Arduino-Pedal-Effects/c/New Effects PedalSHIELD UNO/Fuzzy_Octave_Down/Fuzzy_Octave_Down.ino
2022-07-18 18:23:07 +02:00

158 lines
3.9 KiB
C++

/*
Octavedown for pedal shield adapted from Stompshield
Based on https://github.com/spamatica/arduino_stomp_shield_effects
*/
//defining harware resources.
#define LED 13
#define FOOTSWITCH 12
#define TOGGLE 2
#define PUSHBUTTON_1 A5
#define PUSHBUTTON_2 A4
//defining the output PWM parameters
#define PWM_FREQ 0x00FF // pwm frequency - 31.3KHz
#define PWM_MODE 0 // Fast (1) or Phase Correct (0)
#define PWM_QTY 2 // 2 PWMs in parallel
//#define B_MAX 100 // max value for rotary encoder input (min freq)
//#define B_MIN 1 // min value for rotary encoder input (max freq)
#define MIN_OUT -16383
#define MAX_OUT 16383
#define UP 0
#define DOWN 1
#define NO 0
#define YES 10
//byte button; // button checking timer
//byte last_state; // last rotary encoder state
byte counter = 10; // and start value
byte looper=0;
int oldInput;
int inMaxVal = 0;
int currDirection = UP;
int passedFirst = NO;
int l1=0;
int l2=0;
int input=0; // new input value
int output=0; // calculated current output
int oldOutput=0; // last output value
int filtered=0; // current filtered value;
int oldFiltered=0; // previousFiltered;
int average;
int outGate = 0;
int counter2=0;
void setup() {
//setup IO
pinMode(FOOTSWITCH, INPUT_PULLUP);
pinMode(TOGGLE, INPUT_PULLUP);
pinMode(PUSHBUTTON_1, INPUT_PULLUP);
pinMode(PUSHBUTTON_2, INPUT_PULLUP);
pinMode(LED, OUTPUT);
// setup ADC
ADMUX = 0x60; // left adjust, adc0, internal vcc
ADCSRA = 0xe5; // turn on adc, ck/32, auto trigger
ADCSRB = 0x07; // t1 capture for trigger
DIDR0 = 0x01; // turn off digital inputs for adc0
// setup PWM
TCCR1A = (((PWM_QTY - 1) << 5) | 0x80 | (PWM_MODE << 1)); //
TCCR1B = ((PWM_MODE << 3) | 0x11); // ck/1
TIMSK1 = 0x20; // interrupt on capture interrupt
ICR1H = (PWM_FREQ >> 8);
ICR1L = (PWM_FREQ & 0xff);
DDRB |= ((PWM_QTY << 1) | 0x02); // turn on outputs
sei(); // turn on interrupts - not really necessary with arduino
}
void loop() {
delay(200);
}
//sounds better if left untouched
/*void checkButton()
{
//BUTTONS
counter2++; //the pushbuttons are checked every 5000 times.
if(counter2==5000)
counter2=0;
if (!digitalRead(PUSHBUTTON_1)) {
if (counter > MIN_OUT) counter=counter-1; // if not at min, decrement
}
if (!digitalRead(PUSHBUTTON_2)) {
if (counter < MAX_OUT) counter=counter+1; // if not at max, increment
}
}
*/
void highPassFilter() // frequency unknown ;)
{
int filterTemp = oldFiltered + output - oldOutput;
filtered = output - (filterTemp/(2));
// filteredArray[i] = alpha * (filteredArray[i-1] + data.recordedSamples[i] - data.recordedSamples[i-1]);
}
ISR(TIMER1_CAPT_vect)
{
// get ADC data
byte temp1 = ADCL; // you need to fetch the low byte first
byte temp2 = ADCH; // yes it needs to be done this way
input = ((temp2 << 8) | temp1) + 0x8000; // make a signed 16b value
// checkButton();
if (input > inMaxVal)
inMaxVal+=10;
if (looper++ % 10 && input > 0 && input < inMaxVal)
inMaxVal-=10;
if (input < 0) // going \ past zero crossing
if (oldInput >= 0)
currDirection = currDirection ^ 1;
// produce output data based on currDirection
if (currDirection)
output+=(counter<<5);
else
output-=(counter<<5);
//calculate gate according to current input
// if (outGate > maxVal) outGate = outGate -10;
// if (outGate < minVal) outGate = outGate +10;
if (inMaxVal < 1200) {
outGate-=50;
if (outGate < 0) outGate=0;
}
else
outGate = MAX_OUT;
// limit outvalue according to current gate
if (output < -outGate) output=-outGate;
if (output > outGate) output=outGate;
highPassFilter();
//filtered=output;
// save data
oldInput = input;
oldOutput = output;
oldFiltered = filtered;
// output data
OCR1AL = ((filtered >> 8) + 0x80);
OCR1BL = filtered; // output the bottom byte
}