/* Based on the stomp_tremolo.pde from openmusiclabs.com this program does a tremolo effect. it uses a sinewave stored in program memory to modulate the signal. the rate at which it goes through the sinewave is set by the push buttons, which is min/maxed by the speed value. */ //defining harware resources. #define LED 13 #define FOOTSWITCH 12 #define TOGGLE 2 #define PUSHBUTTON_1 A5 #define PUSHBUTTON_2 A4 //defining the output PWM parameters #define PWM_FREQ 0x00FF // pwm frequency - 31.3KHz #define PWM_MODE 0 // Fast (1) or Phase Correct (0) #define PWM_QTY 2 // 2 PWMs in parallel const char * const sinewave[] PROGMEM = { // this file is stored in StompShield and is a 1024 value // sinewave lookup table of signed 16bit integers // you can replace it with your own waveform if you like #include "mult16x16.h" #include "sinetable.inc" }; unsigned int location = 0; // incoming data buffer pointer unsigned int fractional = 0x00; // fractional sample position int data_buffer; // temporary data storage to give a 1 sample buffer int input, speed=20; int counter=0; void setup() { //setup IO pinMode(FOOTSWITCH, INPUT_PULLUP); pinMode(TOGGLE, INPUT_PULLUP); pinMode(PUSHBUTTON_1, INPUT_PULLUP); pinMode(PUSHBUTTON_2, INPUT_PULLUP); pinMode(LED, OUTPUT); // setup ADC ADMUX = 0x60; // left adjust, adc0, internal vcc ADCSRA = 0xe5; // turn on adc, ck/32, auto trigger ADCSRB = 0x07; // t1 capture for trigger DIDR0 = 0x01; // turn off digital inputs for adc0 // setup PWM TCCR1A = (((PWM_QTY - 1) << 5) | 0x80 | (PWM_MODE << 1)); // TCCR1B = ((PWM_MODE << 3) | 0x11); // ck/1 TIMSK1 = 0x20; // interrupt on capture interrupt ICR1H = (PWM_FREQ >> 8); ICR1L = (PWM_FREQ & 0xff); DDRB |= ((PWM_QTY << 1) | 0x02); // turn on outputs sei(); // turn on interrupts - not really necessary with arduino } void loop() { //Turn on the LED if the effect is ON. if (digitalRead(FOOTSWITCH)) digitalWrite(LED, HIGH); else digitalWrite(LED, LOW); //nothing else here, all happens in the Timer 1 interruption. } ISR(TIMER1_CAPT_vect) { // all processing happens here // output the last value calculated OCR1AL = ((data_buffer + 0x8000) >> 8); // convert to unsigned, send out high byte OCR1BL = data_buffer; // send out low byte // get ADC data byte temp1 = ADCL; // you need to fetch the low byte first byte temp2 = ADCH; // yes it needs to be done this way int input = ((temp2 << 8) | temp1) + 0x8000; // make a signed 16b value //BUTTONS counter++; //to save resources, the pushbuttons are checked every 1000 times. if(counter==1000) { counter=0; if (!digitalRead(PUSHBUTTON_2)) { if (speed<1024)speed=speed+1; //increase speed digitalWrite(LED, LOW); //blinks the led } if (!digitalRead(PUSHBUTTON_1)) { if (speed>0)speed=speed-1; //decrease speed digitalWrite(LED, LOW); //blinks the led } } fractional += speed; // increment sinewave lookup counter if (fractional >= 0x0100) { // if its large enough to go to next sample fractional &= 0x00ff; // round off location += 1; // go to next location location &= 0x03ff; // fast boundary wrap for 2^n boundaries } // fetch current sinewave value int amplitude = pgm_read_word_near(sinewave + location); amplitude += 0x8000; // convert to unsigned int output; MultiSU16X16toH16(output, input, amplitude); // save value for playback next interrupt data_buffer = output; }