cgmath/src/mat.rs

1289 lines
36 KiB
Rust
Raw Normal View History

use core::cast::transmute;
use core::cmp::{Eq, Ord};
use core::ptr::to_unsafe_ptr;
2012-11-25 12:05:47 +00:00
use core::sys::size_of;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
use dim::{Dimensional, ToPtr};
use funs::common::*;
use funs::exponential::*;
use num::cast::*;
2012-12-03 06:19:53 +00:00
use num::kinds::{Float, Number};
use quat::{Quat, ToQuat};
2012-11-20 06:57:32 +00:00
use vec::{NumericVector, Vec2, Vec3, Vec4};
/**
2012-12-03 22:31:26 +00:00
* The base square matrix trait
*/
pub trait Matrix<T,V>: Dimensional<V>, ToPtr<T>, Eq, Neg<self> {
2012-12-03 22:31:26 +00:00
/**
* Returns the column vector at `i`
*/
pure fn col(&self, i: uint) -> V;
2012-12-03 22:31:26 +00:00
/**
* Returns the row vector at `i`
*/
pure fn row(&self, i: uint) -> V;
2012-12-03 22:31:26 +00:00
/**
* Returns the identity matrix
*/
static pure fn identity() -> self;
2012-12-03 22:31:26 +00:00
2012-12-04 02:51:38 +00:00
/**
* Sets the matrix to the identity matrix
*/
fn to_identity(&mut self);
2012-12-03 22:31:26 +00:00
/**
* Returns a matrix with all elements set to zero
*/
2012-11-20 06:57:32 +00:00
static pure fn zero() -> self;
2012-12-04 02:51:38 +00:00
/**
* Sets each element of the matrix to zero
*/
fn to_zero(&mut self);
2012-12-03 22:31:26 +00:00
/**
* Returns the scalar multiplication of this matrix and `value`
*/
pure fn mul_t(&self, value: T) -> self;
2012-12-03 22:31:26 +00:00
/**
* Returns the matrix vector product of the matrix and `vec`
*/
2012-12-03 22:06:00 +00:00
pure fn mul_v(&self, vec: &V) -> V;
2012-12-03 22:31:26 +00:00
/**
* Ruturns the matrix addition of the matrix and `other`
*/
pure fn add_m(&self, other: &self) -> self;
2012-12-03 22:31:26 +00:00
/**
* Ruturns the difference between the matrix and `other`
*/
pure fn sub_m(&self, other: &self) -> self;
2012-12-03 22:31:26 +00:00
/**
* Returns the matrix product of the matrix and `other`
*/
pure fn mul_m(&self, other: &self) -> self;
2012-12-03 22:31:26 +00:00
/**
* Returns the matrix dot product of the matrix and `other`
*/
pure fn dot(&self, other: &self) -> T;
2012-12-03 22:31:26 +00:00
/**
* Returns the determinant of the matrix
*/
2012-12-03 01:08:36 +00:00
pure fn determinant(&self) -> T;
2012-12-03 22:31:26 +00:00
/**
* Returns the sum of the main diagonal of the matrix
*/
pure fn trace(&self) -> T;
2012-12-03 22:31:26 +00:00
/**
* Returns the inverse of the matrix
*
* # Return value
*
* - `Some(m)` if the inversion was successful, where `m` is the inverted matrix
* - `None` if the inversion was unsuccessful (because the matrix was not invertable)
2012-12-03 22:31:26 +00:00
*/
2012-12-03 22:12:22 +00:00
pure fn inverse(&self) -> Option<self>;
2012-12-03 22:31:26 +00:00
/**
* Returns the transpose of the matrix
*/
pure fn transpose(&self) -> self;
2012-12-03 22:31:26 +00:00
/**
* Returns `true` if the matrix is approximately equal to the
* identity matrix
*/
pure fn is_identity(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
* Returns `true` all the elements outside the main diagonal are
* approximately equal to zero.
*/
pure fn is_diagonal(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
* Returns `true` if the matrix is not approximately equal to the
* identity matrix.
*/
pure fn is_rotated(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
* Returns `true` if the matrix is approximately symmetrical (ie, if the
* matrix is equal to its transpose).
*/
pure fn is_symmetric(&self) -> bool;
2012-12-03 22:31:26 +00:00
/**
* Returns `true` if the matrix is invertable
*/
pure fn is_invertible(&self) -> bool;
}
2012-12-03 22:31:26 +00:00
/**
* A 2 x 2 square matrix with numeric elements
*/
pub trait Matrix2<T,V>: Matrix<T,V> {
pure fn to_mat3(&self) -> Mat3<T>;
pure fn to_mat4(&self) -> Mat4<T>;
}
2012-12-03 22:31:26 +00:00
/**
* A 3 x 3 square matrix with numeric elements
*/
pub trait Matrix3<T,V>: Matrix<T,V> {
pure fn to_mat4(&self) -> Mat4<T>;
}
2012-12-03 22:31:26 +00:00
/**
* A 4 x 4 square matrix with numeric elements
*/
pub trait Matrix4<T,V>: Matrix<T,V> {
}
/**
* A 2 x 2 column major matrix
*/
pub struct Mat2<T> { x: Vec2<T>, y: Vec2<T> }
pub impl<T:Copy Float> Mat2<T> {
/**
* Construct a 2 x 2 matrix
* ~~~
* r0 r1
* +------+------+
* c0 | c0r0 | c0r1 |
* +------+------+
* c1 | c1r0 | c1r1 |
* +------+------+
* ~~~
*/
#[inline(always)]
static pure fn new(c0r0: T, c0r1: T,
c1r0: T, c1r1: T) -> Mat2<T> {
Mat2::from_cols(Vec2::new(move c0r0, move c0r1),
Vec2::new(move c1r0, move c1r1))
}
/**
* Construct a 2 x 2 matrix from column vectors
* ~~~
* r0 r1
* +------+------+
* c0 | c0.x | c0.y |
* +------+------+
* c1 | c1.x | c1.y |
* +------+------+
* ~~~
*/
#[inline(always)]
static pure fn from_cols(c0: Vec2<T>, c1: Vec2<T>) -> Mat2<T> {
Mat2 { x: move c0,
y: move c1 }
}
/**
* Construct a 2 x 2 diagonal matrix with the major diagonal set to `value`
* ~~~
* r0 r1
* +-----+-----+
* c0 | val | 0 |
* +-----+-----+
* c1 | 0 | val |
* +-----+-----+
* ~~~
*/
#[inline(always)]
static pure fn from_value(value: T) -> Mat2<T> {
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
Mat2::new(value, _0,
_0, value)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn identity() -> Mat2<T> {
let _0 = cast(0);
let _1 = cast(1);
// let _0 = Number::from(0); // FIXME: causes ICE
// let _1 = Number::from(1); // FIXME: causes ICE
Mat2::new(_1, _0,
_0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn zero() -> Mat2<T> {
let _0 = cast(0);
// let _0 = Number::from(0); // FIXME: causes ICE
Mat2::new(_0, _0,
_0, _0)
}
}
pub impl<T:Copy Float> Mat2<T>: Matrix<T, Vec2<T>> {
#[inline(always)]
pure fn col(&self, i: uint) -> Vec2<T> { self[i] }
#[inline(always)]
pure fn row(&self, i: uint) -> Vec2<T> {
Vec2::new(self[0][i],
self[1][i])
}
2012-12-01 04:19:21 +00:00
/**
* Returns the multiplicative identity matrix
* ~~~
* r0 r1
* +----+----+
* c0 | 1 | 0 |
* +----+----+
* c1 | 0 | 1 |
* +----+----+
* ~~~
*/
2012-12-01 04:19:21 +00:00
#[inline(always)]
static pure fn identity() -> Mat2<T> {
2012-12-03 06:19:53 +00:00
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat2::new(_1, _0,
_0, _1)
}
2012-12-04 02:51:38 +00:00
#[inline(always)]
fn to_identity(&mut self) {
*self = Mat2::identity();
}
/**
* Returns the additive identity matrix
* ~~~
* r0 r1
* +----+----+
* c0 | 0 | 0 |
* +----+----+
* c1 | 0 | 0 |
* +----+----+
* ~~~
*/
2012-11-20 06:57:32 +00:00
#[inline(always)]
static pure fn zero() -> Mat2<T> {
2012-12-03 06:19:53 +00:00
let _0 = Number::from(0);
Mat2::new(_0, _0,
_0, _0)
2012-11-20 06:57:32 +00:00
}
2012-12-04 02:51:38 +00:00
#[inline(always)]
fn to_zero(&mut self) {
*self = Mat2::zero();
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Mat2<T> {
Mat2::from_cols(self[0].mul_t(value),
self[1].mul_t(value))
}
#[inline(always)]
2012-12-03 22:06:00 +00:00
pure fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
Vec2::new(self.row(0).dot(vec),
self.row(1).dot(vec))
}
#[inline(always)]
pure fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]))
}
#[inline(always)]
pure fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]))
}
2012-11-20 06:57:32 +00:00
#[inline(always)]
pure fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)))
}
pure fn dot(&self, other: &Mat2<T>) -> T {
other.transpose().mul_m(self).trace()
}
2012-12-03 01:08:36 +00:00
pure fn determinant(&self) -> T {
self[0][0] * self[1][1] - self[1][0] * self[0][1]
}
pure fn trace(&self) -> T {
2012-11-21 21:27:44 +00:00
self[0][0] + self[1][1]
}
#[inline(always)]
2012-12-03 22:12:22 +00:00
pure fn inverse(&self) -> Option<Mat2<T>> {
let _0 = cast(0);
2012-12-03 01:08:36 +00:00
let d = self.determinant();
if d.fuzzy_eq(&_0) {
None
} else {
Some(Mat2::new( self[1][1]/d, -self[0][1]/d,
-self[1][0]/d, self[0][0]/d))
}
}
#[inline(always)]
pure fn transpose(&self) -> Mat2<T> {
Mat2::new(self[0][0], self[1][0],
self[0][1], self[1][1])
}
#[inline(always)]
pure fn is_identity(&self) -> bool {
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
self.fuzzy_eq(&Mat2::identity())
}
#[inline(always)]
pure fn is_diagonal(&self) -> bool {
let _0 = cast(0);
self[0][1].fuzzy_eq(&_0) &&
self[1][0].fuzzy_eq(&_0)
}
#[inline(always)]
pure fn is_rotated(&self) -> bool {
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
!self.fuzzy_eq(&Mat2::identity())
}
#[inline(always)]
pure fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[1][0].fuzzy_eq(&self[0][1])
}
#[inline(always)]
pure fn is_invertible(&self) -> bool {
let _0 = cast(0);
!self.determinant().fuzzy_eq(&_0)
}
}
pub impl<T:Copy Float> Mat2<T>: Matrix2<T, Vec2<T>> {
#[inline(always)]
pure fn to_mat3(&self) -> Mat3<T> {
Mat3::from_Mat2(self)
}
#[inline(always)]
pure fn to_mat4(&self) -> Mat4<T> {
Mat4::from_Mat2(self)
}
}
pub impl<T:Copy> Mat2<T>: Dimensional<Vec2<T>> {
#[inline(always)]
static pure fn dim() -> uint { 2 }
#[inline(always)]
static pure fn size_of() -> uint { size_of::<Mat2<T>>() }
}
pub impl<T:Copy> Mat2<T>: Index<uint, Vec2<T>> {
#[inline(always)]
pure fn index(i: uint) -> Vec2<T> {
unsafe { do buf_as_slice(
transmute::<*Mat2<T>, *Vec2<T>>(
to_unsafe_ptr(&self)), 2) |slice| { slice[i] }
}
}
}
pub impl<T:Copy> Mat2<T>: ToPtr<T> {
#[inline(always)]
pure fn to_ptr(&self) -> *T {
self[0].to_ptr()
}
}
pub impl<T:Copy Float> Mat2<T>: Neg<Mat2<T>> {
#[inline(always)]
pure fn neg(&self) -> Mat2<T> {
Mat2::from_cols(-self[0], -self[1])
}
}
pub impl<T:Copy Float> Mat2<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Mat2<T>) -> bool {
2012-11-29 03:49:57 +00:00
self[0] == other[0] &&
self[1] == other[1]
}
#[inline(always)]
pure fn ne(&self, other: &Mat2<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy Float> Mat2<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Mat2<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1])
}
}
/**
* A 3 x 3 column major matrix
*/
pub struct Mat3<T> { x: Vec3<T>, y: Vec3<T>, z: Vec3<T> }
pub impl<T:Copy Float> Mat3<T> {
/**
* Construct a 3 x 3 matrix
* ~~~
* r0 r1 r2
* +------+------+------+
* c0 | c0r0 | c1r1 | c2r2 |
* +------+------+------+
* c1 | c1r0 | c1r1 | c1r2 |
* +------+------+------+
* c2 | c2r0 | c2r1 | c2r2 |
* +------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn new(c0r0:T, c0r1:T, c0r2:T,
c1r0:T, c1r1:T, c1r2:T,
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
Mat3::from_cols(Vec3::new(move c0r0, move c0r1, move c0r2),
Vec3::new(move c1r0, move c1r1, move c1r2),
Vec3::new(move c2r0, move c2r1, move c2r2))
}
/**
* Construct a 3 x 3 matrix from column vectors
* ~~~
* r0 r1 r2
* +------+------+------+
* c0 | c0.x | c0.y | c0.z |
* +------+------+------+
* c1 | c1.x | c1.y | c1.z |
* +------+------+------+
* c2 | c2.x | c2.y | c2.z |
* +------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn from_cols(c0: Vec3<T>, c1: Vec3<T>, c2: Vec3<T>) -> Mat3<T> {
Mat3 { x: move c0,
y: move c1,
z: move c2 }
}
/**
* Construct a 3 x 3 diagonal matrix with the major diagonal set to `value`
* ~~~
* r0 r1 r2
* +-----+-----+-----+
* c0 | val | 0 | 0 |
* +-----+-----+-----+
* c1 | 0 | val | 0 |
* +-----+-----+-----+
* c2 | 0 | 0 | val |
* +-----+-----+-----+
* ~~~
*/
#[inline(always)]
static pure fn from_value(value: T) -> Mat3<T> {
let _0 = cast(0);
Mat3::new(value, _0, _0,
_0, value, _0,
_0, _0, value)
}
#[inline(always)]
static pure fn from_Mat2(m: &Mat2<T>) -> Mat3<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat3::new(m[0][0], m[0][1], _0,
m[1][0], m[1][1], _0,
_0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn identity() -> Mat3<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat3::new(_1, _0, _0,
_0, _1, _0,
_0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn zero() -> Mat3<T> {
let _0 = cast(0);
Mat3::new(_0, _0, _0,
_0, _0, _0,
_0, _0, _0)
}
}
pub impl<T:Copy Float> Mat3<T>: Matrix<T, Vec3<T>> {
#[inline(always)]
pure fn col(&self, i: uint) -> Vec3<T> { self[i] }
#[inline(always)]
pure fn row(&self, i: uint) -> Vec3<T> {
Vec3::new(self[0][i],
self[1][i],
self[2][i])
}
2012-12-01 04:19:21 +00:00
/**
* Returns the multiplicative identity matrix
* ~~~
* r0 r1 r2
* +----+----+----+
* c0 | 1 | 0 | 0 |
* +----+----+----+
* c1 | 0 | 1 | 0 |
* +----+----+----+
* c2 | 0 | 0 | 1 |
* +----+----+----+
* ~~~
*/
2012-12-01 04:19:21 +00:00
#[inline(always)]
static pure fn identity() -> Mat3<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat3::new(_1, _0, _0,
_0, _1, _0,
_0, _0, _1)
}
2012-12-04 02:51:38 +00:00
#[inline(always)]
fn to_identity(&mut self) {
*self = Mat3::identity();
}
/**
* Returns the additive identity matrix
* ~~~
* r0 r1 r2
* +----+----+----+
* c0 | 0 | 0 | 0 |
* +----+----+----+
* c1 | 0 | 0 | 0 |
* +----+----+----+
* c2 | 0 | 0 | 0 |
* +----+----+----+
* ~~~
*/
2012-11-20 06:57:32 +00:00
#[inline(always)]
static pure fn zero() -> Mat3<T> {
let _0 = cast(0);
Mat3::new(_0, _0, _0,
_0, _0, _0,
_0, _0, _0)
2012-11-20 06:57:32 +00:00
}
2012-12-04 02:51:38 +00:00
#[inline(always)]
fn to_zero(&mut self) {
*self = Mat3::zero();
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Mat3<T> {
Mat3::from_cols(self[0].mul_t(value),
self[1].mul_t(value),
self[2].mul_t(value))
}
#[inline(always)]
2012-12-03 22:06:00 +00:00
pure fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
Vec3::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec))
}
#[inline(always)]
pure fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]),
self[2].add_v(&other[2]))
}
#[inline(always)]
pure fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]),
self[2].sub_v(&other[2]))
}
2012-11-20 06:57:32 +00:00
#[inline(always)]
pure fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)),
self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)))
}
pure fn dot(&self, other: &Mat3<T>) -> T {
other.transpose().mul_m(self).trace()
}
2012-12-03 01:08:36 +00:00
pure fn determinant(&self) -> T {
self.col(0).dot(&self.col(1).cross(&self.col(2)))
}
pure fn trace(&self) -> T {
2012-11-21 21:27:44 +00:00
self[0][0] + self[1][1] + self[2][2]
}
// #[inline(always)]
2012-12-03 22:12:22 +00:00
pure fn inverse(&self) -> Option<Mat3<T>> {
2012-12-03 01:08:36 +00:00
let d = self.determinant();
let _0 = cast(0);
if d.fuzzy_eq(&_0) {
None
} else {
Some(Mat3::from_cols(self[1].cross(&self[2]).div_t(d),
self[2].cross(&self[0]).div_t(d),
self[0].cross(&self[1]).div_t(d))
.transpose())
}
}
#[inline(always)]
pure fn transpose(&self) -> Mat3<T> {
Mat3::new(self[0][0], self[1][0], self[2][0],
self[0][1], self[1][1], self[2][1],
self[0][2], self[1][2], self[2][2])
}
#[inline(always)]
pure fn is_identity(&self) -> bool {
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
self.fuzzy_eq(&Mat3::identity())
}
#[inline(always)]
pure fn is_diagonal(&self) -> bool {
let _0 = cast(0);
self[0][1].fuzzy_eq(&_0) &&
self[0][2].fuzzy_eq(&_0) &&
self[1][0].fuzzy_eq(&_0) &&
self[1][2].fuzzy_eq(&_0) &&
self[2][0].fuzzy_eq(&_0) &&
self[2][1].fuzzy_eq(&_0)
}
#[inline(always)]
pure fn is_rotated(&self) -> bool {
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
!self.fuzzy_eq(&Mat3::identity())
}
#[inline(always)]
pure fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[0][2].fuzzy_eq(&self[2][0]) &&
self[1][0].fuzzy_eq(&self[0][1]) &&
self[1][2].fuzzy_eq(&self[2][1]) &&
self[2][0].fuzzy_eq(&self[0][2]) &&
self[2][1].fuzzy_eq(&self[1][2])
}
#[inline(always)]
pure fn is_invertible(&self) -> bool {
let _0 = cast(0);
!self.determinant().fuzzy_eq(&_0)
}
}
pub impl<T:Copy Float> Mat3<T>: Matrix3<T, Vec3<T>> {
#[inline(always)]
pure fn to_mat4(&self) -> Mat4<T> {
Mat4::from_Mat3(self)
}
}
2012-12-03 06:19:53 +00:00
pub impl<T:Copy Float Exp> Mat3<T>: ToQuat<T> {
pure fn to_Quat() -> Quat<T> {
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
2012-12-03 06:19:53 +00:00
let mut s;
let w, x, y, z;
let trace = self.trace();
let _1: T = Number::from(1.0);
let half: T = Number::from(0.5);
if trace >= cast(0) {
2012-12-03 06:19:53 +00:00
s = (_1 + trace).sqrt();
w = half * s;
s = half / s;
x = (self[1][2] - self[2][1]) * s;
y = (self[2][0] - self[0][2]) * s;
z = (self[0][1] - self[1][0]) * s;
} else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) {
2012-12-03 06:19:53 +00:00
s = (half + (self[0][0] - self[1][1] - self[2][2])).sqrt();
w = half * s;
s = half / s;
x = (self[0][1] - self[1][0]) * s;
y = (self[2][0] - self[0][2]) * s;
z = (self[1][2] - self[2][1]) * s;
} else if self[1][1] > self[2][2] {
2012-12-03 06:19:53 +00:00
s = (half + (self[1][1] - self[0][0] - self[2][2])).sqrt();
w = half * s;
s = half / s;
x = (self[0][1] - self[1][0]) * s;
y = (self[1][2] - self[2][1]) * s;
z = (self[2][0] - self[0][2]) * s;
} else {
2012-12-03 06:19:53 +00:00
s = (half + (self[2][2] - self[0][0] - self[1][1])).sqrt();
w = half * s;
s = half / s;
x = (self[2][0] - self[0][2]) * s;
y = (self[1][2] - self[2][1]) * s;
z = (self[0][1] - self[1][0]) * s;
}
2012-12-03 06:19:53 +00:00
Quat::new(w, x, y, z)
}
}
pub impl<T:Copy> Mat3<T>: Dimensional<Vec3<T>> {
#[inline(always)]
static pure fn dim() -> uint { 3 }
#[inline(always)]
static pure fn size_of() -> uint { size_of::<Mat3<T>>() }
}
pub impl<T:Copy> Mat3<T>: Index<uint, Vec3<T>> {
#[inline(always)]
pure fn index(i: uint) -> Vec3<T> {
unsafe { do buf_as_slice(
transmute::<*Mat3<T>, *Vec3<T>>(
to_unsafe_ptr(&self)), 3) |slice| { slice[i] }
}
}
}
pub impl<T:Copy> Mat3<T>: ToPtr<T> {
#[inline(always)]
pure fn to_ptr(&self) -> *T {
self[0].to_ptr()
}
}
pub impl<T:Copy Float> Mat3<T>: Neg<Mat3<T>> {
#[inline(always)]
pure fn neg(&self) -> Mat3<T> {
Mat3::from_cols(-self[0], -self[1], -self[2])
}
}
pub impl<T:Copy Float> Mat3<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Mat3<T>) -> bool {
2012-11-29 03:49:57 +00:00
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2]
}
#[inline(always)]
pure fn ne(&self, other: &Mat3<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy Float> Mat3<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Mat3<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2])
}
}
/**
* A 4 x 4 column major matrix
*/
pub struct Mat4<T> { x: Vec4<T>, y: Vec4<T>, z: Vec4<T>, w: Vec4<T> }
pub impl<T:Copy Float> Mat4<T> {
/**
* Construct a 4 x 4 matrix
* ~~~
* r0 r1 r2 r3
* +------+------+------+------+
* c0 | c0r0 | c0r1 | c0r2 | c0r3 |
* +------+------+------+------+
* c1 | c1r0 | c1r1 | c1r2 | c1r3 |
* +------+------+------+------+
* c2 | c2r0 | c2r1 | c2r2 | c2r3 |
* +------+------+------+------+
* c3 | c3r0 | c3r1 | c3r2 | c3r3 |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4<T> {
Mat4::from_cols(Vec4::new(move c0r0, move c0r1, move c0r2, move c0r3),
Vec4::new(move c1r0, move c1r1, move c1r2, move c1r3),
Vec4::new(move c2r0, move c2r1, move c2r2, move c2r3),
Vec4::new(move c3r0, move c3r1, move c3r2, move c3r3))
}
/**
* Construct a 4 x 4 matrix from column vectors
* ~~~
* r0 r1 r2 r3
* +------+------+------+------+
* c0 | c0.x | c0.y | c0.z | c0.w |
* +------+------+------+------+
* c1 | c1.x | c1.y | c1.z | c1.w |
* +------+------+------+------+
* c2 | c2.x | c2.y | c2.z | c2.w |
* +------+------+------+------+
* c3 | c3.x | c3.y | c3.z | c3.w |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn from_cols(c0: Vec4<T>, c1: Vec4<T>, c2: Vec4<T>, c3: Vec4<T>) -> Mat4<T> {
Mat4 { x: move c0,
y: move c1,
z: move c2,
w: move c3 }
}
/**
* Construct a 4 x 4 diagonal matrix with the major diagonal set to `value`
* ~~~
* r0 r1 r2 r3
* +-----+-----+-----+-----+
* c0 | val | 0 | 0 | 0 |
* +-----+-----+-----+-----+
* c1 | 0 | val | 0 | 0 |
* +-----+-----+-----+-----+
* c2 | 0 | 0 | val | 0 |
* +-----+-----+-----+-----+
* c3 | 0 | 0 | 0 | val |
* +-----+-----+-----+-----+
* ~~~
*/
#[inline(always)]
static pure fn from_value(value: T) -> Mat4<T> {
let _0 = cast(0);
Mat4::new(value, _0, _0, _0,
_0, value, _0, _0,
_0, _0, value, _0,
_0, _0, _0, value)
}
#[inline(always)]
static pure fn from_Mat2(m: &Mat2<T>) -> Mat4<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat4::new(m[0][0], m[0][1], _0, _0,
m[1][0], m[1][1], _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
#[inline(always)]
static pure fn from_Mat3(m: &Mat3<T>) -> Mat4<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat4::new(m[0][0], m[0][1], m[0][2], _0,
m[1][0], m[1][1], m[1][2], _0,
m[2][0], m[2][1], m[2][2], _0,
_0, _0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn identity() -> Mat4<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat4::new(_1, _0, _0, _0,
_0, _1, _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn zero() -> Mat4<T> {
let _0 = cast(0);
Mat4::new(_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0)
}
}
pub impl<T:Copy Float Sign> Mat4<T>: Matrix<T, Vec4<T>> {
#[inline(always)]
pure fn col(&self, i: uint) -> Vec4<T> { self[i] }
#[inline(always)]
pure fn row(&self, i: uint) -> Vec4<T> {
Vec4::new(self[0][i],
self[1][i],
self[2][i],
self[3][i])
}
2012-12-01 04:19:21 +00:00
/**
* Returns the multiplicative identity matrix
* ~~~
* r0 r1 r2 r3
* +----+----+----+----+
* c0 | 1 | 0 | 0 | 0 |
* +----+----+----+----+
* c1 | 0 | 1 | 0 | 0 |
* +----+----+----+----+
* c2 | 0 | 0 | 1 | 0 |
* +----+----+----+----+
* c3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
static pure fn identity() -> Mat4<T> {
let _0 = cast(0);
let _1 = cast(1);
Mat4::new(_1, _0, _0, _0,
_0, _1, _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
2012-12-04 02:51:38 +00:00
#[inline(always)]
fn to_identity(&mut self) {
*self = Mat4::identity();
}
/**
* Returns the additive identity matrix
* ~~~
* r0 r1 r2 r3
* +----+----+----+----+
* c0 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* c1 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* c2 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* c3 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* ~~~
*/
2012-11-20 06:57:32 +00:00
#[inline(always)]
static pure fn zero() -> Mat4<T> {
let _0 = cast(0);
Mat4::new(_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0)
2012-11-20 06:57:32 +00:00
}
2012-12-04 02:51:38 +00:00
#[inline(always)]
fn to_zero(&mut self) {
*self = Mat4::zero();
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Mat4<T> {
Mat4::from_cols(self[0].mul_t(value),
self[1].mul_t(value),
self[2].mul_t(value),
self[3].mul_t(value))
}
#[inline(always)]
2012-12-03 22:06:00 +00:00
pure fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
Vec4::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec),
self.row(3).dot(vec))
}
#[inline(always)]
pure fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]),
self[2].add_v(&other[2]),
self[3].add_v(&other[3]))
}
#[inline(always)]
pure fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]),
self[2].sub_v(&other[2]),
self[3].sub_v(&other[3]))
}
#[inline(always)]
pure fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
// Surprisingly when building with optimisation turned on this is actually
// faster than writing out the matrix multiplication in expanded form.
// If you don't believe me, see ./test/performance/matrix_mul.rs
Mat4::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), self.row(3).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), self.row(3).dot(&other.col(1)),
self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)), self.row(3).dot(&other.col(2)),
self.row(0).dot(&other.col(3)), self.row(1).dot(&other.col(3)), self.row(2).dot(&other.col(3)), self.row(3).dot(&other.col(3)))
}
pure fn dot(&self, other: &Mat4<T>) -> T {
other.transpose().mul_m(self).trace()
}
2012-12-03 01:08:36 +00:00
pure fn determinant(&self) -> T {
self[0][0]*Mat3::new(self[1][1], self[2][1], self[3][1],
self[1][2], self[2][2], self[3][2],
2012-12-03 01:08:36 +00:00
self[1][3], self[2][3], self[3][3]).determinant() -
self[1][0]*Mat3::new(self[0][1], self[2][1], self[3][1],
self[0][2], self[2][2], self[3][2],
2012-12-03 01:08:36 +00:00
self[0][3], self[2][3], self[3][3]).determinant() +
self[2][0]*Mat3::new(self[0][1], self[1][1], self[3][1],
self[0][2], self[1][2], self[3][2],
2012-12-03 01:08:36 +00:00
self[0][3], self[1][3], self[3][3]).determinant() -
self[3][0]*Mat3::new(self[0][1], self[1][1], self[2][1],
self[0][2], self[1][2], self[2][2],
2012-12-03 01:08:36 +00:00
self[0][3], self[1][3], self[2][3]).determinant()
}
pure fn trace(&self) -> T {
2012-11-21 21:27:44 +00:00
self[0][0] + self[1][1] + self[2][2] + self[3][3]
}
2012-12-03 22:12:22 +00:00
pure fn inverse(&self) -> Option<Mat4<T>> {
2012-12-03 01:08:36 +00:00
let d = self.determinant();
let _0 = cast(0);
if d.fuzzy_eq(&_0) {
None
} else {
// Gauss Jordan Elimination with partial pivoting
let mut a = *self;
// let mut inv: Mat4<T> = Matrix::identity(); // FIXME: there's something wrong with static functions here!
let mut inv = Mat4::identity();
// Find largest pivot column j among rows j..3
for uint::range(0, 4) |j| {
let mut i1 = j;
for uint::range(j + 1, 4) |i| {
if abs(&a[i][j]) > abs(&a[i1][j]) {
i1 = i;
}
}
// Swap rows i1 and j in a and inv to
// put pivot on diagonal
let c = [mut a.x, a.y, a.z, a.w];
c[i1] <-> c[j];
a = Mat4::from_cols(c[0], c[1], c[2], c[3]);
let c = [mut inv.x, inv.y, inv.z, inv.w];
c[i1] <-> c[j];
inv = Mat4::from_cols(c[0], c[1], c[2], c[3]);
// Scale row j to have a unit diagonal
let c = [mut inv.x, inv.y, inv.z, inv.w];
c[j] = c[j].div_t(a[j][j]);
inv = Mat4::from_cols(c[0], c[1], c[2], c[3]);
let c = [mut a.x, a.y, a.z, a.w];
c[j] = c[j].div_t(a[j][j]);
a = Mat4::from_cols(c[0], c[1], c[2], c[3]);
// Eliminate off-diagonal elems in col j of a,
// doing identical ops to inv
for uint::range(0, 4) |i| {
if i != j {
let c = [mut inv.x, inv.y, inv.z, inv.w];
c[i] = c[i].sub_v(&c[j].mul_t(a[i][j]));
inv = Mat4::from_cols(c[0], c[1], c[2], c[3]);
let c = [mut a.x, a.y, a.z, a.w];
c[i] = c[i].sub_v(&c[j].mul_t(a[i][j]));
a = Mat4::from_cols(c[0], c[1], c[2], c[3]);
}
}
}
Some(inv)
}
}
#[inline(always)]
pure fn transpose(&self) -> Mat4<T> {
Mat4::new(self[0][0], self[1][0], self[2][0], self[3][0],
self[0][1], self[1][1], self[2][1], self[3][1],
self[0][2], self[1][2], self[2][2], self[3][2],
self[0][3], self[1][3], self[2][3], self[3][3])
}
#[inline(always)]
pure fn is_identity(&self) -> bool {
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
self.fuzzy_eq(&Mat4::identity())
}
#[inline(always)]
pure fn is_diagonal(&self) -> bool {
let _0 = cast(0);
self[0][1].fuzzy_eq(&_0) &&
self[0][2].fuzzy_eq(&_0) &&
self[0][3].fuzzy_eq(&_0) &&
self[1][0].fuzzy_eq(&_0) &&
self[1][2].fuzzy_eq(&_0) &&
self[1][3].fuzzy_eq(&_0) &&
self[2][0].fuzzy_eq(&_0) &&
self[2][1].fuzzy_eq(&_0) &&
self[2][3].fuzzy_eq(&_0) &&
self[3][0].fuzzy_eq(&_0) &&
self[3][1].fuzzy_eq(&_0) &&
self[3][2].fuzzy_eq(&_0)
}
#[inline(always)]
pure fn is_rotated(&self) -> bool {
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
!self.fuzzy_eq(&Mat4::identity())
}
#[inline(always)]
pure fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[0][2].fuzzy_eq(&self[2][0]) &&
self[0][3].fuzzy_eq(&self[3][0]) &&
self[1][0].fuzzy_eq(&self[0][1]) &&
self[1][2].fuzzy_eq(&self[2][1]) &&
self[1][3].fuzzy_eq(&self[3][1]) &&
self[2][0].fuzzy_eq(&self[0][2]) &&
self[2][1].fuzzy_eq(&self[1][2]) &&
self[2][3].fuzzy_eq(&self[3][2]) &&
self[3][0].fuzzy_eq(&self[0][3]) &&
self[3][1].fuzzy_eq(&self[1][3]) &&
self[3][2].fuzzy_eq(&self[2][3])
}
#[inline(always)]
pure fn is_invertible(&self) -> bool {
let _0 = cast(0);
!self.determinant().fuzzy_eq(&_0)
}
}
pub impl<T> Mat4<T>: Matrix4<T, Vec4<T>> {
}
pub impl<T:Copy Float> Mat4<T>: Neg<Mat4<T>> {
#[inline(always)]
pure fn neg(&self) -> Mat4<T> {
Mat4::from_cols(-self[0], -self[1], -self[2], -self[3])
}
}
pub impl<T> Mat4<T>: Dimensional<Vec4<T>> {
#[inline(always)]
static pure fn dim() -> uint { 4 }
#[inline(always)]
static pure fn size_of() -> uint { size_of::<Mat4<T>>() }
}
pub impl<T:Copy> Mat4<T>: Index<uint, Vec4<T>> {
#[inline(always)]
pure fn index(i: uint) -> Vec4<T> {
unsafe { do buf_as_slice(
transmute::<*Mat4<T>, *Vec4<T>>(
to_unsafe_ptr(&self)), 4) |slice| { slice[i] }
}
}
}
pub impl<T:Copy> Mat4<T>: ToPtr<T> {
#[inline(always)]
pure fn to_ptr(&self) -> *T {
self[0].to_ptr()
}
}
pub impl<T:Copy Float> Mat4<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Mat4<T>) -> bool {
2012-11-29 03:49:57 +00:00
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2] &&
self[3] == other[3]
}
#[inline(always)]
pure fn ne(&self, other: &Mat4<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy Float> Mat4<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Mat4<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2]) &&
self[3].fuzzy_eq(&other[3])
}
}