Switch to an Euler angle type for defining rotations

This commit is contained in:
Brendan Zabarauskas 2016-04-17 14:33:06 +10:00
parent a521a9254f
commit 0259acb87f
8 changed files with 220 additions and 114 deletions

View file

@ -21,7 +21,7 @@ extern crate cgmath;
use rand::{IsaacRng, Rng}; use rand::{IsaacRng, Rng};
use test::Bencher; use test::Bencher;
use cgmath::{Quaternion, Basis2, Basis3, Vector3, Rotation2, Rotation3, Rad}; use cgmath::*;
#[path="common/macros.rs"] #[path="common/macros.rs"]
#[macro_use] mod macros; #[macro_use] mod macros;
@ -55,7 +55,7 @@ fn _bench_rot3_from_axisangle(bh: &mut Bencher) {
bench_from_axis_angle::<Basis3<f32>>(bh) bench_from_axis_angle::<Basis3<f32>>(bh)
} }
bench_construction!(_bench_rot2_from_axisangle, Basis2<f32>, Rotation2::from_angle [ angle: Rad<f32> ]); bench_construction!(_bench_rot2_from_axisangle, Basis2<f32>, Basis2::from_angle [ angle: Rad<f32> ]);
bench_construction!(_bench_quat_from_euler_angles, Quaternion<f32>, Rotation3::from_euler [roll: Rad<f32>, pitch: Rad<f32>, yaw: Rad<f32>]); bench_construction!(_bench_quat_from_euler_angles, Quaternion<f32>, Quaternion::from [src: Euler<Rad<f32>>]);
bench_construction!(_bench_rot3_from_euler_angles, Basis3<f32>, Rotation3::from_euler [roll: Rad<f32>, pitch: Rad<f32>, yaw: Rad<f32>]); bench_construction!(_bench_rot3_from_euler_angles, Basis3<f32>, Basis3::from [src: Euler<Rad<f32>>]);

127
src/euler.rs Normal file
View file

@ -0,0 +1,127 @@
// Copyright 2016 The CGMath Developers. For a full listing of the authors,
// refer to the Cargo.toml file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use rand::{Rand, Rng};
use num_traits::{cast, Zero};
use structure::*;
use angle::Rad;
use approx::ApproxEq;
use quaternion::Quaternion;
use num::BaseFloat;
/// A set of [Euler angles] representing a rotation in three-dimensional space.
///
/// This type is marked as `#[repr(C, packed)]`.
///
/// # Defining rotations using Euler angles
///
/// Note that while [Euler angles] are intuitive to define, they are prone to
/// [gimbal lock] and are challenging to interpolate between. Instead we
/// recommend that you convert them to a more robust representation, such as a
/// quaternion or or rotation matrix. To this end, `From<Euler<A>>` conversions
/// are provided for the following types:
///
/// - [`Basis3`](struct.Basis3.html)
/// - [`Matrix3`](struct.Matrix3.html)
/// - [`Matrix4`](struct.Matrix4.html)
/// - [`Quaternion`](struct.Quaternion.html)
///
/// For example, to define a quaternion that applies the following:
///
/// 1. a 45° rotation around the _x_ axis
/// 2. a 180° rotation around the _y_ axis
/// 3. a -30° rotation around the _z_ axis
///
/// you can use the following code:
///
/// ```
/// use cgmath::{Deg, Euler, Quaternion};
///
/// let rotation = Quaternion::from(Euler {
/// x: Deg::new(45.0),
/// y: Deg::new(180.0),
/// z: Deg::new(15.0),
/// });
/// ```
///
/// [Euler angles]: https://en.wikipedia.org/wiki/Euler_angles
/// [gimbal lock]: https://en.wikipedia.org/wiki/Gimbal_lock#Gimbal_lock_in_applied_mathematics
/// [convert]: #defining-rotations-using-euler-angles
#[repr(C, packed)]
#[derive(Copy, Clone, Debug)]
#[derive(PartialEq, Eq)]
#[derive(RustcEncodable, RustcDecodable)]
pub struct Euler<A: Angle> {
/// The angle to apply around the _x_ axis.
pub x: A,
/// The angle to apply around the _y_ axis.
pub y: A,
/// The angle to apply around the _z_ axis.
pub z: A,
}
impl<S: BaseFloat> From<Quaternion<S>> for Euler<Rad<S>> {
fn from(src: Quaternion<S>) -> Euler<Rad<S>> {
let sig: S = cast(0.499).unwrap();
let two: S = cast(2).unwrap();
let one: S = cast(1).unwrap();
let (qw, qx, qy, qz) = (src.s, src.v.x, src.v.y, src.v.z);
let (sqw, sqx, sqy, sqz) = (qw * qw, qx * qx, qy * qy, qz * qz);
let unit = sqx + sqy + sqz + sqw;
let test = qx * qy + qz * qw;
if test > sig * unit {
Euler {
x: Rad::turn_div_4(),
y: Rad::zero(),
z: Rad::atan2(qx, qw) * two,
}
} else if test < -sig * unit {
Euler {
x: -Rad::turn_div_4(),
y: Rad::zero(),
z: Rad::atan2(qx, qw) * two,
}
} else {
Euler {
x: Rad::asin(two * (qx * qy + qz * qw)),
y: Rad::atan2(two * (qy * qw - qx * qz), one - two * (sqy + sqz)),
z: Rad::atan2(two * (qx * qw - qy * qz), one - two * (sqx + sqz)),
}
}
}
}
impl<A: Angle> ApproxEq for Euler<A> {
type Epsilon = A::Unitless;
#[inline]
fn approx_eq_eps(&self, other: &Euler<A>, epsilon: &A::Unitless) -> bool {
self.x.approx_eq_eps(&other.x, epsilon) &&
self.y.approx_eq_eps(&other.y, epsilon) &&
self.z.approx_eq_eps(&other.z, epsilon)
}
}
impl<A: Angle + Rand> Rand for Euler<A> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> Euler<A> {
Euler { x: rng.gen(), y: rng.gen(), z: rng.gen() }
}
}

View file

@ -64,6 +64,7 @@ pub use quaternion::Quaternion;
pub use vector::{Vector2, Vector3, Vector4, dot, vec2, vec3, vec4}; pub use vector::{Vector2, Vector3, Vector4, dot, vec2, vec3, vec4};
pub use angle::{Deg, Rad, deg, rad}; pub use angle::{Deg, Rad, deg, rad};
pub use euler::Euler;
pub use point::{Point2, Point3}; pub use point::{Point2, Point3};
pub use rotation::*; pub use rotation::*;
pub use transform::*; pub use transform::*;
@ -88,6 +89,7 @@ mod quaternion;
mod vector; mod vector;
mod angle; mod angle;
mod euler;
mod point; mod point;
mod rotation; mod rotation;
mod transform; mod transform;

View file

@ -25,6 +25,7 @@ use structure::*;
use angle::Rad; use angle::Rad;
use approx::ApproxEq; use approx::ApproxEq;
use euler::Euler;
use num::BaseFloat; use num::BaseFloat;
use point::Point3; use point::Point3;
use quaternion::Quaternion; use quaternion::Quaternion;
@ -159,24 +160,6 @@ impl<S: BaseFloat> Matrix3<S> {
S::zero(), S::zero(), S::one()) S::zero(), S::zero(), S::one())
} }
/// Create a rotation matrix from a set of euler angles.
///
/// # Parameters
///
/// - `x`: the angular rotation around the `x` axis (pitch).
/// - `y`: the angular rotation around the `y` axis (yaw).
/// - `z`: the angular rotation around the `z` axis (roll).
pub fn from_euler(x: Rad<S>, y: Rad<S>, z: Rad<S>) -> Matrix3<S> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let (sx, cx) = Rad::sin_cos(x);
let (sy, cy) = Rad::sin_cos(y);
let (sz, cz) = Rad::sin_cos(z);
Matrix3::new(cy * cz, cy * sz, -sy,
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy,
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy)
}
/// Create a rotation matrix from an angle around an arbitrary axis. /// Create a rotation matrix from an angle around an arbitrary axis.
pub fn from_axis_angle(axis: Vector3<S>, angle: Rad<S>) -> Matrix3<S> { pub fn from_axis_angle(axis: Vector3<S>, angle: Rad<S>) -> Matrix3<S> {
let (s, c) = Rad::sin_cos(angle); let (s, c) = Rad::sin_cos(angle);
@ -196,6 +179,37 @@ impl<S: BaseFloat> Matrix3<S> {
} }
} }
impl<A> From<Euler<A>> for Matrix3<<A as Angle>::Unitless> where
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
{
fn from(src: Euler<A>) -> Matrix3<A::Unitless> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let (sx, cx) = Rad::sin_cos(src.x.into());
let (sy, cy) = Rad::sin_cos(src.y.into());
let (sz, cz) = Rad::sin_cos(src.z.into());
Matrix3::new(cy * cz, cy * sz, -sy,
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy,
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy)
}
}
impl<A> From<Euler<A>> for Matrix4<<A as Angle>::Unitless> where
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
{
fn from(src: Euler<A>) -> Matrix4<A::Unitless> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let (sx, cx) = Rad::sin_cos(src.x.into());
let (sy, cy) = Rad::sin_cos(src.y.into());
let (sz, cz) = Rad::sin_cos(src.z.into());
Matrix4::new(cy * cz, cy * sz, -sy, A::Unitless::zero(),
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy, A::Unitless::zero(),
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy, A::Unitless::zero(),
A::Unitless::zero(), A::Unitless::zero(), A::Unitless::zero(), A::Unitless::one())
}
}
impl<S: BaseFloat> Matrix4<S> { impl<S: BaseFloat> Matrix4<S> {
/// Create a new matrix, providing values for each index. /// Create a new matrix, providing values for each index.
#[inline] #[inline]

View file

@ -24,6 +24,7 @@ use structure::*;
use angle::Rad; use angle::Rad;
use approx::ApproxEq; use approx::ApproxEq;
use euler::Euler;
use matrix::{Matrix3, Matrix4}; use matrix::{Matrix3, Matrix4};
use num::BaseFloat; use num::BaseFloat;
use point::Point3; use point::Point3;
@ -117,44 +118,6 @@ impl<S: BaseFloat> Quaternion<S> {
(self * scale1 + other * scale2) * Rad::sin(theta).recip() (self * scale1 + other * scale2) * Rad::sin(theta).recip()
} }
} }
/// Convert a Quaternion to Eular angles
/// This is a polar singularity aware conversion
///
/// Based on:
/// - [Maths - Conversion Quaternion to Euler]
/// (http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/)
pub fn to_euler(self) -> (Rad<S>, Rad<S>, Rad<S>) {
let sig: S = cast(0.499f64).unwrap();
let two: S = cast(2f64).unwrap();
let one: S = cast(1f64).unwrap();
let (qw, qx, qy, qz) = (self.s, self.v.x, self.v.y, self.v.z);
let (sqw, sqx, sqy, sqz) = (qw * qw, qx * qx, qy * qy, qz * qz);
let unit = sqx + sqy + sqz + sqw;
let test = qx * qy + qz * qw;
if test > sig * unit {
(
Rad::zero(),
Rad::turn_div_4(),
Rad::atan2(qx, qw) * two,
)
} else if test < -sig * unit {
(
Rad::zero(),
-Rad::turn_div_4(),
Rad::atan2(qx, qw) * two,
)
} else {
(
Rad::atan2(two * (qy * qw - qx * qz), one - two * (sqy + sqz)),
Rad::asin(two * (qx * qy + qz * qw)),
Rad::atan2(two * (qx * qw - qy * qz), one - two * (sqx + sqz)),
)
}
}
} }
impl<S: BaseFloat> VectorSpace for Quaternion<S> { impl<S: BaseFloat> VectorSpace for Quaternion<S> {
@ -173,6 +136,24 @@ impl<S: BaseFloat> InnerSpace for Quaternion<S> {
} }
} }
impl<A> From<Euler<A>> for Quaternion<<A as Angle>::Unitless> where
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
{
fn from(src: Euler<A>) -> Quaternion<A::Unitless> {
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm
let half = cast(0.5f64).unwrap();
let (s_x, c_x) = Rad::sin_cos(src.x.into() * half);
let (s_y, c_y) = Rad::sin_cos(src.y.into() * half);
let (s_z, c_z) = Rad::sin_cos(src.z.into() * half);
Quaternion::new(c_y * c_x * c_z - s_y * s_x * s_z,
s_y * s_x * c_z + c_y * c_x * s_z,
s_y * c_x * c_z + c_y * s_x * s_z,
c_y * s_x * c_z - s_y * c_x * s_z)
}
}
impl_operator!(<S: BaseFloat> Neg for Quaternion<S> { impl_operator!(<S: BaseFloat> Neg for Quaternion<S> {
fn neg(quat) -> Quaternion<S> { fn neg(quat) -> Quaternion<S> {
Quaternion::from_sv(-quat.s, -quat.v) Quaternion::from_sv(-quat.s, -quat.v)
@ -373,19 +354,6 @@ impl<S: BaseFloat> Rotation3<S> for Quaternion<S> {
let (s, c) = Rad::sin_cos(angle * cast(0.5f64).unwrap()); let (s, c) = Rad::sin_cos(angle * cast(0.5f64).unwrap());
Quaternion::from_sv(c, axis * s) Quaternion::from_sv(c, axis * s)
} }
/// - [Maths - Conversion Euler to Quaternion]
/// (http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm)
fn from_euler(x: Rad<S>, y: Rad<S>, z: Rad<S>) -> Quaternion<S> {
let (s1, c1) = Rad::sin_cos(x * cast(0.5f64).unwrap());
let (s2, c2) = Rad::sin_cos(y * cast(0.5f64).unwrap());
let (s3, c3) = Rad::sin_cos(z * cast(0.5f64).unwrap());
Quaternion::new(c1 * c2 * c3 - s1 * s2 * s3,
s1 * s2 * c3 + c1 * c2 * s3,
s1 * c2 * c3 + c1 * s2 * s3,
c1 * s2 * c3 - s1 * c2 * s3)
}
} }
impl<S: BaseFloat> Into<[S; 4]> for Quaternion<S> { impl<S: BaseFloat> Into<[S; 4]> for Quaternion<S> {

View file

@ -19,6 +19,7 @@ use structure::*;
use angle::Rad; use angle::Rad;
use approx::ApproxEq; use approx::ApproxEq;
use euler::Euler;
use matrix::{Matrix2, Matrix3}; use matrix::{Matrix2, Matrix3};
use num::BaseFloat; use num::BaseFloat;
use point::{Point2, Point3}; use point::{Point2, Point3};
@ -85,19 +86,11 @@ pub trait Rotation2<S: BaseFloat>: Rotation<Point2<S>>
pub trait Rotation3<S: BaseFloat>: Rotation<Point3<S>> pub trait Rotation3<S: BaseFloat>: Rotation<Point3<S>>
+ Into<Matrix3<S>> + Into<Matrix3<S>>
+ Into<Basis3<S>> + Into<Basis3<S>>
+ Into<Quaternion<S>> { + Into<Quaternion<S>>
+ From<Euler<Rad<S>>> {
/// Create a rotation using an angle around a given axis. /// Create a rotation using an angle around a given axis.
fn from_axis_angle(axis: Vector3<S>, angle: Rad<S>) -> Self; fn from_axis_angle(axis: Vector3<S>, angle: Rad<S>) -> Self;
/// Create a rotation from a set of euler angles.
///
/// # Parameters
///
/// - `x`: the angular rotation around the `x` axis (pitch).
/// - `y`: the angular rotation around the `y` axis (yaw).
/// - `z`: the angular rotation around the `z` axis (roll).
fn from_euler(x: Rad<S>, y: Rad<S>, z: Rad<S>) -> Self;
/// Create a rotation from an angle around the `x` axis (pitch). /// Create a rotation from an angle around the `x` axis (pitch).
#[inline] #[inline]
fn from_angle_x(theta: Rad<S>) -> Self { fn from_angle_x(theta: Rad<S>) -> Self {
@ -317,10 +310,6 @@ impl<S: BaseFloat> Rotation3<S> for Basis3<S> {
Basis3 { mat: Matrix3::from_axis_angle(axis, angle) } Basis3 { mat: Matrix3::from_axis_angle(axis, angle) }
} }
fn from_euler(x: Rad<S>, y: Rad<S>, z: Rad<S>) -> Basis3<S> {
Basis3 { mat: Matrix3::from_euler(x, y ,z) }
}
fn from_angle_x(theta: Rad<S>) -> Basis3<S> { fn from_angle_x(theta: Rad<S>) -> Basis3<S> {
Basis3 { mat: Matrix3::from_angle_x(theta) } Basis3 { mat: Matrix3::from_angle_x(theta) }
} }
@ -334,6 +323,17 @@ impl<S: BaseFloat> Rotation3<S> for Basis3<S> {
} }
} }
impl<A: Angle> From<Euler<A>> for Basis3<<A as Angle>::Unitless> where
A: Into<Rad<<A as Angle>::Unitless>>,
{
/// Create a three-dimensional rotation matrix from a set of euler angles.
fn from(src: Euler<A>) -> Basis3<A::Unitless> {
Basis3 {
mat: Matrix3::from(src),
}
}
}
impl<S: fmt::Debug> fmt::Debug for Basis3<S> { impl<S: fmt::Debug> fmt::Debug for Basis3<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "Basis3 ")); try!(write!(f, "Basis3 "));

View file

@ -332,7 +332,7 @@ pub mod matrix3 {
fn check_from_axis_angle_x(pitch: Rad<f32>) { fn check_from_axis_angle_x(pitch: Rad<f32>) {
let found = Matrix3::from_angle_x(pitch); let found = Matrix3::from_angle_x(pitch);
let expected = Matrix3::from_euler(pitch, rad(0.0), rad(0.0)); let expected = Matrix3::from(Euler { x: pitch, y: rad(0.0), z: rad(0.0) });
assert_approx_eq_eps!(found, expected, 0.001); assert_approx_eq_eps!(found, expected, 0.001);
} }
@ -346,7 +346,7 @@ pub mod matrix3 {
fn check_from_axis_angle_y(yaw: Rad<f32>) { fn check_from_axis_angle_y(yaw: Rad<f32>) {
let found = Matrix3::from_angle_y(yaw); let found = Matrix3::from_angle_y(yaw);
let expected = Matrix3::from_euler(rad(0.0), yaw, rad(0.0)); let expected = Matrix3::from(Euler { x: rad(0.0), y: yaw, z: rad(0.0) });
assert_approx_eq_eps!(found, expected, 0.001); assert_approx_eq_eps!(found, expected, 0.001);
} }
@ -360,7 +360,7 @@ pub mod matrix3 {
fn check_from_axis_angle_z(roll: Rad<f32>) { fn check_from_axis_angle_z(roll: Rad<f32>) {
let found = Matrix3::from_angle_z(roll); let found = Matrix3::from_angle_z(roll);
let expected = Matrix3::from_euler(rad(0.0), rad(0.0), roll); let expected = Matrix3::from(Euler { x: rad(0.0), y: rad(0.0), z: roll });
assert_approx_eq_eps!(found, expected, 0.001); assert_approx_eq_eps!(found, expected, 0.001);
} }
@ -375,7 +375,7 @@ pub mod matrix3 {
fn check_from_axis_angle_x(pitch: Rad<f32>) { fn check_from_axis_angle_x(pitch: Rad<f32>) {
let found = Matrix3::from_axis_angle(Vector3::unit_x(), pitch); let found = Matrix3::from_axis_angle(Vector3::unit_x(), pitch);
let expected = Matrix3::from_euler(pitch, rad(0.0), rad(0.0)); let expected = Matrix3::from(Euler { x: pitch, y: rad(0.0), z: rad(0.0) });
assert_approx_eq_eps!(found, expected, 0.001); assert_approx_eq_eps!(found, expected, 0.001);
} }
@ -389,7 +389,7 @@ pub mod matrix3 {
fn check_from_axis_angle_y(yaw: Rad<f32>) { fn check_from_axis_angle_y(yaw: Rad<f32>) {
let found = Matrix3::from_axis_angle(Vector3::unit_y(), yaw); let found = Matrix3::from_axis_angle(Vector3::unit_y(), yaw);
let expected = Matrix3::from_euler(rad(0.0), yaw, rad(0.0)); let expected = Matrix3::from(Euler { x: rad(0.0), y: yaw, z: rad(0.0) });
assert_approx_eq_eps!(found, expected, 0.001); assert_approx_eq_eps!(found, expected, 0.001);
} }
@ -403,7 +403,7 @@ pub mod matrix3 {
fn check_from_axis_angle_z(roll: Rad<f32>) { fn check_from_axis_angle_z(roll: Rad<f32>) {
let found = Matrix3::from_axis_angle(Vector3::unit_z(), roll); let found = Matrix3::from_axis_angle(Vector3::unit_z(), roll);
let expected = Matrix3::from_euler(rad(0.0), rad(0.0), roll); let expected = Matrix3::from(Euler { x: rad(0.0), y: rad(0.0), z: roll });
assert_approx_eq_eps!(found, expected, 0.001); assert_approx_eq_eps!(found, expected, 0.001);
} }

View file

@ -43,12 +43,12 @@ mod operators {
#[test] #[test]
fn test_mul() { fn test_mul() {
impl_test_mul!(2.0f32, Quaternion::from_euler(rad(1f32), rad(1f32), rad(1f32))); impl_test_mul!(2.0f32, Quaternion::from(Euler { x: rad(1f32), y: rad(1f32), z: rad(1f32) }));
} }
#[test] #[test]
fn test_div() { fn test_div() {
impl_test_div!(2.0f32, Quaternion::from_euler(rad(1f32), rad(1f32), rad(1f32))); impl_test_div!(2.0f32, Quaternion::from(Euler { x: rad(1f32), y: rad(1f32), z: rad(1f32) }));
} }
} }
@ -57,28 +57,23 @@ mod to_from_euler {
use cgmath::*; use cgmath::*;
fn check_euler(pitch: Rad<f32>, yaw: Rad<f32>, roll: Rad<f32>) { fn check_euler(rotation: Euler<Rad<f32>>) {
let quat = Quaternion::from_euler(pitch, yaw, roll); assert_approx_eq_eps!(Euler::from(Quaternion::from(rotation)), rotation, 0.001);
let (found_pitch, found_yaw, found_roll) = quat.to_euler();
assert_approx_eq_eps!(pitch, found_pitch, 0.001);
assert_approx_eq_eps!(yaw, found_yaw, 0.001);
assert_approx_eq_eps!(roll, found_roll, 0.001);
} }
const HPI: f32 = f32::consts::FRAC_PI_2; const HPI: f32 = f32::consts::FRAC_PI_2;
#[test] fn test_zero() { check_euler(rad(0f32), rad(0f32), rad(0f32)); } #[test] fn test_zero() { check_euler(Euler { x: rad( 0f32), y: rad( 0f32), z: rad( 0f32) }); }
#[test] fn test_yaw_pos_1() { check_euler(rad(0f32), rad(1f32), rad(0f32)); } #[test] fn test_yaw_pos_1() { check_euler(Euler { x: rad( 0f32), y: rad( 1f32), z: rad( 0f32) }); }
#[test] fn test_yaw_neg_1() { check_euler(rad(0f32), rad(-1f32), rad(0f32)); } #[test] fn test_yaw_neg_1() { check_euler(Euler { x: rad( 0f32), y: rad(-1f32), z: rad( 0f32) }); }
#[test] fn test_pitch_pos_1() { check_euler(rad(1f32), rad(0f32), rad(0f32)); } #[test] fn test_pitch_pos_1() { check_euler(Euler { x: rad( 1f32), y: rad( 0f32), z: rad( 0f32) }); }
#[test] fn test_pitch_neg_1() { check_euler(rad(-1f32), rad(0f32), rad(0f32)); } #[test] fn test_pitch_neg_1() { check_euler(Euler { x: rad(-1f32), y: rad( 0f32), z: rad( 0f32) }); }
#[test] fn test_roll_pos_1() { check_euler(rad(0f32), rad(0f32), rad(1f32)); } #[test] fn test_roll_pos_1() { check_euler(Euler { x: rad( 0f32), y: rad( 0f32), z: rad( 1f32) }); }
#[test] fn test_roll_neg_1() { check_euler(rad(0f32), rad(0f32), rad(-1f32)); } #[test] fn test_roll_neg_1() { check_euler(Euler { x: rad( 0f32), y: rad( 0f32), z: rad(-1f32) }); }
#[test] fn test_pitch_yaw_roll_pos_1() { check_euler(rad(1f32), rad(1f32), rad(1f32)); } #[test] fn test_pitch_yaw_roll_pos_1() { check_euler(Euler { x: rad( 1f32), y: rad( 1f32), z: rad( 1f32) }); }
#[test] fn test_pitch_yaw_roll_neg_1() { check_euler(rad(-1f32), rad(-1f32), rad(-1f32)); } #[test] fn test_pitch_yaw_roll_neg_1() { check_euler(Euler { x: rad(-1f32), y: rad(-1f32), z: rad(-1f32) }); }
#[test] fn test_pitch_yaw_roll_pos_hp() { check_euler(rad(0f32), rad(HPI), rad(1f32)); } #[test] fn test_pitch_yaw_roll_pos_hp() { check_euler(Euler { x: rad( 0f32), y: rad( HPI), z: rad( 1f32) }); }
#[test] fn test_pitch_yaw_roll_neg_hp() { check_euler(rad(0f32), rad(-HPI), rad(1f32)); } #[test] fn test_pitch_yaw_roll_neg_hp() { check_euler(Euler { x: rad( 0f32), y: rad( -HPI), z: rad( 1f32) }); }
} }
mod from { mod from {
@ -86,7 +81,7 @@ mod from {
use cgmath::*; use cgmath::*;
fn check_with_euler(x: Rad<f32>, y: Rad<f32>, z: Rad<f32>) { fn check_with_euler(x: Rad<f32>, y: Rad<f32>, z: Rad<f32>) {
let matrix3 = Matrix3::from_euler(x, y, z); let matrix3 = Matrix3::from(Euler { x: x, y: y, z: z });
let quaternion = Quaternion::from(matrix3); let quaternion = Quaternion::from(matrix3);
let quaternion_matrix3 = Matrix3::from(quaternion); let quaternion_matrix3 = Matrix3::from(quaternion);
assert_approx_eq!(matrix3, quaternion_matrix3); assert_approx_eq!(matrix3, quaternion_matrix3);