𝛁𝑓𝑘 + 𝛁2𝑓𝑘𝒉𝑘
𝑁

𝒉𝑘
𝑁 = − 𝛁2𝑓𝑘

−1𝛁𝑓𝑘

𝛁2𝑓𝑘𝒉𝑘
𝑁 = −𝛁𝑓𝑘

 convergence rate near
local minimum quadratic
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CG1 recap 𝒒 → 𝒙, 𝐸 → 𝑓



Computer Graphics
and VisualizationQuasi Newton methods

 Quasi Newton methods track 
approximation of Hessian or 
its inverse

 Taylor expansion of gradient 
gives secant equation as 
constraint

 Furthermore, Bk+1  should be 
symmetric, positive def. and 
minimize difference to Bk in 
Frob. norm yielding Davidon, 

Fletcher, Powell (DFP) update

 same idea for Hk yields the 
better Broyden, Fletcher, Goldfarb, Shanno

(BFGS) update

 Low memory implementation 
represents Hk through few 
vectors  L-BFGS
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and VisualizationWeighted Non Linear Least SquaresWNLLS

 𝑛-dim. parameter space   𝑃 = 𝑅𝑛: 𝑞𝑗=1…𝑛 or 𝒒 ∈ 𝑃

𝑚-dim. target space          𝑇 = 𝑅𝑚: 𝑥𝑖=1…𝑚 or 𝒙 ∈ 𝑇

 forward kinematic function     𝒇: 𝒒 ↦ 𝑓𝑖(𝒒) or 𝒇 𝒒 ∈ 𝑇

 gradient is Jacobian matrix:    𝑱 𝒒 =
𝜕𝑓𝑖 𝒒

𝜕𝑞𝑗 𝑖𝑗

∈ 𝑅𝑚×𝑛

 Taylor series:          𝒇 𝒒0 + 𝑑𝒒 = 𝒇 𝒒0 + 𝑱 𝒒 𝑑𝒒 + 𝑶 𝑑𝒒2

 Residua:                  𝑟𝑖 𝒒 = 𝑓𝑖 𝒒 − 𝑥𝑖 or   𝒓 𝒒 = 𝒇 𝒒 − 𝒙

 objective function:      𝐸 𝒒 =
1

2
σ𝑖=1
𝑛 𝑤𝑖𝑟𝑖

2 or 𝐸 𝒒 =
1

2
𝒓𝑇𝑾𝒓

with 𝑾 = diag 𝑤𝑖
being the weight matrix
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Computer Graphics
and VisualizationComputing the Jacobian

 In matrix representation:

𝒑𝐸𝐸
0 = 0𝑹𝑁𝒑𝐸𝐸

𝑁 + 0Ԧ𝒕𝑁

0𝑻𝑁 𝒒 = 0𝑻1
1𝑻2 ⋅ … ⋅ 𝑁−1𝑻𝑁 =

0𝑹𝑁
0Ԧ𝒕𝑁

𝟎𝑇 1

 We exploit the fact that only 
𝑗−1

𝑻𝑗(𝑞𝑗) depends on 𝑞𝑗. 
Therefore we have

𝜕0𝑻𝑁 𝒒

𝜕𝑞𝑗
= 0𝑻𝑗−1

𝜕𝑗−1𝑻𝑗 𝑞𝑗
𝜕𝑞𝑗

𝑗𝑻𝑁

 For a rotation around an axis we get in 3D:
𝜕

𝜕𝜑
Rot𝒛 𝜑 =

𝜕

𝜕𝜑

cos𝜑 −sin𝜑 0
sin𝜑 cos𝜑 0
0 0 1

=
−sin𝜑 −cos𝜑 0
cos𝜑 −sin𝜑 0
0 0 0

 This can be used in DH-notation:
𝜕

𝜕𝜑
𝑗−1

𝑻𝑗 = Rot𝒙 𝛼𝑗−1 ∙ Trans𝒙 𝑎𝑗−1 ∙ Trans𝒛 𝑑𝑗
𝑖−1𝑪𝑖

∙
𝜕

𝜕𝜑𝑗
Rot𝒛 𝜑𝑗
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Computer Graphics
and VisualizationWNLLS – Descent Directions

 energy: 𝐸 𝒒 =
1

2
σ𝑖=1
𝑛 𝑤𝑖𝑟𝑖

2, with  𝑟𝑖 𝒒 = 𝑓𝑖 𝒒 − 𝑥𝑖

 gradient:
𝜕

𝜕𝑞𝑗
𝐸 = σ𝑖𝑤𝑖𝑟𝑖

𝜕𝑓𝑖

𝜕𝑞𝑗
or 𝛁𝒒𝐸 = 𝒓𝑇𝑾𝑱 (row vector)

Descent directions:

 steepest descent direction:

𝒉𝑘
SD = −𝛁𝒒

𝑇𝐸𝑘 = −𝑱𝑘
𝑇𝑾𝒓𝑘

 approximate Hessian ෩𝑯 (assume 𝑱 in 𝛁𝒒𝐸 to be constant):

𝑯𝑘: = 𝛁𝒒𝛁𝒒
𝑇𝐸𝑘 ≈ 𝑱𝑘

𝑇𝑾𝑱𝑘 =: ෩𝑯𝑘

 approximate also Newton direction (this direction is then 
called Gauss-Newton method):

෩𝑯𝑘𝒉𝑘
GN = −𝛁𝒒

𝑇𝐸𝑘 ⇒ 𝑱𝑘
𝑇𝑾𝑱𝑘𝒉𝑘

GN = −𝑱𝑘
𝑇𝑾𝒓𝑘

 as 𝑱 can become singular at singular configurations, solve 
for Gauss-Newton direction with truncated SVD.
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Computer Graphics
and VisualizationWNLLS – Drawback with Gauss-Newton 

 One problem with the 
Gauss-Newton method is 
that the Pseudo inverse 
becomes unstable in 
degenerate positions

 These arise in IK for 
example when the robot 
arm is fully extended

 This problem does not 
arise in the steepest 
descent method where 
only the transposed of the 
Jacobian is used

 Idea: combine both 
methods optimally

S. Gumhold – CGII SS18 – Inverse Kinematics
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Computer Graphics
and VisualizationLevenberg Marquardt 

 Idea: combine steepest descent 𝒉𝑘
SD = −𝑱𝑘

𝑇𝑾𝒓𝑘 with 

Gauss-Newton approach  𝑱𝑘
𝑇𝑾𝑱𝑘𝒉𝑘

GN = −𝑱𝑘
𝑇𝑾𝒓𝑘 with a 

weighting factor 𝜆:

𝑱𝑘
𝑇𝑾𝑱𝑘 + 𝜆𝑰 𝒉𝑘

LM = −𝑱𝑘
𝑇𝑾𝒓𝑘

 Large 𝜆 result in steepest descent update and small 𝜆 in 
Gauss-Newton update. 𝜆 is initialized to large values and 
decreased close to the optimum, which leads to fast 
convergence (quadratic in best case).

 The simplest approach with quadratic convergence close 
to solution is to set 𝜆 = 𝒓𝑘

 Levenberg Marquardt suggest to adapt 𝜆-control to the 
directional curvature by the generalization

𝑱𝑘
𝑇𝑾𝑱𝑘 + 𝜆diag 𝑱𝑘

𝑇𝑾𝑱𝑘 𝒉𝑘
LM = −𝑱𝑘

𝑇𝑾𝒓𝑘
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Computer Graphics
and VisualizationSelf-adapting Levenberg Marquardt

 An important criterion to control 𝜆 is the fraction between 
the real improvement and the improvement predicted by 
the quadratic approximation with 𝑱 and ෩𝑯:

𝜌𝑘 𝒒 =
𝐸 𝒒 − 𝐸 𝒒 + 𝒉𝑘

LM

2𝒉𝑘
LMT

𝜆𝑘𝒉𝑘
LM − 𝑱𝑘

𝑇𝑾𝒓𝑘
 One can update a factor 𝛼𝑘 in 𝜆𝑘 = 𝛼𝑘 𝒓𝑘 over the 

optimization resulting in the self-adaptive LM method:

 input from user: 𝒒0, 𝛼0
1. compute 𝒓𝑘 and check for convergence

2. set 𝜆𝑘 = 𝛼𝑘 𝒓𝑘
3. solve [1] or [2] for 𝒉𝑘

LM and set 𝒒𝑘+1 = 𝒒𝑘 + 𝒉𝑘
LM

4. compute 𝜌𝑘 from [3]

5. set 𝛼𝑘+1 = 𝛼𝑘 ⋅ max
1

4
, 1 − 2 2𝜌𝑘 − 1 3 and goto 1.
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and VisualizationIK Methods

 Descent with steepest descend direction is also called 
transposed Jacobian method in IK literature. It needs to 
be combined with a line search method. As no SVD is 
necessary, a single iteration is fast. The method is 
therefore often used in interactive IK approaches, e.g. in 
character pose editors.

 Descent with the Newton direction computed from the 
approximate Hessian is called Gauss-Newton method or 
non linear least squares in math and inverse Jacobian 
method in IK. The natural step width of 1 simplifies line 
search. One can simply check for decrease in energy and 
half the step width until an energy decrease is achieved.

 The taxi cab method corresponds to iteratively optimize 
only one joint parameter at the time. This is called cyclic 
coordinate descent method in IK and often implemented 
as the optimal step width can be computed analytically.
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Computer Graphics
and VisualizationIK Methods

 Levenberg-Marquardt and BFGS are better than inverse 
Jacobian and often used for IK. Furthermore, one can use 
the non linear conjugate gradient method discussed in 
CG1.

 Another strategy is to start with cyclic coordinate descent 
and continue with Levenberg-Marquardt or BFGS.
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CONSTRAINED IK
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Computer Graphics
and VisualizationParameter Constraints

 Most joints have constraints on their parameters which 
can be defined with a lower and upper bound:

𝑙𝑗 ≤ 𝑞𝑗 ≤ 𝑢𝑗
 such constraints are often called simple constraints and 

the optimization problem is called bound constrained.

 In all descent approaches – including the cyclic coordinate 
descent – these constraints can be easily incorporated by 
the gradient projection method:
 First one defines the projection operation Π on the parameter 

space 𝑃:

Π 𝒒, Ԧ𝒍, 𝒖
𝑗
= median 𝑙𝑗 , 𝑞𝑗 , 𝑢𝑗

 And uses this to project descent directions to the feasible region:
ഥ
𝒉 = Π 𝒒 + 𝒉, Ԧ𝒍, 𝒖 − 𝒒

 The rest of the algorithms stays the same

 Bound constrained versions exists for L-BFGS-B, (C++)
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Computer Graphics
and VisualizationGeneral Constraints

 Positional constraints like that a foot should stay on the 
floor are non linear in the parameters.

 Such general constraints can be written in the form of 
equalities or inequalities:

𝑐𝑙 𝒒 = 0 or ℎ𝑜 𝒒 ≥ 0

 approaches to incorporate equality constraints:
 Lagrangian multiplier method incorporates constraints into 

objective function and adds multipliers as additional parameters

 constraint forces can be derived from constraints and also be 
used to reinforce constraints in case of numerical deviations or 
initialization that violates constraints

 approaches to incorporate inequality constraints
 Linear complementary problems (LCP)
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MOTION CAPTURING
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Computer Graphics
and VisualizationStandard Motion Capturing

 Standard MoCap Approach
 add markers at joints

 illuminate markers from all 
directions

 acquire views from several 
synchronized cameras

 detect markers in each 
acquired view

 match markers between views

 reconstruct 3D positions

 track points over time

 per frame match points to 
skeleton and fit skeleton

 extension: use light emitters 
of different frequency as 
markers with id (no matching 
necessary)
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and VisualizationStyle-Based Inverse Kinematics

Keith Grochow, Steven L. Martin, Aaron Hertzmann, Zoran Popovic, 
Siggraph 2004

Idea

 use motion capture data to disambiguate IK

Overview

 capture different motion sequences

 map each pose to a feature space

 learn distribution of poses in reduced feature space

 solve IK problem by maximizing pose probability
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Example for

learned pose 

spaces of

jump shot (left) 

and baseball 

pitch (right) 

sequences

and their pose

probability 

distributions.

Red points are

training poses,

orange connec-

tions mark some 

training poses and

green connections

show extrapolated

poses

https://www.youtube.com/watch?v=X5Z7ZJ39zAA
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S. Gumhold – CGII SS18 – Inverse Kinematics 44

www.youtube.com/watch?v=X5Z7ZJ39zAA

http://www.youtube.com/watch?v=X5Z7ZJ39zAA


Computer Graphics
and VisualizationRGBD Motion Capturing

 uses depth camera with a 
machine learning approach

 learning
 2D parameterized template 

human mesh (vitruvian
manifold)

 generate a huge number of 
depth images from different 
poses of vitruvian manifold 
(render depth & texture 
coords.)

 learn local image features with 
decision tree to map each 
depth image pixel to texture 
coordinates

 recognition
 use decision tree to estimate 

per pixel texcoords

 fit pose to depth and texcoord
image
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© Ludwig Schmutzler

kinect skeleton
vitruvian manifold

Taylor, Shotton, Sharp, Fitzgibbon

CVPR 2012

http://research.microsoft.com/apps/pubs/default.aspx?id=162510
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and VisualizationInteractive Motion Mapping
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 Helge Rhodin, James Tompkin, Kwang In Kim, Kiran
Varanasi, Hans-Peter Seidel, Christian Theobalt, 
Eurographics 2014 (http)

Idea

 use Kinect skeleton tracking to steer character with 
different skeleton

Overview

 Given sparse pose mapping from source to target, 
learn pose mapping without rigging and skinning

 Allows interactive control of virtual character

http://gvv.mpi-inf.mpg.de/projects/DirectMotionMapping/


Computer Graphics
and VisualizationInteractive Motion Mapping
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SKELETON FITTING
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Computer Graphics
and VisualizationProblem Statement

 Input: set of 3D marker 
points tracked over time 
where markers can be 
occluded and re-appearing 
markers are not identified 
but receive a new label

 Output: skeleton topology, 
bone lengths, joint 
locations in rotation 
centers (markers are 
placed on surface)

Reference: Adam G. Kirk James F. O’Brien David A. Forsyth, 
Skeletal Parameter Estimation from Optical Motion Capture 
Data, CVPR 2015
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Computer Graphics
and VisualizationSolution approach

 filter erroneous marker 
information before 
vanishing and after their 
re-appearance

 build matrix of marker pair 
distances and measure 
pair distance variance 
over time

 segment markers into 
rigid components by 
spectral clustering

 build all segment pairs 
and fit joint locations to 
minimize variance of 
distance to both segment 
markers over time

 extract topology by 
minimum spanning tree

 match marker time slabs

 use IK to extract joint 
parameters 
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