cgmath/src/cgmath/quaternion.rs

368 lines
12 KiB
Rust
Raw Normal View History

2013-08-26 05:51:19 +00:00
// Copyright 2013 The CGMath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
2013-10-19 14:00:44 +00:00
use std::fmt;
2014-04-02 09:24:04 +00:00
use std::num::{zero, one, cast};
use angle::{Angle, Rad, acos, sin, sin_cos};
2014-01-09 00:26:50 +00:00
use approx::ApproxEq;
use array::{Array, build};
use matrix::{Matrix3, ToMatrix3, ToMatrix4, Matrix4};
use point::{Point3};
use rotation::{Rotation, Rotation3, Basis3, ToBasis3};
use vector::{Vector3, Vector, EuclideanVector};
use partial_ord::PartOrdFloat;
/// A quaternion in scalar/vector form
#[deriving(Clone, Eq)]
pub struct Quaternion<S> { pub s: S, pub v: Vector3<S> }
array!(impl<S> Quaternion<S> -> [S, ..4] _4)
pub trait ToQuaternion<S: Float> {
fn to_quaternion(&self) -> Quaternion<S>;
}
impl<S: PartOrdFloat<S>>
Quaternion<S> {
/// Construct a new quaternion from one scalar component and three
/// imaginary components
#[inline]
pub fn new(w: S, xi: S, yj: S, zk: S) -> Quaternion<S> {
Quaternion::from_sv(w, Vector3::new(xi, yj, zk))
}
2013-07-12 01:22:14 +00:00
/// Construct a new quaternion from a scalar and a vector
#[inline]
pub fn from_sv(s: S, v: Vector3<S>) -> Quaternion<S> {
Quaternion { s: s, v: v }
}
/// The additive identity, ie: `q = 0 + 0i + 0j + 0i`
#[inline]
pub fn zero() -> Quaternion<S> {
Quaternion::new(zero(), zero(), zero(), zero())
}
/// The multiplicative identity, ie: `q = 1 + 0i + 0j + 0i`
#[inline]
pub fn identity() -> Quaternion<S> {
Quaternion::from_sv(one::<S>(), Vector3::zero())
}
/// The result of multiplying the quaternion a scalar
#[inline]
pub fn mul_s(&self, value: S) -> Quaternion<S> {
Quaternion::from_sv(self.s * value, self.v.mul_s(value))
}
/// The result of dividing the quaternion a scalar
#[inline]
pub fn div_s(&self, value: S) -> Quaternion<S> {
Quaternion::from_sv(self.s / value, self.v.div_s(value))
}
/// The result of multiplying the quaternion by a vector
#[inline]
pub fn mul_v(&self, vec: &Vector3<S>) -> Vector3<S> {
let tmp = self.v.cross(vec).add_v(&vec.mul_s(self.s.clone()));
2013-10-12 19:56:05 +00:00
self.v.cross(&tmp).mul_s(cast(2).unwrap()).add_v(vec)
}
/// The sum of this quaternion and `other`
#[inline]
pub fn add_q(&self, other: &Quaternion<S>) -> Quaternion<S> {
build(|i| self.i(i).add(other.i(i)))
}
/// The difference between this quaternion and `other`
#[inline]
pub fn sub_q(&self, other: &Quaternion<S>) -> Quaternion<S> {
build(|i| self.i(i).add(other.i(i)))
}
/// The the result of multipliplying the quaternion by `other`
pub fn mul_q(&self, other: &Quaternion<S>) -> Quaternion<S> {
Quaternion::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z,
2014-04-14 01:41:29 +00:00
self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y,
self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z,
self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x)
}
#[inline]
pub fn mul_self_s(&mut self, s: S) {
self.each_mut(|_, x| *x = x.mul(&s))
}
#[inline]
pub fn div_self_s(&mut self, s: S) {
self.each_mut(|_, x| *x = x.div(&s))
}
#[inline]
pub fn add_self_q(&mut self, other: &Quaternion<S>) {
self.each_mut(|i, x| *x = x.add(other.i(i)));
}
#[inline]
pub fn sub_self_q(&mut self, other: &Quaternion<S>) {
self.each_mut(|i, x| *x = x.sub(other.i(i)));
}
#[inline]
pub fn mul_self_q(&mut self, other: &Quaternion<S>) {
*self = self.mul_q(other);
}
/// The dot product of the quaternion and `other`
#[inline]
pub fn dot(&self, other: &Quaternion<S>) -> S {
self.s * other.s + self.v.dot(&other.v)
}
/// The conjugate of the quaternion
#[inline]
pub fn conjugate(&self) -> Quaternion<S> {
Quaternion::from_sv(self.s.clone(), -self.v.clone())
}
/// The squared magnitude of the quaternion. This is useful for
/// magnitude comparisons where the exact magnitude does not need to be
/// calculated.
#[inline]
pub fn magnitude2(&self) -> S {
self.s * self.s + self.v.length2()
}
/// The magnitude of the quaternion
///
/// # Performance notes
///
/// For instances where the exact magnitude of the quaternion does not need
/// to be known, for example for quaternion-quaternion magnitude comparisons,
/// it is advisable to use the `magnitude2` method instead.
#[inline]
pub fn magnitude(&self) -> S {
2014-04-02 09:24:04 +00:00
self.magnitude2().sqrt()
}
/// The normalized quaternion
#[inline]
pub fn normalize(&self) -> Quaternion<S> {
self.mul_s(one::<S>() / self.magnitude())
}
/// Normalised linear interpolation
///
/// # Return value
///
/// The intoperlated quaternion
pub fn nlerp(&self, other: &Quaternion<S>, amount: S) -> Quaternion<S> {
self.mul_s(one::<S>() - amount).add_q(&other.mul_s(amount)).normalize()
}
}
impl<S: PartOrdFloat<S>>
Quaternion<S> {
/// Spherical Linear Intoperlation
///
/// Perform a spherical linear interpolation between the quaternion and
/// `other`. Both quaternions should be normalized first.
///
/// # Return value
///
/// The intoperlated quaternion
///
/// # Performance notes
///
/// The `acos` operation used in `slerp` is an expensive operation, so unless
/// your quarternions a far away from each other it's generally more advisable
/// to use `nlerp` when you know your rotations are going to be small.
///
/// - [Understanding Slerp, Then Not Using It]
/// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)
/// - [Arcsynthesis OpenGL tutorial]
/// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html)
pub fn slerp(&self, other: &Quaternion<S>, amount: S) -> Quaternion<S> {
use std::num::cast;
let dot = self.dot(other);
2013-10-12 19:56:05 +00:00
let dot_threshold = cast(0.9995).unwrap();
// if quaternions are close together use `nlerp`
if dot > dot_threshold {
self.nlerp(other, amount)
} else {
// stay within the domain of acos()
// TODO REMOVE WHEN https://github.com/mozilla/rust/issues/12068 IS RESOLVED
let robust_dot = if dot > one::<S>() {
one::<S>()
} else if dot < -one::<S>() {
-one::<S>()
} else {
dot
};
2013-10-12 19:54:24 +00:00
let theta: Rad<S> = acos(robust_dot.clone());
2013-10-12 19:54:24 +00:00
let scale1 = sin(theta.mul_s(one::<S>() - amount));
let scale2 = sin(theta.mul_s(amount));
2013-10-12 19:54:24 +00:00
self.mul_s(scale1)
.add_q(&other.mul_s(scale2))
.mul_s(sin(theta).recip())
}
}
}
2014-01-09 00:26:50 +00:00
impl<S: Float + ApproxEq<S>>
ToMatrix3<S> for Quaternion<S> {
/// Convert the quaternion to a 3 x 3 rotation matrix
fn to_matrix3(&self) -> Matrix3<S> {
let x2 = self.v.x + self.v.x;
let y2 = self.v.y + self.v.y;
let z2 = self.v.z + self.v.z;
let xx2 = x2 * self.v.x;
let xy2 = x2 * self.v.y;
let xz2 = x2 * self.v.z;
let yy2 = y2 * self.v.y;
let yz2 = y2 * self.v.z;
let zz2 = z2 * self.v.z;
let sy2 = y2 * self.s;
let sz2 = z2 * self.s;
let sx2 = x2 * self.s;
Matrix3::new(one::<S>() - yy2 - zz2, xy2 + sz2, xz2 - sy2,
2014-04-14 01:41:29 +00:00
xy2 - sz2, one::<S>() - xx2 - zz2, yz2 + sx2,
xz2 + sy2, yz2 - sx2, one::<S>() - xx2 - yy2)
}
}
impl<S: Float + ApproxEq<S>>
ToMatrix4<S> for Quaternion<S> {
/// Convert the quaternion to a 4 x 4 rotation matrix
fn to_matrix4(&self) -> Matrix4<S> {
let x2 = self.v.x + self.v.x;
let y2 = self.v.y + self.v.y;
let z2 = self.v.z + self.v.z;
let xx2 = x2 * self.v.x;
let xy2 = x2 * self.v.y;
let xz2 = x2 * self.v.z;
let yy2 = y2 * self.v.y;
let yz2 = y2 * self.v.z;
let zz2 = z2 * self.v.z;
let sy2 = y2 * self.s;
let sz2 = z2 * self.s;
let sx2 = x2 * self.s;
Matrix4::new(one::<S>() - yy2 - zz2, xy2 + sz2, xz2 - sy2, zero::<S>(),
2014-04-14 01:41:29 +00:00
xy2 - sz2, one::<S>() - xx2 - zz2, yz2 + sx2, zero::<S>(),
xz2 + sy2, yz2 - sx2, one::<S>() - xx2 - yy2, zero::<S>(),
zero::<S>(), zero::<S>(), zero::<S>(), one::<S>())
}
}
impl<S: PartOrdFloat<S>>
Neg<Quaternion<S>> for Quaternion<S> {
#[inline]
fn neg(&self) -> Quaternion<S> {
Quaternion::from_sv(-self.s, -self.v)
}
}
impl<S: fmt::Show> fmt::Show for Quaternion<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f.buf, "{} + {}i + {}j + {}k",
self.s,
self.v.x,
self.v.y,
self.v.z)
}
}
// Quaternion Rotation impls
impl<S: PartOrdFloat<S>>
ToBasis3<S> for Quaternion<S> {
#[inline]
fn to_rot3(&self) -> Basis3<S> { Basis3::from_quaternion(self) }
}
impl<S: Float> ToQuaternion<S> for Quaternion<S> {
#[inline]
fn to_quaternion(&self) -> Quaternion<S> { self.clone() }
}
impl<S: PartOrdFloat<S>>
Rotation<S, [S, ..3], Vector3<S>, Point3<S>> for Quaternion<S> {
#[inline]
fn identity() -> Quaternion<S> { Quaternion::identity() }
#[inline]
fn look_at(dir: &Vector3<S>, up: &Vector3<S>) -> Quaternion<S> {
Matrix3::look_at(dir, up).to_quaternion()
}
#[inline]
fn between_vectors(a: &Vector3<S>, b: &Vector3<S>) -> Quaternion<S> {
//http://stackoverflow.com/questions/1171849/
//finding-quaternion-representing-the-rotation-from-one-vector-to-another
Quaternion::from_sv(one::<S>() + a.dot(b), a.cross(b)).normalize()
}
#[inline]
fn rotate_vector(&self, vec: &Vector3<S>) -> Vector3<S> { self.mul_v(vec) }
#[inline]
fn concat(&self, other: &Quaternion<S>) -> Quaternion<S> { self.mul_q(other) }
#[inline]
fn concat_self(&mut self, other: &Quaternion<S>) { self.mul_self_q(other); }
#[inline]
fn invert(&self) -> Quaternion<S> { self.conjugate().div_s(self.magnitude2()) }
#[inline]
fn invert_self(&mut self) { *self = self.invert() }
}
impl<S: PartOrdFloat<S>>
Rotation3<S> for Quaternion<S>
{
#[inline]
fn from_axis_angle(axis: &Vector3<S>, angle: Rad<S>) -> Quaternion<S> {
let (s, c) = sin_cos(angle.mul_s(cast(0.5).unwrap()));
Quaternion::from_sv(c, axis.mul_s(s))
}
fn from_euler(x: Rad<S>, y: Rad<S>, z: Rad<S>) -> Quaternion<S> {
// http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Conversion
let (sx2, cx2) = sin_cos(x.mul_s(cast(0.5).unwrap()));
let (sy2, cy2) = sin_cos(y.mul_s(cast(0.5).unwrap()));
let (sz2, cz2) = sin_cos(z.mul_s(cast(0.5).unwrap()));
Quaternion::new(cz2 * cx2 * cy2 + sz2 * sx2 * sy2,
2014-04-14 01:41:29 +00:00
sz2 * cx2 * cy2 - cz2 * sx2 * sy2,
cz2 * sx2 * cy2 + sz2 * cx2 * sy2,
cz2 * cx2 * sy2 - sz2 * sx2 * cy2)
}
}