CGII/framework/include/cgv/math/polar.h
2018-05-17 16:01:02 +02:00

71 lines
1.2 KiB
C++

#pragma once
#include <cgv/math/mat.h>
#include <cgv/math/inv.h>
#include <cgv/math/constants.h>
#include <limits>
#include <algorithm>
namespace cgv {
namespace math {
///polar decomposition of matrix c=r*a
///r orthonormal matrix
///a positive semi-definite matrix
template <typename T>
void polar(const mat<T> &c, mat<T> &r, mat<T> &a,int num_iter=15)
{
r = c;
for(int i =0; i < num_iter;i++)
r = ((T)0.5)*(r+transpose(inv(r)));
a = inv(r)*c;
/*
* Alternative way using svd:
* c = u*d*v^t
* r = u*v^t, a=v*d*v^t
*/
}
/// extract axis and angle from rotation matrix
///returns true if successful problematic cases are angle == 0° and angle == 180°
template <typename T>
bool decompose_rotation(const cgv::math::mat<T>& R,
cgv::math::vec<T>& axis,
T& angle)
{
assert(R.nrows() == 3 && R.ncols() == 3);
mat<T> A = (T)0.5*(R - transpose(R));
mat<T> S = (T)0.5*(R + transpose(R));
T abssina = (T)sqrt(0.5*(double)(A.frobenius_norm()*A.frobenius_norm()));
T cosa = 0.5*(trace(S)-1.0);
angle =(T)(asin(abssina)*180.0/PI);
if(cosa < 0)
angle = (T)180.0-angle;
if(angle == 0 || angle == 180.0)
return false;
axis = (T)1.0/abssina*cgv::math::vec<T>(A(2,1),A(0,2),A(1,0));
return true;
}
}
}