cgmath/src/angle.rs

256 lines
10 KiB
Rust
Raw Normal View History

2014-05-26 17:10:04 +00:00
// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors,
2013-09-04 02:20:53 +00:00
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Angle units for type-safe, self-documenting code.
2013-10-19 14:00:44 +00:00
use std::fmt;
use std::f64;
use std::num::{cast, Float};
2013-09-04 02:20:53 +00:00
2014-01-09 00:26:50 +00:00
use approx::ApproxEq;
use num::{BaseFloat, One, one, Zero, zero};
2014-01-09 00:26:50 +00:00
2014-05-25 10:00:52 +00:00
/// An angle, in radians
2014-12-26 21:18:29 +00:00
#[deriving(Copy, Clone, PartialEq, PartialOrd, Hash, RustcEncodable, RustcDecodable, Rand)]
pub struct Rad<S> { pub s: S }
2014-05-25 10:00:52 +00:00
/// An angle, in degrees
2014-12-26 21:18:29 +00:00
#[deriving(Copy, Clone, PartialEq, PartialOrd, Hash, RustcEncodable, RustcDecodable, Rand)]
pub struct Deg<S> { pub s: S }
2013-09-04 02:20:53 +00:00
2014-05-25 10:00:52 +00:00
/// Create a new angle, in radians
2014-05-26 17:10:04 +00:00
#[inline] pub fn rad<S: BaseFloat>(s: S) -> Rad<S> { Rad { s: s } }
2014-05-25 10:00:52 +00:00
/// Create a new angle, in degrees
2014-05-26 17:10:04 +00:00
#[inline] pub fn deg<S: BaseFloat>(s: S) -> Deg<S> { Deg { s: s } }
2013-09-04 02:20:53 +00:00
2014-05-25 10:00:52 +00:00
/// Represents types that can be converted to radians.
2014-05-26 17:10:04 +00:00
pub trait ToRad<S: BaseFloat> {
2014-05-25 10:00:52 +00:00
/// Convert this value to radians.
fn to_rad(&self) -> Rad<S>;
}
/// Represents types that can be converted to degrees.
2014-05-26 17:10:04 +00:00
pub trait ToDeg<S: BaseFloat> {
2014-05-25 10:00:52 +00:00
/// Convert this value to degrees.
fn to_deg(&self) -> Deg<S>;
}
2013-09-04 02:20:53 +00:00
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ToRad<S> for Rad<S> { #[inline] fn to_rad(&self) -> Rad<S> { self.clone() } }
impl<S: BaseFloat> ToRad<S> for Deg<S> { #[inline] fn to_rad(&self) -> Rad<S> { rad(self.s.to_radians()) } }
2013-09-04 02:20:53 +00:00
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ToDeg<S> for Rad<S> { #[inline] fn to_deg(&self) -> Deg<S> { deg(self.s.to_degrees()) } }
impl<S: BaseFloat> ToDeg<S> for Deg<S> { #[inline] fn to_deg(&self) -> Deg<S> { self.clone() } }
2013-09-04 02:20:53 +00:00
/// Private utility functions for converting to/from scalars
trait ScalarConv<S> {
fn from(s: S) -> Self;
fn s<'a>(&'a self) -> &'a S;
fn mut_s<'a>(&'a mut self) -> &'a mut S;
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ScalarConv<S> for Rad<S> {
#[inline] fn from(s: S) -> Rad<S> { rad(s) }
#[inline] fn s<'a>(&'a self) -> &'a S { &self.s }
#[inline] fn mut_s<'a>(&'a mut self) -> &'a mut S { &mut self.s }
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> ScalarConv<S> for Deg<S> {
#[inline] fn from(s: S) -> Deg<S> { deg(s) }
#[inline] fn s<'a>(&'a self) -> &'a S { &self.s }
#[inline] fn mut_s<'a>(&'a mut self) -> &'a mut S { &mut self.s }
}
2014-05-25 10:00:52 +00:00
/// Operations on angles.
2013-09-04 02:20:53 +00:00
pub trait Angle
<
2014-05-26 17:10:04 +00:00
S: BaseFloat
2013-09-04 02:20:53 +00:00
>
: Clone + Zero
+ PartialEq + PartialOrd
2013-09-04 02:20:53 +00:00
+ ApproxEq<S>
+ Neg<Self>
+ ToRad<S>
+ ToDeg<S>
+ ScalarConv<S>
+ fmt::Show
2013-09-04 02:20:53 +00:00
{
2014-05-25 10:00:52 +00:00
/// Create a new angle from any other valid angle.
2013-09-04 02:20:53 +00:00
fn from<A: Angle<S>>(theta: A) -> Self;
2014-05-25 10:00:52 +00:00
/// Negate this angle, in-place.
2014-12-21 17:28:59 +00:00
#[inline] fn neg_self(&mut self) { *self = -(*self).clone() }
2013-09-04 02:20:53 +00:00
2014-05-25 10:00:52 +00:00
/// Add this angle with another, returning the new angle.
#[inline] fn add_a(&self, other: Self) -> Self { ScalarConv::from(*self.s() + *other.s()) }
2014-05-25 10:00:52 +00:00
/// Subtract another angle from this one, returning the new angle.
#[inline] fn sub_a(&self, other: Self) -> Self { ScalarConv::from(*self.s() - *other.s()) }
2014-05-25 10:00:52 +00:00
/// Divide this angle by another, returning the ratio.
2013-09-04 02:20:53 +00:00
#[inline] fn div_a(&self, other: Self) -> S { *self.s() / *other.s() }
2014-05-25 10:00:52 +00:00
/// Take the remainder of this angle with another.
2013-09-04 02:20:53 +00:00
#[inline] fn rem_a(&self, other: Self) -> S { *self.s() % *other.s() }
2014-05-25 10:00:52 +00:00
/// Multiply this angle by a scalar, returning the new angle.
#[inline] fn mul_s(&self, s: S) -> Self { ScalarConv::from(*self.s() * s) }
2014-05-25 10:00:52 +00:00
/// Divide this angle by a scalar, returing the new angle.
#[inline] fn div_s(&self, s: S) -> Self { ScalarConv::from(*self.s() / s) }
2014-05-25 10:00:52 +00:00
/// Take the remainder of this angle by a scalar, returning the new angle.
#[inline] fn rem_s(&self, s: S) -> Self { ScalarConv::from(*self.s() % s) }
2013-09-04 02:20:53 +00:00
2014-05-25 10:00:52 +00:00
/// Add this angle with another, in-place.
2013-09-04 02:20:53 +00:00
#[inline] fn add_self_a(&mut self, other: Self) { *self.mut_s() = *self.s() + *other.s() }
2014-05-25 10:00:52 +00:00
/// Subtract another angle from this one, in-place.
2013-09-04 02:20:53 +00:00
#[inline] fn sub_self_a(&mut self, other: Self) { *self.mut_s() = *self.s() - *other.s() }
2014-05-25 10:00:52 +00:00
/// Multiply this angle by a scalar, in-place.
2013-09-04 02:20:53 +00:00
#[inline] fn mul_self_s(&mut self, s: S) { *self.mut_s() = *self.s() * s }
2014-05-25 10:00:52 +00:00
/// Divide this angle by a scalar, in-place.
2013-09-04 02:20:53 +00:00
#[inline] fn div_self_s(&mut self, s: S) { *self.mut_s() = *self.s() / s }
2014-05-25 10:00:52 +00:00
/// Take the remainder of this angle by a scalar, in-place.
2013-09-04 02:20:53 +00:00
#[inline] fn rem_self_s(&mut self, s: S) { *self.mut_s() = *self.s() % s }
/// Return the angle, normalized to the range `[0, full_turn)`.
#[inline]
fn normalize(&self) -> Self {
let mut a = self.clone();
a.normalize_self();
a
}
/// Normalize the angle to the range `[0, full_turn)`.
#[inline]
fn normalize_self(&mut self) {
let full_turn: Self = Angle::full_turn();
self.rem_self_s(full_turn.s().clone());
if *self < zero() { self.add_self_a(full_turn) };
}
/// Return the angle rotated by half a turn
#[inline]
fn opposite(&self) -> Self {
self.add_a(Angle::turn_div_2()).normalize()
}
2013-09-17 06:40:29 +00:00
/// Returns the interior bisector of the two angles
#[inline]
fn bisect(&self, other: Self) -> Self {
2014-06-26 04:26:15 +00:00
self.add_a(self.sub_a(other).mul_s(cast(0.5f64).unwrap())).normalize()
2013-09-17 06:40:29 +00:00
}
fn full_turn() -> Self;
2014-06-26 04:26:15 +00:00
#[inline] fn turn_div_2() -> Self { let full_turn: Self = Angle::full_turn(); full_turn.div_s(cast(2i).unwrap()) }
#[inline] fn turn_div_3() -> Self { let full_turn: Self = Angle::full_turn(); full_turn.div_s(cast(3i).unwrap()) }
#[inline] fn turn_div_4() -> Self { let full_turn: Self = Angle::full_turn(); full_turn.div_s(cast(4i).unwrap()) }
#[inline] fn turn_div_6() -> Self { let full_turn: Self = Angle::full_turn(); full_turn.div_s(cast(6i).unwrap()) }
#[inline] fn equiv(&self, other: &Self) -> bool { self.normalize() == other.normalize() }
}
2014-05-26 17:10:04 +00:00
#[inline] pub fn bisect<S: BaseFloat, A: Angle<S>>(a: A, b: A) -> A { a.bisect(b) }
2013-09-17 06:40:29 +00:00
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat>
2014-01-09 00:26:50 +00:00
Rad<S> {
#[inline] pub fn zero() -> Rad<S> { zero() }
#[inline] pub fn full_turn() -> Rad<S> { Angle::full_turn() }
#[inline] pub fn turn_div_2() -> Rad<S> { Angle::turn_div_2() }
#[inline] pub fn turn_div_3() -> Rad<S> { Angle::turn_div_3() }
#[inline] pub fn turn_div_4() -> Rad<S> { Angle::turn_div_4() }
#[inline] pub fn turn_div_6() -> Rad<S> { Angle::turn_div_6() }
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat>
2014-01-09 00:26:50 +00:00
Deg<S> {
#[inline] pub fn zero() -> Deg<S> { zero() }
#[inline] pub fn full_turn() -> Deg<S> { Angle::full_turn() }
#[inline] pub fn turn_div_2() -> Deg<S> { Angle::turn_div_2() }
#[inline] pub fn turn_div_3() -> Deg<S> { Angle::turn_div_3() }
#[inline] pub fn turn_div_4() -> Deg<S> { Angle::turn_div_4() }
#[inline] pub fn turn_div_6() -> Deg<S> { Angle::turn_div_6() }
2013-09-04 02:20:53 +00:00
}
impl<S: BaseFloat> Add<Rad<S>, Rad<S>> for Rad<S> { #[inline] fn add(self, other: Rad<S>) -> Rad<S> { rad(self.s + other.s) } }
impl<S: BaseFloat> Add<Deg<S>, Deg<S>> for Deg<S> { #[inline] fn add(self, other: Deg<S>) -> Deg<S> { deg(self.s + other.s) } }
impl<S: BaseFloat> Sub<Rad<S>, Rad<S>> for Rad<S> { #[inline] fn sub(self, other: Rad<S>) -> Rad<S> { rad(self.s - other.s) } }
impl<S: BaseFloat> Sub<Deg<S>, Deg<S>> for Deg<S> { #[inline] fn sub(self, other: Deg<S>) -> Deg<S> { deg(self.s - other.s) } }
2014-12-21 17:28:59 +00:00
impl<S: BaseFloat> Neg<Rad<S>> for Rad<S> { #[inline] fn neg(self) -> Rad<S> { rad(-self.s) } }
impl<S: BaseFloat> Neg<Deg<S>> for Deg<S> { #[inline] fn neg(self) -> Deg<S> { deg(-self.s) } }
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> Zero for Rad<S> { #[inline] fn zero() -> Rad<S> { rad(zero()) } #[inline] fn is_zero(&self) -> bool { *self == zero() } }
impl<S: BaseFloat> Zero for Deg<S> { #[inline] fn zero() -> Deg<S> { deg(zero()) } #[inline] fn is_zero(&self) -> bool { *self == zero() } }
impl<S: BaseFloat> Mul<Rad<S>, Rad<S>> for Rad<S> { #[inline] fn mul(self, other: Rad<S>) -> Rad<S> { rad(self.s * other.s) } }
impl<S: BaseFloat> Mul<Deg<S>, Deg<S>> for Deg<S> { #[inline] fn mul(self, other: Deg<S>) -> Deg<S> { deg(self.s * other.s) } }
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat> One for Rad<S> { #[inline] fn one() -> Rad<S> { rad(one()) } }
impl<S: BaseFloat> One for Deg<S> { #[inline] fn one() -> Deg<S> { deg(one()) } }
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat>
2014-01-09 00:26:50 +00:00
Angle<S> for Rad<S> {
2013-09-04 02:20:53 +00:00
#[inline] fn from<A: Angle<S>>(theta: A) -> Rad<S> { theta.to_rad() }
#[inline] fn full_turn() -> Rad<S> { rad(cast(f64::consts::PI_2).unwrap()) }
2013-09-04 02:20:53 +00:00
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat>
2014-01-09 00:26:50 +00:00
Angle<S> for Deg<S> {
2013-09-04 02:20:53 +00:00
#[inline] fn from<A: Angle<S>>(theta: A) -> Deg<S> { theta.to_deg() }
2014-06-26 04:26:15 +00:00
#[inline] fn full_turn() -> Deg<S> { deg(cast(360i).unwrap()) }
2013-09-04 02:20:53 +00:00
}
2014-05-26 17:10:04 +00:00
#[inline] pub fn sin<S: BaseFloat>(theta: Rad<S>) -> S { theta.s.sin() }
#[inline] pub fn cos<S: BaseFloat>(theta: Rad<S>) -> S { theta.s.cos() }
#[inline] pub fn tan<S: BaseFloat>(theta: Rad<S>) -> S { theta.s.tan() }
#[inline] pub fn sin_cos<S: BaseFloat>(theta: Rad<S>) -> (S, S) { theta.s.sin_cos() }
2014-05-26 17:10:04 +00:00
#[inline] pub fn cot<S: BaseFloat>(theta: Rad<S>) -> S { tan(theta).recip() }
#[inline] pub fn sec<S: BaseFloat>(theta: Rad<S>) -> S { cos(theta).recip() }
#[inline] pub fn csc<S: BaseFloat>(theta: Rad<S>) -> S { sin(theta).recip() }
2014-05-26 17:10:04 +00:00
#[inline] pub fn asin<S: BaseFloat>(s: S) -> Rad<S> { rad(s.asin()) }
#[inline] pub fn acos<S: BaseFloat>(s: S) -> Rad<S> { rad(s.acos()) }
#[inline] pub fn atan<S: BaseFloat>(s: S) -> Rad<S> { rad(s.atan()) }
#[inline] pub fn atan2<S: BaseFloat>(a: S, b: S) -> Rad<S> { rad(a.atan2(b)) }
2013-09-04 02:20:53 +00:00
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat + fmt::Show>
fmt::Show for Rad<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2014-05-16 20:11:27 +00:00
write!(f, "{} rad", self.s)
}
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat + fmt::Show>
fmt::Show for Deg<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
2014-05-16 20:11:27 +00:00
write!(f, "{}°", self.s)
}
}
2013-09-04 02:20:53 +00:00
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat>
2014-01-09 00:26:50 +00:00
ApproxEq<S> for Rad<S> {
2013-09-04 02:20:53 +00:00
#[inline]
2014-01-09 00:26:50 +00:00
fn approx_eq_eps(&self, other: &Rad<S>, epsilon: &S) -> bool {
self.s.approx_eq_eps(&other.s, epsilon)
2013-09-04 02:20:53 +00:00
}
}
2014-05-26 17:10:04 +00:00
impl<S: BaseFloat>
2014-01-09 00:26:50 +00:00
ApproxEq<S> for Deg<S> {
2013-09-04 02:20:53 +00:00
#[inline]
2014-01-09 00:26:50 +00:00
fn approx_eq_eps(&self, other: &Deg<S>, epsilon: &S) -> bool {
self.s.approx_eq_eps(&other.s, epsilon)
2013-09-04 02:20:53 +00:00
}
}