cgmath/src/quat.rs

297 lines
8.3 KiB
Rust
Raw Normal View History

use core::cast::transmute;
use core::cmp::{Eq, Ord};
use core::ptr::to_unsafe_ptr;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
use dim::Dimensional;
use funs::exp::*;
use funs::extent::*;
use funs::trig::*;
use mat::{Mat3, Mat4};
use num::cast::*;
use num::default_eq::DefaultEq;
use vec::Vec3;
2012-11-20 11:37:10 +00:00
///
/// The base quaternion trait
///
pub trait Quaternion<T>: Dimensional<T>, Eq, DefaultEq, Neg<self> {
2012-11-20 06:57:32 +00:00
static pure fn identity() -> self;
static pure fn zero() -> self;
pure fn mul_t(value: T) -> self;
pure fn div_t(value: T) -> self;
pure fn mul_v(vec: &Vec3<T>) -> Vec3<T>;
pure fn add_q(other: &self) -> self;
pure fn sub_q(other: &self) -> self;
pure fn mul_q(other: &self) -> self;
pure fn dot(other: &self) -> T;
pure fn conjugate() -> self;
pure fn inverse() -> self;
pure fn length2() -> T;
pure fn length() -> T;
pure fn normalize() -> self;
pure fn nlerp(other: &self, amount: T) -> self;
pure fn slerp(other: &self, amount: T) -> self;
pure fn to_mat3() -> Mat3<T>;
pure fn to_mat4() -> Mat4<T>;
}
pub trait ToQuat<T> {
pure fn to_Quat() -> Quat<T>;
}
pub struct Quat<T> { s: T, v: Vec3<T> }
pub impl<T> Quat<T> {
#[inline(always)]
static pure fn new(s: T, vx: T, vy: T, vz: T) -> Quat<T> {
Quat::from_sv(move s, move Vec3::new(move vx, move vy, move vz))
}
#[inline(always)]
static pure fn from_sv(s: T, v: Vec3<T>) -> Quat<T> {
Quat { s: move s, v: move v }
}
}
pub impl<T:Copy Num NumCast Trig Exp Clamp Ord AngleConv> Quat<T>: Quaternion<T> {
2012-11-20 06:57:32 +00:00
#[inline(always)]
static pure fn identity() -> Quat<T> {
Quat::new(NumCast::one(),
NumCast::one(),
NumCast::one(),
NumCast::one())
}
#[inline(always)]
static pure fn zero() -> Quat<T> {
Quat::new(NumCast::zero(),
NumCast::zero(),
NumCast::zero(),
NumCast::zero())
}
#[inline(always)]
static pure fn dim() -> uint { 4 }
#[inline(always)]
pure fn to_ptr() -> *T {
to_unsafe_ptr(&self[0])
}
#[inline(always)]
pure fn neg() -> Quat<T> {
Quat::from_sv(-self.s, -self.v)
}
#[inline(always)]
pure fn mul_t(value: T) -> Quat<T> {
Quat::new(self[0] * value,
self[1] * value,
self[2] * value,
self[3] * value)
}
#[inline(always)]
pure fn div_t(value: T) -> Quat<T> {
Quat::new(self[0] / value,
self[1] / value,
self[2] / value,
self[3] / value)
}
#[inline(always)]
pure fn mul_v(vec: &Vec3<T>) -> Vec3<T> {
let tmp = self.v.cross(vec).add_v(&vec.mul_t(self.s));
self.v.cross(&tmp).mul_t(cast(2)).add_v(vec)
}
#[inline(always)]
pure fn add_q(other: &Quat<T>) -> Quat<T> {
Quat::new(self[0] + other[0],
self[1] + other[1],
self[2] + other[2],
self[3] + other[3])
}
#[inline(always)]
pure fn sub_q(other: &Quat<T>) -> Quat<T> {
Quat::new(self[0] - other[0],
self[1] - other[1],
self[2] - other[2],
self[3] - other[3])
}
#[inline(always)]
pure fn mul_q(other: &Quat<T>) -> Quat<T> {
Quat::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z,
self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y,
self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z,
self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x)
}
#[inline(always)]
pure fn dot(other: &Quat<T>) -> T {
self.s * other.s + self.v.dot(&other.v)
}
#[inline(always)]
pure fn conjugate() -> Quat<T> {
Quat::from_sv(self.s, -self.v)
}
#[inline(always)]
pure fn inverse() -> Quat<T> {
self.conjugate().div_t(self.length2())
}
#[inline(always)]
pure fn length2() -> T {
self.s * self.s + self.v.length2()
}
#[inline(always)]
pure fn length() -> T {
self.length2().sqrt()
}
#[inline(always)]
pure fn normalize() -> Quat<T> {
let mut n: T = cast(1);
n /= self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn nlerp(other: &Quat<T>, amount: T) -> Quat<T> {
let _1: T = cast(1);
self.mul_t(_1 - amount).add_q(&other.mul_t(amount)).normalize()
}
/**
* Spherical Linear Intoperlation
*
* Both quaternions should be normalized first, or else strange things will
* will happen...
*
* Note: The `acos` used in `slerp` is an expensive operation, so unless your
* quarternions a far away from each other it's generally more advisable to
* use nlerp when you know your rotations are going to be small.
*
* See *[Understanding Slerp, Then Not Using It]
* (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)*
* for more information. The [Arcsynthesis OpenGL tutorial]
* (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html)
* also provides a good explanation.
*/
#[inline(always)]
pure fn slerp(other: &Quat<T>, amount: T) -> Quat<T> {
let dot: T = cast(self.dot(other));
// if quaternions are close together use `nlerp`
let dot_threshold = cast(0.9995);
if dot > dot_threshold { return self.nlerp(other, amount) }
let robust_dot = dot.clamp(&-cast(1), &cast(1)); // stay within the domain of acos()
let theta_0 = acos(&robust_dot); // the angle between the quaternions
let theta = theta_0 * amount; // the fraction of theta specified by `amount`
let q = other.sub_q(&self.mul_t(robust_dot))
.normalize();
self.mul_t(cos(&theta)).add_q(&q.mul_t(sin(&theta)))
}
#[inline(always)]
pub pure fn from_axis_angle(axis: Vec3<T>, theta: T) -> Quat<T> {
let half = radians(&theta) / cast(2);
Quat::from_sv(cos(&half), axis.mul_t(sin(&half)))
}
#[inline(always)]
pure fn to_mat3() -> Mat3<T> {
let x2 = self.v.x + self.v.x;
let y2 = self.v.y + self.v.y;
let z2 = self.v.z + self.v.z;
let xx2 = x2 * self.v.x;
let xy2 = x2 * self.v.y;
let xz2 = x2 * self.v.z;
let yy2 = y2 * self.v.y;
let yz2 = y2 * self.v.z;
let zz2 = z2 * self.v.z;
let sy2 = y2 * self.s;
let sz2 = z2 * self.s;
let sx2 = x2 * self.s;
let _1: T = cast(1);
Mat3::new(_1 - yy2 - zz2, xy2 - sz2, xz2 + sy2,
xy2 + sz2, _1 - xx2 - zz2, yz2 - sx2,
xz2 - sy2, yz2 + sx2, _1 - xx2 - yy2)
}
#[inline(always)]
pure fn to_mat4() -> Mat4<T> {
self.to_mat3().to_mat4()
}
}
pub impl<T:Copy> Quat<T>: Index<uint, T> {
#[inline(always)]
pure fn index(i: uint) -> T {
unsafe { do buf_as_slice(
transmute::<*Quat<T>, *T>(
to_unsafe_ptr(&self)), 4) |slice| { slice[i] }
}
}
}
pub impl<T:Copy DefaultEq> Quat<T>: Eq {
#[inline(always)]
pure fn eq(other: &Quat<T>) -> bool {
self.default_eq(other)
}
#[inline(always)]
pure fn ne(other: &Quat<T>) -> bool {
!(self == *other)
}
}
pub impl<T:Copy FuzzyEq> Quat<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Quat<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2]) &&
self[3].fuzzy_eq(&other[3])
}
}
pub impl<T:Copy DefaultEq> Quat<T>: DefaultEq {
#[inline(always)]
pure fn default_eq(other: &Quat<T>) -> bool {
self[0].default_eq(&other[0]) &&
self[1].default_eq(&other[1]) &&
self[2].default_eq(&other[2]) &&
self[3].default_eq(&other[3])
}
}