Copy quaternion method impls over from src-old, and add conversion traits

This commit is contained in:
Brendan Zabarauskas 2013-09-03 17:28:43 +10:00
parent ca432e9728
commit 00991e00f3
4 changed files with 281 additions and 6 deletions

View file

@ -33,7 +33,11 @@ pub mod projection;
pub mod util {
use std::num::one;
/// This is horrific. We really need better from-int support in std::num.
// These functions are horrific! We really need better from-int support
// in std::num.
#[inline]
pub fn two<T: Num>() -> T { one::<T>() + one::<T>() }
#[inline]
pub fn half<T: Real>() -> T { one::<T>() / two::<T>() }
}

View file

@ -18,7 +18,9 @@
use std::num::{one, zero};
use array::*;
use quaternion::{Quat, ToQuat};
use vector::*;
use util::half;
/// A 2 x 2, column major matrix
#[deriving(Clone, Eq)]
@ -32,6 +34,11 @@ pub struct Mat3<S> { x: Vec3<S>, y: Vec3<S>, z: Vec3<S> }
#[deriving(Clone, Eq)]
pub struct Mat4<S> { x: Vec4<S>, y: Vec4<S>, z: Vec4<S>, w: Vec4<S> }
// Conversion traits
pub trait ToMat2<S: Clone + Num> { fn to_mat2(&self) -> Mat2<S>; }
pub trait ToMat3<S: Clone + Num> { fn to_mat3(&self) -> Mat3<S>; }
pub trait ToMat4<S: Clone + Num> { fn to_mat4(&self) -> Mat4<S>; }
impl<S: Clone + Num> Mat2<S> {
#[inline]
pub fn new(c0r0: S, c0r1: S,
@ -95,6 +102,16 @@ impl<S: Clone + Num> Mat3<S> {
}
}
impl<S: Clone + Float> Mat3<S> {
pub fn look_at(dir: &Vec3<S>, up: &Vec3<S>) -> Mat3<S> {
let dir = dir.normalize();
let side = dir.cross(&up.normalize());
let up = side.cross(&dir).normalize();
Mat3::from_cols(up, side, dir)
}
}
impl<S: Clone + Num> Mat4<S> {
#[inline]
pub fn new(c0r0: S, c0r1: S, c0r2: S, c0r3: S,
@ -403,3 +420,52 @@ for Mat4<S>
}
}
}
impl<S:Clone + Float> ToQuat<S> for Mat3<S> {
/// Convert the matrix to a quaternion
fn to_quat(&self) -> Quat<S> {
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
let mut s;
let w; let x; let y; let z;
let trace = self.trace();
cond! (
(trace >= zero::<S>()) {
s = (one::<S>() + trace).sqrt();
w = half::<S>() * s;
s = half::<S>() / s;
x = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
y = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
z = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
}
((*self.cr(0, 0) > *self.cr(1, 1))
&& (*self.cr(0, 0) > *self.cr(2, 2))) {
s = (half::<S>() + (*self.cr(0, 0) - *self.cr(1, 1) - *self.cr(2, 2))).sqrt();
w = half::<S>() * s;
s = half::<S>() / s;
x = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
y = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
z = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
}
(*self.cr(1, 1) > *self.cr(2, 2)) {
s = (half::<S>() + (*self.cr(1, 1) - *self.cr(0, 0) - *self.cr(2, 2))).sqrt();
w = half::<S>() * s;
s = half::<S>() / s;
x = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
y = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
z = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
}
_ {
s = (half::<S>() + (*self.cr(2, 2) - *self.cr(0, 0) - *self.cr(1, 1))).sqrt();
w = half::<S>() * s;
s = half::<S>() / s;
x = (*self.cr(2, 0) - *self.cr(0, 2)) * s;
y = (*self.cr(1, 2) - *self.cr(2, 1)) * s;
z = (*self.cr(0, 1) - *self.cr(1, 0)) * s;
}
)
Quat::new(w, x, y, z)
}
}

View file

@ -13,23 +13,223 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use vector::Vec3;
use std::num::{zero, one, sqrt};
use util::two;
use matrix::{Mat3, ToMat3};
use vector::{Vec3, Vector, EuclideanVector};
/// A quaternion in scalar/vector form
#[deriving(Clone, Eq)]
pub struct Quat<T> { s: T, v: Vec3<T> }
pub struct Quat<S> { s: S, v: Vec3<S> }
impl<T: Clone + Num> Quat<T> {
pub trait ToQuat<S: Clone + Float> {
fn to_quat(&self) -> Quat<S>;
}
impl<S: Clone + Float> Quat<S> {
/// Construct a new quaternion from one scalar component and three
/// imaginary components
#[inline]
pub fn new(w: T, xi: T, yj: T, zk: T) -> Quat<T> {
pub fn new(w: S, xi: S, yj: S, zk: S) -> Quat<S> {
Quat::from_sv(w, Vec3::new(xi, yj, zk))
}
/// Construct a new quaternion from a scalar and a vector
#[inline]
pub fn from_sv(s: T, v: Vec3<T>) -> Quat<T> {
pub fn from_sv(s: S, v: Vec3<S>) -> Quat<S> {
Quat { s: s, v: v }
}
#[inline]
pub fn look_at(dir: &Vec3<S>, up: &Vec3<S>) -> Quat<S> {
Mat3::look_at(dir, up).to_quat()
}
/// The additive identity, ie: `q = 0 + 0i + 0j + 0i`
#[inline]
pub fn zero() -> Quat<S> {
Quat::new(zero(), zero(), zero(), zero())
}
/// The multiplicative identity, ie: `q = 1 + 0i + 0j + 0i`
#[inline]
pub fn identity() -> Quat<S> {
Quat::from_sv(one::<S>(), Vec3::zero())
}
/// The result of multiplying the quaternion a scalar
#[inline]
pub fn mul_s(&self, value: S) -> Quat<S> {
Quat::from_sv(self.s * value, self.v.mul_s(value))
}
/// The result of dividing the quaternion a scalar
#[inline]
pub fn div_s(&self, value: S) -> Quat<S> {
Quat::from_sv(self.s / value, self.v.div_s(value))
}
/// The result of multiplying the quaternion by a vector
#[inline]
pub fn mul_v(&self, vec: &Vec3<S>) -> Vec3<S> {
let tmp = self.v.cross(vec).add_v(&vec.mul_s(self.s.clone()));
self.v.cross(&tmp).mul_s(two::<S>()).add_v(vec)
}
/// The sum of this quaternion and `other`
#[inline]
pub fn add_q(&self, other: &Quat<S>) -> Quat<S> {
Quat::new(self.s + other.s,
self.v.x + other.v.x,
self.v.y + other.v.y,
self.v.z + other.v.z)
}
/// The sum of this quaternion and `other`
#[inline]
pub fn sub_q(&self, other: &Quat<S>) -> Quat<S> {
Quat::new(self.s - other.s,
self.v.x - other.v.x,
self.v.y - other.v.y,
self.v.z - other.v.z)
}
/// The the result of multipliplying the quaternion by `other`
pub fn mul_q(&self, other: &Quat<S>) -> Quat<S> {
Quat::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z,
self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y,
self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z,
self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x)
}
/// The dot product of the quaternion and `other`
#[inline]
pub fn dot(&self, other: &Quat<S>) -> S {
self.s * other.s + self.v.dot(&other.v)
}
/// The conjugate of the quaternion
#[inline]
pub fn conjugate(&self) -> Quat<S> {
Quat::from_sv(self.s.clone(), -self.v.clone())
}
/// The multiplicative inverse of the quaternion
#[inline]
pub fn inverse(&self) -> Quat<S> {
self.conjugate().div_s(self.magnitude2())
}
/// The squared magnitude of the quaternion. This is useful for
/// magnitude comparisons where the exact magnitude does not need to be
/// calculated.
#[inline]
pub fn magnitude2(&self) -> S {
self.s * self.s + self.v.length2()
}
/// The magnitude of the quaternion
///
/// # Performance notes
///
/// For instances where the exact magnitude of the quaternion does not need
/// to be known, for example for quaternion-quaternion magnitude comparisons,
/// it is advisable to use the `magnitude2` method instead.
#[inline]
pub fn magnitude(&self) -> S {
sqrt(self.magnitude2())
}
/// The normalized quaternion
#[inline]
pub fn normalize(&self) -> Quat<S> {
self.mul_s(one::<S>() / self.magnitude())
}
/// Normalised linear interpolation
///
/// # Return value
///
/// The intoperlated quaternion
pub fn nlerp(&self, other: &Quat<S>, amount: S) -> Quat<S> {
self.mul_s(one::<S>() - amount).add_q(&other.mul_s(amount)).normalize()
}
}
impl<S: Clone + Float> Quat<S> {
/// Spherical Linear Intoperlation
///
/// Perform a spherical linear interpolation between the quaternion and
/// `other`. Both quaternions should be normalized first.
///
/// # Return value
///
/// The intoperlated quaternion
///
/// # Performance notes
///
/// The `acos` operation used in `slerp` is an expensive operation, so unless
/// your quarternions a far away from each other it's generally more advisable
/// to use `nlerp` when you know your rotations are going to be small.
///
/// - [Understanding Slerp, Then Not Using It]
/// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)
/// - [Arcsynthesis OpenGL tutorial]
/// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html)
pub fn slerp(&self, other: &Quat<S>, amount: S) -> Quat<S> {
use std::num::cast;
let dot = self.dot(other);
let dot_threshold = cast(0.9995);
// if quaternions are close together use `nlerp`
if dot > dot_threshold {
self.nlerp(other, amount)
} else {
// stay within the domain of acos()
let robust_dot = dot.clamp(&-one::<S>(), &one::<S>());
let theta_0 = robust_dot.acos(); // the angle between the quaternions
let theta = theta_0 * amount; // the fraction of theta specified by `amount`
let q = other.sub_q(&self.mul_s(robust_dot))
.normalize();
self.mul_s(theta.cos())
.add_q(&q.mul_s(theta.sin()))
}
}
}
impl<S: Clone + Float> ToMat3<S> for Quat<S> {
/// Convert the quaternion to a 3 x 3 rotation matrix
fn to_mat3(&self) -> Mat3<S> {
let x2 = self.v.x + self.v.x;
let y2 = self.v.y + self.v.y;
let z2 = self.v.z + self.v.z;
let xx2 = x2 * self.v.x;
let xy2 = x2 * self.v.y;
let xz2 = x2 * self.v.z;
let yy2 = y2 * self.v.y;
let yz2 = y2 * self.v.z;
let zz2 = z2 * self.v.z;
let sy2 = y2 * self.s;
let sz2 = z2 * self.s;
let sx2 = x2 * self.s;
Mat3::new(one::<S>() - yy2 - zz2, xy2 + sz2, xz2 - sy2,
xy2 - sz2, one::<S>() - xx2 - zz2, yz2 + sx2,
xz2 + sy2, yz2 - sx2, one::<S>() - xx2 - yy2)
}
}
impl<S: Clone + Float> Neg<Quat<S>> for Quat<S> {
#[inline]
fn neg(&self) -> Quat<S> {
Quat::from_sv(-self.s, -self.v)
}
}

View file

@ -30,6 +30,11 @@ pub struct Vec3<S> { x: S, y: S, z: S }
#[deriving(Eq, Clone, Zero)]
pub struct Vec4<S> { x: S, y: S, z: S, w: S }
// Conversion traits
pub trait ToVec2<S: Clone + Num> { fn to_vec2(&self) -> Vec2<S>; }
pub trait ToVec3<S: Clone + Num> { fn to_vec3(&self) -> Vec3<S>; }
pub trait ToVec4<S: Clone + Num> { fn to_vec4(&self) -> Vec4<S>; }
// Utility macro for generating associated functions for the vectors
macro_rules! vec(
(impl $Self:ident <$S:ident> { $($field:ident),+ }) => (