Rotation is generalized over dimensions

This commit is contained in:
kvark 2013-11-01 07:34:39 -04:00
parent d81157fba5
commit 0c41aa3951
3 changed files with 65 additions and 42 deletions

View file

@ -13,9 +13,10 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use point::{Point,Point2, Point3}; use point::{Point, Point2, Point3};
use vector::{Vector,Vec2, Vec3}; use vector::{Vector, Vec2, Vec3};
/// A generic ray
#[deriving(Clone, Eq)] #[deriving(Clone, Eq)]
pub struct Ray<P,V> pub struct Ray<P,V>
{ {

View file

@ -17,49 +17,65 @@ use angle::Rad;
use matrix::Matrix; use matrix::Matrix;
use matrix::{Mat2, ToMat2}; use matrix::{Mat2, ToMat2};
use matrix::{Mat3, ToMat3}; use matrix::{Mat3, ToMat3};
use point::{Point2, Point3}; use point::{Point, Point2, Point3};
use quaternion::{Quat, ToQuat}; use quaternion::{Quat, ToQuat};
use ray::{Ray2, Ray3}; use ray::{Ray, Ray2, Ray3};
use vector::{Vector, Vec2, Vec3}; use vector::{Vector, Vec2, Vec3};
/// A trait for generic rotation
pub trait Rotation
<
S: Primitive + Clone,
Slice,
V: Vector<S,Slice>,
P: Point<S,V,Slice> + Clone
>
: Eq
+ ApproxEq<S>
{
fn rotate_point(&self, point: &P) -> P;
fn rotate_vec(&self, vec: &V) -> V;
#[inline]
fn rotate_ray(&self, ray: &Ray<P,V>) -> Ray<P,V> {
Ray::new( ray.origin.clone(), self.rotate_vec(&ray.direction) )
}
fn concat(&self, other: &Self) -> Self;
fn invert(&self) -> Self;
#[inline]
fn concat_self(&mut self, other: &Self) {
*self = self.concat(other);
}
#[inline]
fn invert_self(&mut self) {
*self = self.invert();
}
}
/// A two-dimensional rotation /// A two-dimensional rotation
pub trait Rotation2 pub trait Rotation2
< <
S S
> >
: Eq : Rotation<S, [S, ..2], Vec2<S>, Point2<S>>
+ ApproxEq<S>
+ ToMat2<S> + ToMat2<S>
+ ToBasis2<S> + ToBasis2<S>
{ {}
fn rotate_point2(&self, point: &Point2<S>) -> Point2<S>;
fn rotate_vec2(&self, vec: &Vec2<S>) -> Vec2<S>;
fn rotate_ray2(&self, ray: &Ray2<S>) -> Ray2<S>;
fn concat(&self, other: &Self) -> Self;
fn concat_self(&mut self, other: &Self);
fn invert(&self) -> Self;
fn invert_self(&mut self);
}
/// A three-dimensional rotation /// A three-dimensional rotation
pub trait Rotation3 pub trait Rotation3
< <
S S
> >
: Eq : Rotation<S, [S, ..3], Vec3<S>, Point3<S>>
+ ApproxEq<S>
+ ToMat3<S> + ToMat3<S>
+ ToBasis3<S> + ToBasis3<S>
+ ToQuat<S> + ToQuat<S>
{ {}
fn rotate_point3(&self, point: &Point3<S>) -> Point3<S>;
fn rotate_vec3(&self, vec: &Vec3<S>) -> Vec3<S>;
fn rotate_ray3(&self, ray: &Ray3<S>) -> Ray3<S>;
fn concat(&self, other: &Self) -> Self;
fn concat_self(&mut self, other: &Self);
fn invert(&self) -> Self;
fn invert_self(&mut self);
}
/// A two-dimensional rotation matrix. /// A two-dimensional rotation matrix.
/// ///
@ -91,15 +107,15 @@ impl<S: Float> ToMat2<S> for Basis2<S> {
fn to_mat2(&self) -> Mat2<S> { self.mat.clone() } fn to_mat2(&self) -> Mat2<S> { self.mat.clone() }
} }
impl<S: Float> Rotation2<S> for Basis2<S> { impl<S: Float> Rotation<S, [S, ..2], Vec2<S>, Point2<S>> for Basis2<S> {
#[inline] #[inline]
fn rotate_point2(&self, _point: &Point2<S>) -> Point2<S> { fail!("Not yet implemented") } fn rotate_point(&self, _point: &Point2<S>) -> Point2<S> { fail!("Not yet implemented") }
#[inline] #[inline]
fn rotate_vec2(&self, vec: &Vec2<S>) -> Vec2<S> { self.mat.mul_v(vec) } fn rotate_vec(&self, vec: &Vec2<S>) -> Vec2<S> { self.mat.mul_v(vec) }
#[inline] #[inline]
fn rotate_ray2(&self, _ray: &Ray2<S>) -> Ray2<S> { fail!("Not yet implemented") } fn rotate_ray(&self, _ray: &Ray2<S>) -> Ray2<S> { fail!("Not yet implemented") }
#[inline] #[inline]
fn concat(&self, other: &Basis2<S>) -> Basis2<S> { Basis2 { mat: self.mat.mul_m(&other.mat) } } fn concat(&self, other: &Basis2<S>) -> Basis2<S> { Basis2 { mat: self.mat.mul_m(&other.mat) } }
@ -136,6 +152,8 @@ impl<S: Float> ApproxEq<S> for Basis2<S> {
} }
} }
impl<S: Float> Rotation2<S> for Basis2<S> {}
/// A three-dimensional rotation matrix. /// A three-dimensional rotation matrix.
/// ///
/// The matrix is guaranteed to be orthogonal, so some operations, specifically /// The matrix is guaranteed to be orthogonal, so some operations, specifically
@ -207,15 +225,15 @@ impl<S: Float> ToQuat<S> for Basis3<S> {
fn to_quat(&self) -> Quat<S> { self.mat.to_quat() } fn to_quat(&self) -> Quat<S> { self.mat.to_quat() }
} }
impl<S: Float> Rotation3<S> for Basis3<S> { impl<S: Float> Rotation<S, [S, ..3], Vec3<S>, Point3<S>> for Basis3<S> {
#[inline] #[inline]
fn rotate_point3(&self, _point: &Point3<S>) -> Point3<S> { fail!("Not yet implemented") } fn rotate_point(&self, _point: &Point3<S>) -> Point3<S> { fail!("Not yet implemented") }
#[inline] #[inline]
fn rotate_vec3(&self, vec: &Vec3<S>) -> Vec3<S> { self.mat.mul_v(vec) } fn rotate_vec(&self, vec: &Vec3<S>) -> Vec3<S> { self.mat.mul_v(vec) }
#[inline] #[inline]
fn rotate_ray3(&self, _ray: &Ray3<S>) -> Ray3<S> { fail!("Not yet implemented") } fn rotate_ray(&self, _ray: &Ray3<S>) -> Ray3<S> { fail!("Not yet implemented") }
#[inline] #[inline]
fn concat(&self, other: &Basis3<S>) -> Basis3<S> { Basis3 { mat: self.mat.mul_m(&other.mat) } } fn concat(&self, other: &Basis3<S>) -> Basis3<S> { Basis3 { mat: self.mat.mul_m(&other.mat) } }
@ -252,6 +270,8 @@ impl<S: Float> ApproxEq<S> for Basis3<S> {
} }
} }
impl<S: Float> Rotation3<S> for Basis3<S> {}
// Quaternion Rotation impls // Quaternion Rotation impls
impl<S: Float> ToBasis3<S> for Quat<S> { impl<S: Float> ToBasis3<S> for Quat<S> {
@ -264,15 +284,15 @@ impl<S: Float> ToQuat<S> for Quat<S> {
fn to_quat(&self) -> Quat<S> { self.clone() } fn to_quat(&self) -> Quat<S> { self.clone() }
} }
impl<S: Float> Rotation3<S> for Quat<S> { impl<S: Float> Rotation<S, [S, ..3], Vec3<S>, Point3<S>> for Quat<S> {
#[inline] #[inline]
fn rotate_point3(&self, _point: &Point3<S>) -> Point3<S> { fail!("Not yet implemented") } fn rotate_point(&self, _point: &Point3<S>) -> Point3<S> { fail!("Not yet implemented") }
#[inline] #[inline]
fn rotate_vec3(&self, vec: &Vec3<S>) -> Vec3<S> { self.mul_v(vec) } fn rotate_vec(&self, vec: &Vec3<S>) -> Vec3<S> { self.mul_v(vec) }
#[inline] #[inline]
fn rotate_ray3(&self, _ray: &Ray3<S>) -> Ray3<S> { fail!("Not yet implemented") } fn rotate_ray(&self, _ray: &Ray3<S>) -> Ray3<S> { fail!("Not yet implemented") }
#[inline] #[inline]
fn concat(&self, other: &Quat<S>) -> Quat<S> { self.mul_q(other) } fn concat(&self, other: &Quat<S>) -> Quat<S> { self.mul_q(other) }
@ -286,3 +306,5 @@ impl<S: Float> Rotation3<S> for Quat<S> {
#[inline] #[inline]
fn invert_self(&mut self) { *self = self.invert() } fn invert_self(&mut self) { *self = self.invert() }
} }
impl<S: Float> Rotation3<S> for Quat<S> {}

View file

@ -14,10 +14,10 @@
// limitations under the License. // limitations under the License.
use matrix::Mat4; use matrix::Mat4;
use point::{Point,Point3}; use point::{Point, Point3};
use ray::Ray; use ray::Ray;
use rotation::Rotation3; use rotation::Rotation3;
use vector::{Vector,Vec3}; use vector::{Vector, Vec3};
/// A trait of affine transformation, that can be applied to points or vectors /// A trait of affine transformation, that can be applied to points or vectors
pub trait Transform pub trait Transform
@ -60,11 +60,11 @@ impl<S: Float, R: Rotation3<S>> Transform3<S, R> {
impl <S: Float, R: Rotation3<S>> Transform<S, [S, .. 3], Vec3<S>, Point3<S>> for Transform3<S,R> { impl <S: Float, R: Rotation3<S>> Transform<S, [S, .. 3], Vec3<S>, Point3<S>> for Transform3<S,R> {
#[inline] #[inline]
fn transform_vec(&self, vec: &Vec3<S>) -> Vec3<S> { fn transform_vec(&self, vec: &Vec3<S>) -> Vec3<S> {
self.rot.rotate_vec3( &vec.mul_s( self.scale.clone() )) self.rot.rotate_vec( &vec.mul_s( self.scale.clone() ))
} }
#[inline] #[inline]
fn transform_point(&self, point: &Point3<S>) -> Point3<S> { fn transform_point(&self, point: &Point3<S>) -> Point3<S> {
self.rot.rotate_point3( &point.mul_s( self.scale.clone() )).add_v( &self.disp ) self.rot.rotate_point( &point.mul_s( self.scale.clone() )).add_v( &self.disp )
} }
} }