cgmath/src/point.rs

693 lines
19 KiB
Rust
Raw Normal View History

2014-05-26 17:10:04 +00:00
// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
2015-03-14 02:49:46 +00:00
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Points are fixed positions in affine space with no length or direction. This
//! disinguishes them from vectors, which have a length and direction, but do
//! not have a fixed position.
2013-10-19 14:00:44 +00:00
use std::fmt;
use std::mem;
2015-01-03 21:29:26 +00:00
use std::ops::*;
use rust_num::{One, Zero};
2015-04-05 01:19:11 +00:00
use approx::ApproxEq;
use array::Array1;
use matrix::Matrix;
2015-04-05 01:19:11 +00:00
use num::{BaseNum, BaseFloat};
use vector::*;
2013-09-03 06:37:06 +00:00
/// A point in 2-dimensional space.
2015-02-21 19:50:00 +00:00
#[derive(PartialEq, Eq, Copy, Clone, Hash, RustcEncodable, RustcDecodable)]
2014-04-01 11:00:17 +00:00
pub struct Point2<S> { pub x: S, pub y: S }
2013-11-07 02:08:37 +00:00
/// A point in 3-dimensional space.
2015-02-21 19:50:00 +00:00
#[derive(PartialEq, Eq, Copy, Clone, Hash, RustcEncodable, RustcDecodable)]
2014-04-01 11:00:17 +00:00
pub struct Point3<S> { pub x: S, pub y: S, pub z: S }
2014-05-26 17:10:04 +00:00
impl<S: BaseNum> Point2<S> {
#[inline]
pub fn new(x: S, y: S) -> Point2<S> {
Point2 { x: x, y: y }
}
}
2014-05-26 17:10:04 +00:00
impl<S: BaseNum> Point3<S> {
#[inline]
pub fn new(x: S, y: S, z: S) -> Point3<S> {
Point3 { x: x, y: y, z: z }
}
}
2014-05-26 17:10:04 +00:00
impl<S: BaseNum> Point3<S> {
#[inline]
pub fn from_homogeneous(v: &Vector4<S>) -> Point3<S> {
let e = v.truncate().mul_s(S::one() / v.w);
Point3::new(e.x, e.y, e.z) //FIXME
}
2013-11-02 13:11:13 +00:00
#[inline]
pub fn to_homogeneous(&self) -> Vector4<S> {
Vector4::new(self.x, self.y, self.z, S::one())
}
}
2013-09-03 06:37:06 +00:00
/// Specifies the numeric operations for point types.
pub trait Point<S: BaseNum>: Array1<S> + Clone // where
// FIXME: blocked by rust-lang/rust#20671
//
// for<'a, 'b> &'a Self: Add<&'b V, Output = Self>,
// for<'a, 'b> &'a Self: Sub<&'b Self, Output = V>,
//
// for<'a> &'a Self: Mul<S, Output = Self>,
// for<'a> &'a Self: Div<S, Output = Self>,
// for<'a> &'a Self: Rem<S, Output = Self>,
{
/// The associated displacement vector.
type Vector: Vector<S>;
2014-05-25 10:09:33 +00:00
/// Create a point at the origin.
fn origin() -> Self;
2014-05-25 10:09:33 +00:00
/// Create a point from a vector.
fn from_vec(v: &Self::Vector) -> Self;
2014-05-25 10:09:33 +00:00
/// Convert a point to a vector.
fn to_vec(&self) -> Self::Vector;
2013-11-02 13:11:13 +00:00
2014-05-25 10:09:33 +00:00
/// Multiply each component by a scalar, returning the new point.
#[must_use]
fn mul_s(&self, s: S) -> Self;
2014-05-25 10:09:33 +00:00
/// Divide each component by a scalar, returning the new point.
#[must_use]
fn div_s(&self, s: S) -> Self;
2014-05-25 10:09:33 +00:00
/// Subtract a scalar from each component, returning the new point.
#[must_use]
fn rem_s(&self, s: S) -> Self;
2014-05-25 10:09:33 +00:00
/// Add a vector to this point, returning the new point.
#[must_use]
fn add_v(&self, v: &Self::Vector) -> Self;
2014-05-25 10:09:33 +00:00
/// Subtract another point from this one, returning a new vector.
fn sub_p(&self, p: &Self) -> Self::Vector;
2014-05-25 10:09:33 +00:00
/// Multiply each component by a scalar, in-place.
fn mul_self_s(&mut self, s: S);
2014-05-25 10:09:33 +00:00
/// Divide each component by a scalar, in-place.
fn div_self_s(&mut self, s: S);
2014-05-25 10:09:33 +00:00
/// Take the remainder of each component by a scalar, in-place.
fn rem_self_s(&mut self, s: S);
2013-08-28 00:19:47 +00:00
2014-05-25 10:09:33 +00:00
/// Add a vector to this point, in-place.
fn add_self_v(&mut self, v: &Self::Vector);
2014-05-25 10:09:33 +00:00
/// This is a weird one, but its useful for plane calculations.
fn dot(&self, v: &Self::Vector) -> S;
#[must_use]
fn min(&self, p: &Self) -> Self;
#[must_use]
fn max(&self, p: &Self) -> Self;
}
impl<S: BaseNum> Array1<S> for Point2<S> {}
impl<S: BaseNum> Point<S> for Point2<S> {
type Vector = Vector2<S>;
#[inline]
fn origin() -> Point2<S> {
Point2::new(S::zero(), S::zero())
}
#[inline]
fn from_vec(v: &Vector2<S>) -> Point2<S> {
Point2::new(v.x, v.y)
}
#[inline]
fn to_vec(&self) -> Vector2<S> {
2015-09-30 08:09:40 +00:00
Vector2::new(self.x, self.y)
}
#[inline] fn mul_s(&self, s: S) -> Point2<S> { self * s }
#[inline] fn div_s(&self, s: S) -> Point2<S> { self / s }
#[inline] fn rem_s(&self, s: S) -> Point2<S> { self % s }
#[inline] fn add_v(&self, v: &Vector2<S>) -> Point2<S> { self + v }
#[inline] fn sub_p(&self, p: &Point2<S>) -> Vector2<S> { self - p }
#[inline]
fn mul_self_s(&mut self, s: S) {
self.x = self.x * s;
self.y = self.y * s;
}
#[inline]
fn div_self_s(&mut self, s: S) {
self.x = self.x / s;
self.y = self.y / s;
}
#[inline]
fn rem_self_s(&mut self, s: S) {
self.x = self.x % s;
self.y = self.y % s;
}
#[inline]
fn add_self_v(&mut self, v: &Vector2<S>) {
self.x = self.x + v.x;
self.y = self.y + v.y;
}
#[inline]
fn dot(&self, v: &Vector2<S>) -> S {
self.x * v.x +
self.y * v.y
}
#[inline]
fn min(&self, p: &Point2<S>) -> Point2<S> {
2015-09-30 08:09:40 +00:00
Point2::new(self.x.partial_min(p.x), self.y.partial_min(p.y))
}
#[inline]
fn max(&self, p: &Point2<S>) -> Point2<S> {
2015-09-30 08:09:40 +00:00
Point2::new(self.x.partial_max(p.x), self.y.partial_max(p.y))
}
}
impl<S: BaseFloat> ApproxEq for Point2<S> {
type Epsilon = S;
#[inline]
fn approx_eq_eps(&self, other: &Point2<S>, epsilon: &S) -> bool {
self.x.approx_eq_eps(&other.x, epsilon) &&
self.y.approx_eq_eps(&other.y, epsilon)
}
}
impl<S: BaseNum> Array1<S> for Point3<S> {}
impl<S: BaseNum> Point<S> for Point3<S> {
type Vector = Vector3<S>;
#[inline]
fn origin() -> Point3<S> {
Point3::new(S::zero(), S::zero(), S::zero())
}
#[inline]
fn from_vec(v: &Vector3<S>) -> Point3<S> {
Point3::new(v.x, v.y, v.z)
}
#[inline]
fn to_vec(&self) -> Vector3<S> {
2015-09-30 08:09:40 +00:00
Vector3::new(self.x, self.y, self.z)
}
#[inline] fn mul_s(&self, s: S) -> Point3<S> { self * s }
#[inline] fn div_s(&self, s: S) -> Point3<S> { self / s }
#[inline] fn rem_s(&self, s: S) -> Point3<S> { self % s }
#[inline] fn add_v(&self, v: &Vector3<S>) -> Point3<S> { self + v }
#[inline] fn sub_p(&self, p: &Point3<S>) -> Vector3<S> { self - p }
#[inline]
fn mul_self_s(&mut self, s: S) {
self.x = self.x * s;
self.y = self.y * s;
self.z = self.z * s;
}
#[inline]
fn div_self_s(&mut self, s: S) {
self.x = self.x / s;
self.y = self.y / s;
self.z = self.z / s;
}
#[inline]
fn rem_self_s(&mut self, s: S) {
self.x = self.x % s;
self.y = self.y % s;
self.z = self.z % s;
}
#[inline]
fn add_self_v(&mut self, v: &Vector3<S>) {
self.x = self.x + v.x;
self.y = self.y + v.y;
self.z = self.z + v.z;
}
#[inline]
fn dot(&self, v: &Vector3<S>) -> S {
self.x * v.x +
self.y * v.y +
self.z * v.z
}
#[inline]
fn min(&self, p: &Point3<S>) -> Point3<S> {
2015-09-30 08:09:40 +00:00
Point3::new(self.x.partial_min(p.x), self.y.partial_min(p.y), self.z.partial_min(p.z))
}
2013-08-28 00:19:47 +00:00
#[inline]
fn max(&self, p: &Point3<S>) -> Point3<S> {
2015-09-30 08:09:40 +00:00
Point3::new(self.x.partial_max(p.x), self.y.partial_max(p.y), self.z.partial_max(p.z))
}
}
impl<S: BaseFloat> ApproxEq for Point3<S> {
type Epsilon = S;
#[inline]
fn approx_eq_eps(&self, other: &Point3<S>, epsilon: &S) -> bool {
self.x.approx_eq_eps(&other.x, epsilon) &&
self.y.approx_eq_eps(&other.y, epsilon) &&
self.z.approx_eq_eps(&other.z, epsilon)
}
}
macro_rules! impl_operators {
($PointN:ident { $($field:ident),+ }, $VectorN:ident) => {
impl<'a, S: BaseNum> Mul<S> for &'a $PointN<S> {
type Output = $PointN<S>;
#[inline]
fn mul(self, s: S) -> $PointN<S> {
$PointN::new($(self.$field * s),+)
}
}
impl<'a, S: BaseNum> Div<S> for &'a $PointN<S> {
type Output = $PointN<S>;
#[inline]
fn div(self, s: S) -> $PointN<S> {
$PointN::new($(self.$field / s),+)
}
}
impl<'a, S: BaseNum> Rem<S> for &'a $PointN<S> {
type Output = $PointN<S>;
#[inline]
fn rem(self, s: S) -> $PointN<S> {
$PointN::new($(self.$field % s),+)
}
}
impl<'a, 'b, S: BaseNum> Add<&'a $VectorN<S>> for &'b $PointN<S> {
type Output = $PointN<S>;
#[inline]
fn add(self, v: &'a $VectorN<S>) -> $PointN<S> {
$PointN::new($(self.$field + v.$field),+)
}
}
impl<'a, 'b, S: BaseNum> Sub<&'a $PointN<S>> for &'b $PointN<S> {
type Output = $VectorN<S>;
#[inline]
fn sub(self, p: &'a $PointN<S>) -> $VectorN<S> {
$VectorN::new($(self.$field - p.$field),+)
}
}
}
}
impl_operators!(Point2 { x, y }, Vector2);
impl_operators!(Point3 { x, y, z }, Vector3);
macro_rules! fixed_array_conversions {
($PointN:ident <$S:ident> { $($field:ident : $index:expr),+ }, $n:expr) => {
impl<$S> Into<[$S; $n]> for $PointN<$S> {
#[inline]
fn into(self) -> [$S; $n] {
match self { $PointN { $($field),+ } => [$($field),+] }
}
}
impl<$S> AsRef<[$S; $n]> for $PointN<$S> {
#[inline]
fn as_ref(&self) -> &[$S; $n] {
unsafe { mem::transmute(self) }
}
}
impl<$S> AsMut<[$S; $n]> for $PointN<$S> {
#[inline]
fn as_mut(&mut self) -> &mut [$S; $n] {
unsafe { mem::transmute(self) }
}
}
impl<$S: Clone> From<[$S; $n]> for $PointN<$S> {
#[inline]
fn from(v: [$S; $n]) -> $PointN<$S> {
// We need to use a clone here because we can't pattern match on arrays yet
$PointN { $($field: v[$index].clone()),+ }
}
}
impl<'a, $S> From<&'a [$S; $n]> for &'a $PointN<$S> {
#[inline]
fn from(v: &'a [$S; $n]) -> &'a $PointN<$S> {
unsafe { mem::transmute(v) }
}
}
impl<'a, $S> From<&'a mut [$S; $n]> for &'a mut $PointN<$S> {
#[inline]
fn from(v: &'a mut [$S; $n]) -> &'a mut $PointN<$S> {
unsafe { mem::transmute(v) }
}
}
}
}
fixed_array_conversions!(Point2<S> { x:0, y:1 }, 2);
fixed_array_conversions!(Point3<S> { x:0, y:1, z:2 }, 3);
macro_rules! tuple_conversions {
($PointN:ident <$S:ident> { $($field:ident),+ }, $Tuple:ty) => {
impl<$S> Into<$Tuple> for $PointN<$S> {
#[inline]
fn into(self) -> $Tuple {
match self { $PointN { $($field),+ } => ($($field),+) }
}
}
impl<$S> AsRef<$Tuple> for $PointN<$S> {
#[inline]
fn as_ref(&self) -> &$Tuple {
unsafe { mem::transmute(self) }
}
}
impl<$S> AsMut<$Tuple> for $PointN<$S> {
#[inline]
fn as_mut(&mut self) -> &mut $Tuple {
unsafe { mem::transmute(self) }
}
}
impl<$S> From<$Tuple> for $PointN<$S> {
#[inline]
fn from(v: $Tuple) -> $PointN<$S> {
// We need to use a clone here because we can't pattern match on arrays yet
match v { ($($field),+) => $PointN { $($field: $field),+ } }
}
}
impl<'a, $S> From<&'a $Tuple> for &'a $PointN<$S> {
#[inline]
fn from(v: &'a $Tuple) -> &'a $PointN<$S> {
unsafe { mem::transmute(v) }
}
}
impl<'a, $S> From<&'a mut $Tuple> for &'a mut $PointN<$S> {
#[inline]
fn from(v: &'a mut $Tuple) -> &'a mut $PointN<$S> {
unsafe { mem::transmute(v) }
}
}
}
}
tuple_conversions!(Point2<S> { x, y }, (S, S));
tuple_conversions!(Point3<S> { x, y, z }, (S, S, S));
macro_rules! index_operators {
2015-09-20 21:56:03 +00:00
($PointN:ident<$S:ident>, $n:expr, $Output:ty, $I:ty) => {
impl<$S> Index<$I> for $PointN<$S> {
type Output = $Output;
#[inline]
2015-09-20 21:56:03 +00:00
fn index<'a>(&'a self, i: $I) -> &'a $Output {
let v: &[$S; $n] = self.as_ref(); &v[i]
}
}
2015-09-20 21:56:03 +00:00
impl<$S> IndexMut<$I> for $PointN<$S> {
#[inline]
2015-09-20 21:56:03 +00:00
fn index_mut<'a>(&'a mut self, i: $I) -> &'a mut $Output {
let v: &mut [$S; $n] = self.as_mut(); &mut v[i]
}
}
}
}
2015-09-20 21:56:03 +00:00
index_operators!(Point2<S>, 2, S, usize);
index_operators!(Point3<S>, 3, S, usize);
index_operators!(Point2<S>, 2, [S], Range<usize>);
index_operators!(Point3<S>, 3, [S], Range<usize>);
index_operators!(Point2<S>, 2, [S], RangeTo<usize>);
index_operators!(Point3<S>, 3, [S], RangeTo<usize>);
index_operators!(Point2<S>, 2, [S], RangeFrom<usize>);
index_operators!(Point3<S>, 3, [S], RangeFrom<usize>);
index_operators!(Point2<S>, 2, [S], RangeFull);
index_operators!(Point3<S>, 3, [S], RangeFull);
2015-02-08 18:19:32 +00:00
impl<S: BaseNum> fmt::Debug for Point2<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2015-01-09 22:06:45 +00:00
write!(f, "[{:?}, {:?}]", self.x, self.y)
}
}
2015-02-08 18:19:32 +00:00
impl<S: BaseNum> fmt::Debug for Point3<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2015-01-09 22:06:45 +00:00
write!(f, "[{:?}, {:?}, {:?}]", self.x, self.y, self.z)
}
}
2015-09-27 03:01:14 +00:00
#[cfg(test)]
mod tests {
mod point2 {
use point::*;
const POINT2: Point2<i32> = Point2 { x: 1, y: 2 };
#[test]
fn test_index() {
assert_eq!(POINT2[0], POINT2.x);
assert_eq!(POINT2[1], POINT2.y);
}
#[test]
fn test_index_mut() {
let mut p = POINT2;
*&mut p[0] = 0;
assert_eq!(p, [0, 2].into());
}
#[test]
#[should_panic]
fn test_index_out_of_bounds() {
POINT2[2];
}
#[test]
fn test_index_range() {
assert_eq!(&POINT2[..0], &[]);
assert_eq!(&POINT2[..1], &[1]);
assert_eq!(POINT2[..0].len(), 0);
assert_eq!(POINT2[..1].len(), 1);
assert_eq!(&POINT2[2..], &[]);
assert_eq!(&POINT2[1..], &[2]);
assert_eq!(POINT2[2..].len(), 0);
assert_eq!(POINT2[1..].len(), 1);
assert_eq!(&POINT2[..], &[1, 2]);
assert_eq!(POINT2[..].len(), 2);
}
#[test]
fn test_into() {
let p = POINT2;
{
let p: [i32; 2] = p.into();
assert_eq!(p, [1, 2]);
}
{
let p: (i32, i32) = p.into();
assert_eq!(p, (1, 2));
}
}
#[test]
fn test_as_ref() {
let p = POINT2;
{
let p: &[i32; 2] = p.as_ref();
assert_eq!(p, &[1, 2]);
}
{
let p: &(i32, i32) = p.as_ref();
assert_eq!(p, &(1, 2));
}
}
#[test]
fn test_as_mut() {
let mut p = POINT2;
{
let p: &mut [i32; 2] = p.as_mut();
assert_eq!(p, &mut [1, 2]);
}
{
let p: &mut (i32, i32) = p.as_mut();
assert_eq!(p, &mut (1, 2));
}
}
#[test]
fn test_from() {
assert_eq!(Point2::from([1, 2]), POINT2);
{
let p = &[1, 2];
let p: &Point2<_> = From::from(p);
assert_eq!(p, &POINT2);
}
{
let p = &mut [1, 2];
let p: &mut Point2<_> = From::from(p);
assert_eq!(p, &POINT2);
}
assert_eq!(Point2::from((1, 2)), POINT2);
{
let p = &(1, 2);
let p: &Point2<_> = From::from(p);
assert_eq!(p, &POINT2);
}
{
let p = &mut (1, 2);
let p: &mut Point2<_> = From::from(p);
assert_eq!(p, &POINT2);
}
}
2015-09-27 03:01:14 +00:00
}
mod point3 {
use point::*;
const POINT3: Point3<i32> = Point3 { x: 1, y: 2, z: 3 };
#[test]
fn test_index() {
assert_eq!(POINT3[0], POINT3.x);
assert_eq!(POINT3[1], POINT3.y);
assert_eq!(POINT3[2], POINT3.z);
}
#[test]
fn test_index_mut() {
let mut p = POINT3;
*&mut p[1] = 0;
assert_eq!(p, [1, 0, 3].into());
}
#[test]
#[should_panic]
fn test_index_out_of_bounds() {
POINT3[3];
}
#[test]
fn test_index_range() {
assert_eq!(&POINT3[..1], &[1]);
assert_eq!(&POINT3[..2], &[1, 2]);
assert_eq!(POINT3[..1].len(), 1);
assert_eq!(POINT3[..2].len(), 2);
assert_eq!(&POINT3[2..], &[3]);
assert_eq!(&POINT3[1..], &[2, 3]);
assert_eq!(POINT3[2..].len(), 1);
assert_eq!(POINT3[1..].len(), 2);
assert_eq!(&POINT3[..], &[1, 2, 3]);
assert_eq!(POINT3[..].len(), 3);
}
#[test]
fn test_into() {
let p = POINT3;
{
let p: [i32; 3] = p.into();
assert_eq!(p, [1, 2, 3]);
}
{
let p: (i32, i32, i32) = p.into();
assert_eq!(p, (1, 2, 3));
}
}
#[test]
fn test_as_ref() {
let p = POINT3;
{
let p: &[i32; 3] = p.as_ref();
assert_eq!(p, &[1, 2, 3]);
}
{
let p: &(i32, i32, i32) = p.as_ref();
assert_eq!(p, &(1, 2, 3));
}
}
#[test]
fn test_as_mut() {
let mut p = POINT3;
{
let p: &mut [i32; 3] = p.as_mut();
assert_eq!(p, &mut [1, 2, 3]);
}
{
let p: &mut (i32, i32, i32) = p.as_mut();
assert_eq!(p, &mut (1, 2, 3));
}
}
#[test]
fn test_from() {
assert_eq!(Point3::from([1, 2, 3]), POINT3);
{
let p = &[1, 2, 3];
let p: &Point3<_> = From::from(p);
assert_eq!(p, &POINT3);
}
{
let p = &mut [1, 2, 3];
let p: &mut Point3<_> = From::from(p);
assert_eq!(p, &POINT3);
}
assert_eq!(Point3::from((1, 2, 3)), POINT3);
{
let p = &(1, 2, 3);
let p: &Point3<_> = From::from(p);
assert_eq!(p, &POINT3);
}
{
let p = &mut (1, 2, 3);
let p: &mut Point3<_> = From::from(p);
assert_eq!(p, &POINT3);
}
}
2015-09-27 03:01:14 +00:00
}
}