CGII/framework/include/cgv/math/polynomial.h
2018-05-17 16:01:02 +02:00

341 lines
No EOL
5.9 KiB
C++
Raw Blame History

#pragma once
#include <iostream>
#include <cmath>
#include <cassert>
#include <cgv/math/vec.h>
#include <cgv/math/mat.h>
#include <cgv/math/functions.h>
#include <cgv/math/lin_solve.h>
namespace cgv {
namespace math {
/**
* polynomials are stored in vectors in the following order:
* [a,b,c,d] ...a*x^3 + b*x^2 + c*x + d
*/
/// evaluate a polynomial p at x
/// p is the vector of length n+1 whose elements are the coefficients
/// of the polynomial in descending powers.
/// evaluation is done by using the horner scheme
template <typename T>
T poly_val(const vec<T>& p, const T& x)
{
assert(p.size() > 0);
T y=p(0);
for(unsigned i = 1; i<p.size(); i++)
y= y*x +p(i);
return y;
}
/// evaluate a polynomial p at multiple positions x
/// p is the vector of length n+1 whose elements are the coefficients
/// of the polynomial in descending powers.
/// evaluation is done by using the horner scheme
template <typename T>
vec<T> poly_val(const vec<T>& p, const vec<T>& x)
{
assert(p.size() > 0);
vec<T> y(x.size());
y.fill(p(0));
for(unsigned i = 1; i<p.size(); i++)
y= x*y + p(i);
return y;
}
///1d convolution or polynomial multiplication
template <typename T>
vec<T> poly_mult(const vec<T>& u, const vec<T>& v)
{
unsigned s =u.size() + v.size()-1;
vec<double> w(s);
for(unsigned k = 1; k <= s; k++)
{
w(k-1) = 0;
int j = 0;
int jmin = (int)k+1-(int)v.size();
if(jmin < 1)
jmin = 1;
int jmax = (int)u.size();
if (jmax > (int)k)
jmax=k;
for(int j = jmin; j <=jmax; j++)
w(k-1)+=u(j-1)*v(k-j);
}
return w;
}
///polynomial division
///f(x)/g(x) = q(x) + r(x)/g(x)
///returns true if r(x)=0 (rest 0)
template <typename T>
bool poly_div(const vec<T>& f, const vec<T>& g, vec<T>& q, vec<T>& r)
{
if(g.size() > f.size())
{
q.resize(1);
q(0)=0;
r=f;
return false;
}
else
{
vec<T> p = f;
//std::cout << p << std::endl;
q.resize(f.size()-g.size()+1);
for(unsigned j = 0; g.size()+j <=p.size();j++)
{
q(j) = p(j)/g(0);
for(unsigned i = j; i < g.size()+j; i++)
{
p(i)= p(i)- q(j)*g(i-j);
}
//std::cout <<p<<std::endl;
}
unsigned s=g.size();
unsigned a=p.size()-g.size();
while(p(a) == 0 && s > 0)
{
a++;s--;
}
if(s == 0)
{
r.resize(1);
r(0)=0;
return true;
}
else
{
r=p.sub_vec(a,s);
return false;
}
}
}
//returns addition of polynomials u and v
template <typename T>
vec<T> poly_add(const vec<T>& u, const vec<T>& v)
{
unsigned n = u.size();
unsigned m = v.size();
vec<double> r;
if(n >= m)
{
r.resize(n);
unsigned i = 0;
unsigned d = n-m;
for(;i < d;i++)
r(i) = u(i);
for(;i < n;i++)
r(i) = u(i)+v(i-d);
}else
{
r.resize(m);
unsigned i = 0;
unsigned d = m-n;
for(;i < d;i++)
r(i) = v(i);
for(;i < m;i++)
r(i) = v(i)+u(i-d);
}
return r;
}
//returns subtraction of polynomials u and v
template <typename T>
vec<T> poly_sub(const vec<T>& u, const vec<T>& v)
{
unsigned n = u.size();
unsigned m = v.size();
vec<double> r;
if(n >= m)
{
r.resize(n);
unsigned i = 0;
unsigned d = n-m;
for(;i < d;i++)
r(i) = u(i);
for(;i < n;i++)
r(i) = u(i)-v(i-d);
}else
{
r.resize(m);
unsigned i = 0;
unsigned d = m-n;
for(;i < d;i++)
r(i) = -v(i);
for(;i < m;i++)
r(i) = u(i-d)-v(i);
}
return r;
}
//analytic derivation of polynomial p
template <typename T>
vec<T> poly_der(const vec<T>& p)
{
assert(p.size() > 0);
unsigned n = p.size();
if(n <= 1)
{
vec<T> q(1);
q(0) = 0;
return q;
}
else
{
unsigned m = n-1;
vec<T> q(m);
for(unsigned i = 0; i< m; i++)
q(i)= p(i)*(m-i);
return q;
}
}
//analytic integrate polynomial p using integration constant k
template <typename T>
vec<T> poly_int(const vec<T>& p, const T& k=0)
{
assert(p.size() > 0);
unsigned m = p.size()+1;
vec<T> q(m);
for(unsigned i = 0; i < m-1; i++)
q(i)= p(i)/(m-i-1);
q(m-1)=k;
return q;
}
///returns bernstein polynomial (bezier basis)
template <typename T>
vec<T> bernstein_polynomial(unsigned j, unsigned g)
{
using namespace cgv::math;
vec<T> p;
p.zeros(j+1);
p(0)=1.0;// p = t^j
for(unsigned i = 0; i < g-j; i++)
p = poly_mult(p, vec<T>(-1.0,1)); //p=p*(1-t)
return nchoosek(g,j)*p;
}
//returns lagrange basis polynomial
template <typename T>
vec<T> lagrange_basis_polynomial(unsigned i, const vec<T>& u)
{
using namespace cgv::math;
//polynomial p = 1
vec<T> p(1);
p(0)=1.0;
unsigned g = u.size()-1;
for(unsigned j = 0; j <= g; j++)
{
if(i == j) continue;
p = poly_mult(p, vec<T>(1.0,-u(j))) / (u(i)-u(j));
}
return p;
}
template <typename T>
vec<T> newton_basis_polynomial(unsigned i, const vec<T>& u)
{
using namespace cgv::math;
//polynomial p = 1
vec<T> p(1);
p(0)=1.0;
unsigned g = u.size()-1;
for(unsigned j = 0; j <= g; j++)
{
p = poly_mult(p, vec<T>(1.0,-u(j)));
}
return p;
}
//returns the vandermonde matrix which can be used for fitting
//polynomials (for large order polynomials use orthogonal basis instead)
//x = [ 1 2 3 4] -> V(i,j) x(i)^(n-j) V is n x n with n = x.size()
template <typename T>
mat<T> vander(const vec<T>& x)
{
return vander(x.size()-1,x);
}
//returns vandermonde matrix
template <typename T>
mat<T> vander(unsigned degree,const vec<T>& x)
{
assert(x.size() >= 1);
unsigned n = x.size();
cgv::math::mat<T> V(n,degree+1);
for(unsigned i = 0; i < n; i++)
{
V(i,degree) = (T)1;
for(int j = (int)degree-1; j>= 0; j--)
V(i,j)=V(i,j+1)*x(i);
}
return V;
}
//fit a polynomial of degree n into data such that E = sum_i ||p(X(i)) - Y(i)||<7C> is minimized
//uses vandermonde matrix and svd solver
//large degrees can be numerically instable keep n < 10
//otherwise use orthogonal basis for fitting
template <typename T>
vec<T> poly_fit(unsigned n,const vec<T>&X, const vec<T>&Y)
{
mat<T> V = cgv::math::vander(n,X);
mat<T> A;
vec<T> b,p;
AtA(V,A);
Atx(V,Y,b);
svd_solve(A,b,p);
return p;
}
}
}