CGII/framework/include/cgv/math/diag_mat.h
2018-05-17 16:01:02 +02:00

464 lines
9.2 KiB
C++

#pragma once
#include "vec.h"
#include "mat.h"
#include "up_tri_mat.h"
namespace cgv{
namespace math{
/**
* A diagonal matrix type which internally stores the
* elements on the main diagonal in a vector.
**/
template <typename T>
struct diag_mat
{
public:
///pointer to data storage
vec<T> _data;
public:
typedef typename vec<T>::value_type value_type;
typedef typename vec<T>::reference reference;
typedef typename vec<T>::const_reference const_reference;
typedef typename vec<T>::pointer pointer;
typedef typename vec<T>::const_pointer const_pointer;
typedef typename vec<T>::iterator iterator;
typedef typename vec<T>::const_iterator const_iterator;
typedef typename vec<T>::reverse_iterator reverse_iterator;
typedef typename vec<T>::const_reverse_iterator const_reverse_iterator;
typedef iterator diag_iterator;
typedef const diag_iterator const_diag_iterator;
typedef std::reverse_iterator<diag_iterator> reverse_diag_iterator;
typedef std::reverse_iterator<const_diag_iterator> const_reverse_diag_iterator;
iterator begin(){return _data.begin();}
iterator end(){return _data.end();}
const_iterator begin() const{return _data.begin();}
const_iterator end() const{return _data.end();}
reverse_iterator rbegin(){return _data.rbegin();}
reverse_iterator rend(){return _data.rend();}
const_reverse_iterator rbegin() const{return _data.rbegin();}
const_reverse_iterator rend() const {return _data.rend();}
diag_iterator diag_begin(){return _data.begin();}
diag_iterator diag_end(){return _data.end();}
const_diag_iterator diag_begin() const{return _data.begin();}
const_diag_iterator diag_end() const{return _data.end();}
reverse_diag_iterator diag_rbegin(){return _data.rbegin();}
reverse_diag_iterator diag_rend(){return _data.rend();}
const_reverse_diag_iterator diag_rbegin() const{return _data.rbegin();}
const_reverse_diag_iterator diag_rend() const {return _data.rend();}
///size of storage
unsigned size() const
{
return _data.size();
}
///number of rows
unsigned nrows() const
{
return size();
}
///number of columns
unsigned ncols() const
{
return size();
}
///standard constructor
diag_mat()
{
}
///creates nxn diagonal matrix
explicit diag_mat(unsigned n):_data(n)
{
}
///creates nxn diagonal matrix and set all diagonal elements to c
diag_mat(unsigned n, const T& c)
{
resize(n);
fill(c);
}
//creates nxn diagonal matrix from array containing the diagonal elements
diag_mat(unsigned n, const T* marray):_data(n,marray)
{
}
///creates a diagonal matrix and set the diagonal vector to dv
diag_mat(const vec<T>& dv):_data(dv)
{
}
///creates a diagonal matrix and set the diagonal vector to diagonal entries of m
diag_mat(const mat<T>& m)
{
int n = std::min(m.ncols(),m.nrows());
resize(n);
for(int i =0; i < n; i++)
_data[i]=m(i,i);
}
///copy constructor
diag_mat(const diag_mat<T>& m)
{
_data=m._data;
}
///destructor
virtual ~diag_mat()
{
}
///cast into array of element type
operator T*()
{
return (T*)_data;
}
///cast into array of const element type
operator const T*() const
{
return (const T*)_data;
}
///create sub diagonal matrix d(top_left)...d(top_left+size)
diag_mat<T> sub_mat(unsigned top_left, unsigned size) const
{
diag_mat<T> D(size);
for (unsigned int i=0; i<size; ++i)
D(i) = (*this)(i+top_left);
return D;
}
///cast into const full storage matrix
operator const mat<T>() const
{
mat<T> m;
m.zeros(size(),size());
for(unsigned i =0; i < size();i++)
m(i,i)=operator()(i);
return m;
}
//resize the diagonal matrix to nxn
void resize(unsigned n)
{
_data.resize(n);
}
///set diagonal matrix to identity
void identity()
{
fill((T)1);
}
///fills all diagonal entries with c
void fill(const T& c)
{
for(unsigned i=0;i < size();i++)
{
_data[i]=c;
}
}
///fills all diagonal entries with zero
void zeros()
{
fill((T)0);
}
///exchange diagonal elements i and j
void exchange_diagonal_elements(unsigned i, unsigned j)
{
std::swap(_data[i],_data[j]);
}
///const access to the ith diagonal element
const T& operator() (unsigned i) const
{
return _data[i];
}
///non const access to the ith diagonal element
T& operator() (unsigned i)
{
return _data[i];
}
///returns true because diagonal matrices are always square
bool is_square()
{
return true;
}
//transpose (does nothing)
void transpose(){}
///assignment of a matrix with the same element type
diag_mat<T>& operator = (const diag_mat<T>& m)
{
_data =m._data;
return *this;
}
///assignment of a matrix with a different element type
template <typename S>
diag_mat<T>& operator = (const diag_mat<S>& m)
{
resize(m.size());
for(unsigned i = 0; i < size(); i++)
_data[i]=(T)m(i);
return *this;
}
///assignment of a vector with a vector
///to set the diagonal
template <typename S>
diag_mat<T>& operator = (const vec<S>& v)
{
_data=v;
return *this;
}
///assignment of a scalar s to each element of the matrix
diag_mat<T>& operator = (const T& s)
{
fill (s);
return *this;
}
///returns the frobenius norm of matrix m
T frobenius_norm() const
{
T n=0;
for(int i =0; i < size();i++)
n+=_data[i]*_data[i];
return (T)sqrt((double)n);
}
///set dim x dim identity matrix
void identity(unsigned dim)
{
resize(dim);
for(unsigned i = 0; i < size();++i)
_data[i]=1;
}
///set zero matrix
void zero()
{
fill(0);
}
///in place addition of diagonal matrix
diag_mat<T>& operator+=(const diag_mat<T>& d)
{
assert(d.nrows() == nrows());
_data += d._data;
return *this;
}
///in place subtraction of diagonal matrix
diag_mat<T>& operator-=(const diag_mat<T>& d)
{
assert(d.nrows() == nrows());
_data -= d._data;
return *this;
}
///in place multiplication with scalar s
diag_mat<T>& operator*=(const T& s)
{
_data *=s;
return *this;
}
///multiplication with scalar s
diag_mat<T> operator*(const T& s) const
{
diag_mat<T> r=*this;
r*=s;
return r;
}
///addition of diagonal matrix
diag_mat<T> operator+(const diag_mat<T>& d) const
{
diag_mat<T> r=*this;
r += d;
return r;
}
///subtraction of diagonal matrix
diag_mat<T> operator-(const diag_mat<T>& d) const
{
diag_mat<T>r = *this;
r-= d;
return r;
}
///multiplication with vector
vec<T> operator*(const vec<T>& v) const
{
assert(v.dim() == ncols());
vec<T> r(size());
for(unsigned i = 0; i < size();i++)
r(i) = _data[i]*v(i);
return r;
}
///matrix multiplication of matrix m by a diagonal matrix s
const up_tri_mat<T> operator*( const up_tri_mat<T>& m)
{
assert(m.nrows() == size());
up_tri_mat<T> r(size());
for(unsigned i = 0; i < size(); i++)
for(unsigned j = 0; j < m.ncols();j++)
r(i,j) = operator()(i)*m(i,j);
return r;
}
///cast into full matrix type
operator mat<T>()
{
mat<T> m(size(),size(),(T)0);
for(unsigned i = 0; i < size();i++)
{
m(i,i)=_data[i];
}
return m;
}
};
//matrix multiplication of matrix m by a diagonal matrix s
template <typename T, typename S>
const mat<T> operator*(const mat<T>& m,const diag_mat<S>& s)
{
assert(m.ncols() == s.size());
mat<T> r(m.nrows(),s.size());
for(unsigned i = 0; i < m.nrows(); i++)
for(unsigned j = 0; j < s.size();j++)
r(i,j) = s(j)*m(i,j);
return r;
}
///multiplication of scalar s and diagonal matrix m
template <typename T>
const diag_mat<T> operator*(const T& s, const diag_mat<T>& m)
{
return m*s;
}
///matrix multiplication of diagonal matrix s and m
template <typename T, typename S>
const diag_mat<T> operator*(const diag_mat<S>& s, const diag_mat<T>& m)
{
assert(m.size() == s.size());
diag_mat<T> r(s.size());
for(unsigned i = 0; i < s.size(); i++)
r(i) = s(i)*m(i);
return r;
}
///multiplies a permutation matrix from left to apply a rows permutation
template<typename T>
mat<T> operator*(const perm_mat& p, const diag_mat<T>& m)
{
mat<T> r=m;
return p*r;
}
///multiplies a permutation matrix from right to apply a rows permutation
template<typename T>
mat<T> operator*(const diag_mat<T>& m,const perm_mat& p)
{
mat<T> r=m;
return r*p;
}
///matrix multiplication of matrix m by a diagonal matrix s
template <typename T>
const mat<T> operator*(const diag_mat<T>& s, const mat<T>& m)
{
assert(m.nrows() == s.size());
mat<T> r(s.size(),m.ncols());
for(unsigned i = 0; i < s.size(); i++)
for(unsigned j = 0; j < m.ncols();j++)
r(i,j) = s(i)*m(i,j);
return r;
}
///matrix multiplication of upper triangular matrix m by a diagonal matrix s
template <typename T>
const up_tri_mat<T> operator*(const up_tri_mat<T>& m,const diag_mat<T>& s)
{
assert(m.ncols() == s.size());
up_tri_mat<T> r(s.size());
for(unsigned i = 0; i < m.nrows(); i++)
for(unsigned j = i; j < s.size();j++)
r(i,j) = s(j)*m(i,j);
return r;
}
///output of a diagonal matrix onto an ostream
template <typename T>
std::ostream& operator<<(std::ostream& out, const diag_mat<T>& m)
{
for (int i=0;i<(int)m.size();++i)
out << m(i)<<" ";
return out;
}
///input of a diagonal matrix from an istream
template <typename T>
std::istream& operator>>(std::istream& in, diag_mat<T>& m)
{
assert(m.size() > 0);
for (int i=0;i<(int)m.size();++i)
in >> m(i);
return in;
}
}
}