Be more selective about inlining, #[inline(always)] -> #[inline] for functions other than map

This commit is contained in:
Brendan Zabarauskas 2013-06-12 07:50:16 +10:00
parent 17975b798d
commit 21ae345adc
4 changed files with 344 additions and 359 deletions

View file

@ -25,32 +25,32 @@ use quat::Quat;
pub struct Mat2<T> { x: Vec2<T>, y: Vec2<T> }
impl<T> Mat2<T> {
#[inline(always)]
#[inline]
pub fn col<'a>(&'a self, i: uint) -> &'a Vec2<T> {
&'a self.as_slice()[i]
}
#[inline(always)]
#[inline]
pub fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec2<T> {
&'a mut self.as_mut_slice()[i]
}
#[inline(always)]
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [Vec2<T>,..2] {
unsafe { transmute(self) }
}
#[inline(always)]
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [Vec2<T>,..2] {
unsafe { transmute(self) }
}
#[inline(always)]
#[inline]
pub fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T {
self.col(i).index(j)
}
#[inline(always)]
#[inline]
pub fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T {
self.col_mut(i).index_mut(j)
}
@ -72,7 +72,7 @@ impl<T:Copy> Mat2<T> {
/// r1 | c0r1 | c1r1 |
/// +------+------+
/// ~~~
#[inline(always)]
#[inline]
pub fn new(c0r0: T, c0r1: T,
c1r0: T, c1r1: T) -> Mat2<T> {
Mat2::from_cols(Vec2::new(c0r0, c0r1),
@ -94,38 +94,38 @@ impl<T:Copy> Mat2<T> {
/// r1 | c0.y | c1.y |
/// +------+------+
/// ~~~
#[inline(always)]
#[inline]
pub fn from_cols(c0: Vec2<T>,
c1: Vec2<T>) -> Mat2<T> {
Mat2 { x: c0, y: c1 }
}
#[inline(always)]
#[inline]
pub fn row(&self, i: uint) -> Vec2<T> {
Vec2::new(*self.elem(0, i),
*self.elem(1, i))
}
#[inline(always)]
#[inline]
pub fn swap_cols(&mut self, a: uint, b: uint) {
let tmp = *self.col(a);
*self.col_mut(a) = *self.col(b);
*self.col_mut(b) = tmp;
}
#[inline(always)]
#[inline]
pub fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
}
#[inline(always)]
#[inline]
pub fn transpose(&self) -> Mat2<T> {
Mat2::new(*self.elem(0, 0), *self.elem(1, 0),
*self.elem(0, 1), *self.elem(1, 1))
}
#[inline(always)]
#[inline]
pub fn transpose_self(&mut self) {
let tmp01 = *self.elem(0, 1);
let tmp10 = *self.elem(1, 0);
@ -148,7 +148,7 @@ impl<T:Copy + Num> Mat2<T> {
/// r1 | 0 | val |
/// +-----+-----+
/// ~~~
#[inline(always)]
#[inline]
pub fn from_value(value: T) -> Mat2<T> {
Mat2::new(value, Zero::zero(),
Zero::zero(), value)
@ -163,7 +163,7 @@ impl<T:Copy + Num> Mat2<T> {
/// r1 | 0 | 1 |
/// +----+----+
/// ~~~
#[inline(always)]
#[inline]
pub fn identity() -> Mat2<T> {
Mat2::new(One::one::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), One::one::<T>())
@ -178,55 +178,55 @@ impl<T:Copy + Num> Mat2<T> {
/// r1 | 0 | 0 |
/// +----+----+
/// ~~~
#[inline(always)]
#[inline]
pub fn zero() -> Mat2<T> {
Mat2::new(Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline(always)]
#[inline]
pub fn mul_t(&self, value: T) -> Mat2<T> {
Mat2::from_cols(self.col(0).mul_t(value),
self.col(1).mul_t(value))
}
#[inline(always)]
#[inline]
pub fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
Vec2::new(self.row(0).dot(vec),
self.row(1).dot(vec))
}
#[inline(always)]
#[inline]
pub fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self.col(0).add_v(other.col(0)),
self.col(1).add_v(other.col(1)))
}
#[inline(always)]
#[inline]
pub fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self.col(0).sub_v(other.col(0)),
self.col(1).sub_v(other.col(1)))
}
#[inline(always)]
#[inline]
pub fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)),
self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1)))
}
#[inline(always)]
#[inline]
pub fn mul_self_t(&mut self, value: T) {
self.x.mul_self_t(value);
self.y.mul_self_t(value);
}
#[inline(always)]
#[inline]
pub fn add_self_m(&mut self, other: &Mat2<T>) {
self.x.add_self_v(other.col(0));
self.y.add_self_v(other.col(1));
}
#[inline(always)]
#[inline]
pub fn sub_self_m(&mut self, other: &Mat2<T>) {
self.x.sub_self_v(other.col(0));
self.y.sub_self_v(other.col(1));
@ -248,12 +248,12 @@ impl<T:Copy + Num> Mat2<T> {
*self.col(1).index(1)
}
#[inline(always)]
#[inline]
pub fn to_identity(&mut self) {
*self = Mat2::identity();
}
#[inline(always)]
#[inline]
pub fn to_zero(&mut self) {
*self = Mat2::zero();
}
@ -269,7 +269,7 @@ impl<T:Copy + Num> Mat2<T> {
/// r2 | 0 | 0 | 1 |
/// +----+----+----+
/// ~~~
#[inline(always)]
#[inline]
pub fn to_mat3(&self) -> Mat3<T> {
Mat3::new(*self.elem(0, 0), *self.elem(0, 1), Zero::zero(),
*self.elem(1, 0), *self.elem(1, 1), Zero::zero(),
@ -289,7 +289,7 @@ impl<T:Copy + Num> Mat2<T> {
/// r3 | 0 | 0 | 0 | 1 |
/// +----+----+----+----+
/// ~~~
#[inline(always)]
#[inline]
pub fn to_mat4(&self) -> Mat4<T> {
Mat4::new(*self.elem(0, 0), *self.elem(0, 1), Zero::zero(), Zero::zero(),
*self.elem(1, 0), *self.elem(1, 1), Zero::zero(), Zero::zero(),
@ -299,14 +299,14 @@ impl<T:Copy + Num> Mat2<T> {
}
impl<T:Copy + Num> Neg<Mat2<T>> for Mat2<T> {
#[inline(always)]
#[inline]
pub fn neg(&self) -> Mat2<T> {
Mat2::from_cols(-self.col(0), -self.col(1))
}
}
impl<T:Copy + Real> Mat2<T> {
#[inline(always)]
#[inline]
pub fn from_angle(radians: T) -> Mat2<T> {
let cos_theta = radians.cos();
let sin_theta = radians.sin();
@ -317,7 +317,7 @@ impl<T:Copy + Real> Mat2<T> {
}
impl<T:Copy + Real + ApproxEq<T>> Mat2<T> {
#[inline(always)]
#[inline]
pub fn inverse(&self) -> Option<Mat2<T>> {
let d = self.determinant();
if d.approx_eq(&Zero::zero()) {
@ -328,51 +328,51 @@ impl<T:Copy + Real + ApproxEq<T>> Mat2<T> {
}
}
#[inline(always)]
#[inline]
pub fn invert_self(&mut self) {
*self = self.inverse().expect("Couldn't invert the matrix!");
}
#[inline(always)]
#[inline]
pub fn is_identity(&self) -> bool {
self.approx_eq(&Mat2::identity())
}
#[inline(always)]
#[inline]
pub fn is_diagonal(&self) -> bool {
self.elem(0, 1).approx_eq(&Zero::zero()) &&
self.elem(1, 0).approx_eq(&Zero::zero())
}
#[inline(always)]
#[inline]
pub fn is_rotated(&self) -> bool {
!self.approx_eq(&Mat2::identity())
}
#[inline(always)]
#[inline]
pub fn is_symmetric(&self) -> bool {
self.elem(0, 1).approx_eq(self.elem(1, 0)) &&
self.elem(1, 0).approx_eq(self.elem(0, 1))
}
#[inline(always)]
#[inline]
pub fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&Zero::zero())
}
}
impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Mat2<T> {
#[inline(always)]
#[inline]
pub fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline(always)]
#[inline]
pub fn approx_eq(&self, other: &Mat2<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline(always)]
#[inline]
pub fn approx_eq_eps(&self, other: &Mat2<T>, epsilon: &T) -> bool {
self.col(0).approx_eq_eps(other.col(0), epsilon) &&
self.col(1).approx_eq_eps(other.col(1), epsilon)
@ -392,32 +392,32 @@ pub type Mat2f64 = Mat2<f64>;
pub struct Mat3<T> { x: Vec3<T>, y: Vec3<T>, z: Vec3<T> }
impl<T> Mat3<T> {
#[inline(always)]
#[inline]
pub fn col<'a>(&'a self, i: uint) -> &'a Vec3<T> {
&'a self.as_slice()[i]
}
#[inline(always)]
#[inline]
pub fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec3<T> {
&'a mut self.as_mut_slice()[i]
}
#[inline(always)]
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [Vec3<T>,..3] {
unsafe { transmute(self) }
}
#[inline(always)]
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [Vec3<T>,..3] {
unsafe { transmute(self) }
}
#[inline(always)]
#[inline]
pub fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T {
self.col(i).index(j)
}
#[inline(always)]
#[inline]
pub fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T {
self.col_mut(i).index_mut(j)
}
@ -442,7 +442,7 @@ impl<T:Copy> Mat3<T> {
/// r2 | c0r2 | c1r2 | c2r2 |
/// +------+------+------+
/// ~~~
#[inline(always)]
#[inline]
pub fn new(c0r0:T, c0r1:T, c0r2:T,
c1r0:T, c1r1:T, c1r2:T,
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
@ -469,42 +469,42 @@ impl<T:Copy> Mat3<T> {
/// r2 | c0.z | c1.z | c2.z |
/// +------+------+------+
/// ~~~
#[inline(always)]
#[inline]
pub fn from_cols(c0: Vec3<T>,
c1: Vec3<T>,
c2: Vec3<T>) -> Mat3<T> {
Mat3 { x: c0, y: c1, z: c2 }
}
#[inline(always)]
#[inline]
pub fn row(&self, i: uint) -> Vec3<T> {
Vec3::new(*self.elem(0, i),
*self.elem(1, i),
*self.elem(2, i))
}
#[inline(always)]
#[inline]
pub fn swap_cols(&mut self, a: uint, b: uint) {
let tmp = *self.col(a);
*self.col_mut(a) = *self.col(b);
*self.col_mut(b) = tmp;
}
#[inline(always)]
#[inline]
pub fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
}
#[inline(always)]
#[inline]
pub fn transpose(&self) -> Mat3<T> {
Mat3::new(*self.elem(0, 0), *self.elem(1, 0), *self.elem(2, 0),
*self.elem(0, 1), *self.elem(1, 1), *self.elem(2, 1),
*self.elem(0, 2), *self.elem(1, 2), *self.elem(2, 2))
}
#[inline(always)]
#[inline]
pub fn transpose_self(&mut self) {
let tmp01 = *self.elem(0, 1);
let tmp02 = *self.elem(0, 2);
@ -546,7 +546,7 @@ impl<T:Copy + Num> Mat3<T> {
/// r2 | 0 | 0 | val |
/// +-----+-----+-----+
/// ~~~
#[inline(always)]
#[inline]
pub fn from_value(value: T) -> Mat3<T> {
Mat3::new(value, Zero::zero(), Zero::zero(),
Zero::zero(), value, Zero::zero(),
@ -564,7 +564,7 @@ impl<T:Copy + Num> Mat3<T> {
/// r2 | 0 | 0 | 1 |
/// +----+----+----+
/// ~~~
#[inline(always)]
#[inline]
pub fn identity() -> Mat3<T> {
Mat3::new(One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>(),
@ -582,42 +582,42 @@ impl<T:Copy + Num> Mat3<T> {
/// r2 | 0 | 0 | 0 |
/// +----+----+----+
/// ~~~
#[inline(always)]
#[inline]
pub fn zero() -> Mat3<T> {
Mat3::new(Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline(always)]
#[inline]
pub fn mul_t(&self, value: T) -> Mat3<T> {
Mat3::from_cols(self.col(0).mul_t(value),
self.col(1).mul_t(value),
self.col(2).mul_t(value))
}
#[inline(always)]
#[inline]
pub fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
Vec3::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec))
}
#[inline(always)]
#[inline]
pub fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self.col(0).add_v(other.col(0)),
self.col(1).add_v(other.col(1)),
self.col(2).add_v(other.col(2)))
}
#[inline(always)]
#[inline]
pub fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self.col(0).sub_v(other.col(0)),
self.col(1).sub_v(other.col(1)),
self.col(2).sub_v(other.col(2)))
}
#[inline(always)]
#[inline]
pub fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::new(self.row(0).dot(other.col(0)),
self.row(1).dot(other.col(0)),
@ -632,21 +632,21 @@ impl<T:Copy + Num> Mat3<T> {
self.row(2).dot(other.col(2)))
}
#[inline(always)]
#[inline]
pub fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(value);
self.col_mut(1).mul_self_t(value);
self.col_mut(2).mul_self_t(value);
}
#[inline(always)]
#[inline]
pub fn add_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).add_self_v(other.col(0));
self.col_mut(1).add_self_v(other.col(1));
self.col_mut(2).add_self_v(other.col(2));
}
#[inline(always)]
#[inline]
pub fn sub_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).sub_self_v(other.col(0));
self.col_mut(1).sub_self_v(other.col(1));
@ -667,12 +667,12 @@ impl<T:Copy + Num> Mat3<T> {
*self.elem(2, 2)
}
#[inline(always)]
#[inline]
pub fn to_identity(&mut self) {
*self = Mat3::identity();
}
#[inline(always)]
#[inline]
pub fn to_zero(&mut self) {
*self = Mat3::zero();
}
@ -690,7 +690,7 @@ impl<T:Copy + Num> Mat3<T> {
/// r3 | 0 | 0 | 0 | 1 |
/// +----+----+----+----+
/// ~~~
#[inline(always)]
#[inline]
pub fn to_mat4(&self) -> Mat4<T> {
Mat4::new(*self.elem(0, 0), *self.elem(0, 1), *self.elem(0, 2), Zero::zero(),
*self.elem(1, 0), *self.elem(1, 1), *self.elem(1, 2), Zero::zero(),
@ -700,7 +700,7 @@ impl<T:Copy + Num> Mat3<T> {
}
impl<T:Copy + Num> Neg<Mat3<T>> for Mat3<T> {
#[inline(always)]
#[inline]
pub fn neg(&self) -> Mat3<T> {
Mat3::from_cols(-self.col(0), -self.col(1), -self.col(2))
}
@ -708,7 +708,6 @@ impl<T:Copy + Num> Neg<Mat3<T>> for Mat3<T> {
impl<T:Copy + Real> Mat3<T> {
/// Construct a matrix from an angular rotation around the `x` axis
#[inline(always)]
pub fn from_angle_x(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = radians.cos();
@ -720,7 +719,6 @@ impl<T:Copy + Real> Mat3<T> {
}
/// Construct a matrix from an angular rotation around the `y` axis
#[inline(always)]
pub fn from_angle_y(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = radians.cos();
@ -732,7 +730,6 @@ impl<T:Copy + Real> Mat3<T> {
}
/// Construct a matrix from an angular rotation around the `z` axis
#[inline(always)]
pub fn from_angle_z(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = radians.cos();
@ -750,7 +747,6 @@ impl<T:Copy + Real> Mat3<T> {
/// - `theta_x`: the angular rotation around the `x` axis (pitch)
/// - `theta_y`: the angular rotation around the `y` axis (yaw)
/// - `theta_z`: the angular rotation around the `z` axis (roll)
#[inline(always)]
pub fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let cx = radians_x.cos();
@ -766,7 +762,6 @@ impl<T:Copy + Real> Mat3<T> {
}
/// Construct a matrix from an axis and an angular rotation
#[inline(always)]
pub fn from_angle_axis(radians: T, axis: &Vec3<T>) -> Mat3<T> {
let c = radians.cos();
let s = radians.sin();
@ -781,12 +776,11 @@ impl<T:Copy + Real> Mat3<T> {
_1_c*x*z + s*y, _1_c*y*z - s*x, _1_c*z*z + c)
}
#[inline(always)]
#[inline]
pub fn from_axes(x: Vec3<T>, y: Vec3<T>, z: Vec3<T>) -> Mat3<T> {
Mat3::from_cols(x, y, z)
}
#[inline(always)]
pub fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Mat3<T> {
let dir_ = dir.normalize();
let side = dir_.cross(&up.normalize());
@ -796,7 +790,6 @@ impl<T:Copy + Real> Mat3<T> {
}
/// Convert the matrix to a quaternion
#[inline(always)]
pub fn to_quat(&self) -> Quat<T> {
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
@ -859,17 +852,17 @@ impl<T:Copy + Real + ApproxEq<T>> Mat3<T> {
}
}
#[inline(always)]
#[inline]
pub fn invert_self(&mut self) {
*self = self.inverse().expect("Couldn't invert the matrix!");
}
#[inline(always)]
#[inline]
pub fn is_identity(&self) -> bool {
self.approx_eq(&Mat3::identity())
}
#[inline(always)]
#[inline]
pub fn is_diagonal(&self) -> bool {
self.elem(0, 1).approx_eq(&Zero::zero()) &&
self.elem(0, 2).approx_eq(&Zero::zero()) &&
@ -881,12 +874,12 @@ impl<T:Copy + Real + ApproxEq<T>> Mat3<T> {
self.elem(2, 1).approx_eq(&Zero::zero())
}
#[inline(always)]
#[inline]
pub fn is_rotated(&self) -> bool {
!self.approx_eq(&Mat3::identity())
}
#[inline(always)]
#[inline]
pub fn is_symmetric(&self) -> bool {
self.elem(0, 1).approx_eq(self.elem(1, 0)) &&
self.elem(0, 2).approx_eq(self.elem(2, 0)) &&
@ -898,24 +891,24 @@ impl<T:Copy + Real + ApproxEq<T>> Mat3<T> {
self.elem(2, 1).approx_eq(self.elem(1, 2))
}
#[inline(always)]
#[inline]
pub fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&Zero::zero())
}
}
impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Mat3<T> {
#[inline(always)]
#[inline]
pub fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline(always)]
#[inline]
pub fn approx_eq(&self, other: &Mat3<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline(always)]
#[inline]
pub fn approx_eq_eps(&self, other: &Mat3<T>, epsilon: &T) -> bool {
self.col(0).approx_eq_eps(other.col(0), epsilon) &&
self.col(1).approx_eq_eps(other.col(1), epsilon) &&
@ -948,32 +941,32 @@ pub type Mat3f64 = Mat3<f64>;
pub struct Mat4<T> { x: Vec4<T>, y: Vec4<T>, z: Vec4<T>, w: Vec4<T> }
impl<T> Mat4<T> {
#[inline(always)]
#[inline]
pub fn col<'a>(&'a self, i: uint) -> &'a Vec4<T> {
&'a self.as_slice()[i]
}
#[inline(always)]
#[inline]
pub fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec4<T> {
&'a mut self.as_mut_slice()[i]
}
#[inline(always)]
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [Vec4<T>,..4] {
unsafe { transmute(self) }
}
#[inline(always)]
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [Vec4<T>,..4] {
unsafe { transmute(self) }
}
#[inline(always)]
#[inline]
pub fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T {
self.col(i).index(j)
}
#[inline(always)]
#[inline]
pub fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T {
self.col_mut(i).index_mut(j)
}
@ -1001,7 +994,7 @@ impl<T:Copy> Mat4<T> {
/// r3 | c0r3 | c1r3 | c2r3 | c3r3 |
/// +------+------+------+------+
/// ~~~
#[inline(always)]
#[inline]
pub fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
@ -1033,7 +1026,7 @@ impl<T:Copy> Mat4<T> {
/// r3 | c0.w | c1.w | c2.w | c3.w |
/// +------+------+------+------+
/// ~~~
#[inline(always)]
#[inline]
pub fn from_cols(c0: Vec4<T>,
c1: Vec4<T>,
c2: Vec4<T>,
@ -1041,7 +1034,7 @@ impl<T:Copy> Mat4<T> {
Mat4 { x: c0, y: c1, z: c2, w: c3 }
}
#[inline(always)]
#[inline]
pub fn row(&self, i: uint) -> Vec4<T> {
Vec4::new(*self.elem(0, i),
*self.elem(1, i),
@ -1049,14 +1042,14 @@ impl<T:Copy> Mat4<T> {
*self.elem(3, i))
}
#[inline(always)]
#[inline]
pub fn swap_cols(&mut self, a: uint, b: uint) {
let tmp = *self.col(a);
*self.col_mut(a) = *self.col(b);
*self.col_mut(b) = tmp;
}
#[inline(always)]
#[inline]
pub fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
@ -1064,7 +1057,7 @@ impl<T:Copy> Mat4<T> {
self.w.swap(a, b);
}
#[inline(always)]
#[inline]
pub fn transpose(&self) -> Mat4<T> {
Mat4::new(*self.elem(0, 0), *self.elem(1, 0), *self.elem(2, 0), *self.elem(3, 0),
*self.elem(0, 1), *self.elem(1, 1), *self.elem(2, 1), *self.elem(3, 1),
@ -1072,7 +1065,7 @@ impl<T:Copy> Mat4<T> {
*self.elem(0, 3), *self.elem(1, 3), *self.elem(2, 3), *self.elem(3, 3))
}
#[inline(always)]
#[inline]
pub fn transpose_self(&mut self) {
let tmp01 = *self.elem(0, 1);
let tmp02 = *self.elem(0, 2);
@ -1134,7 +1127,7 @@ impl<T:Copy + Num> Mat4<T> {
/// r3 | 0 | 0 | 0 | val |
/// +-----+-----+-----+-----+
/// ~~~
#[inline(always)]
#[inline]
pub fn from_value(value: T) -> Mat4<T> {
Mat4::new(value, Zero::zero(), Zero::zero(), Zero::zero(),
Zero::zero(), value, Zero::zero(), Zero::zero(),
@ -1155,7 +1148,7 @@ impl<T:Copy + Num> Mat4<T> {
/// r3 | 0 | 0 | 0 | 1 |
/// +----+----+----+----+
/// ~~~
#[inline(always)]
#[inline]
pub fn identity() -> Mat4<T> {
Mat4::new(One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
@ -1176,7 +1169,7 @@ impl<T:Copy + Num> Mat4<T> {
/// r3 | 0 | 0 | 0 | 0 |
/// +----+----+----+----+
/// ~~~
#[inline(always)]
#[inline]
pub fn zero() -> Mat4<T> {
Mat4::new(Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
@ -1184,7 +1177,7 @@ impl<T:Copy + Num> Mat4<T> {
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline(always)]
#[inline]
pub fn mul_t(&self, value: T) -> Mat4<T> {
Mat4::from_cols(self.col(0).mul_t(value),
self.col(1).mul_t(value),
@ -1192,7 +1185,7 @@ impl<T:Copy + Num> Mat4<T> {
self.col(3).mul_t(value))
}
#[inline(always)]
#[inline]
pub fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
Vec4::new(self.row(0).dot(vec),
self.row(1).dot(vec),
@ -1200,7 +1193,7 @@ impl<T:Copy + Num> Mat4<T> {
self.row(3).dot(vec))
}
#[inline(always)]
#[inline]
pub fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self.col(0).add_v(other.col(0)),
self.col(1).add_v(other.col(1)),
@ -1208,7 +1201,7 @@ impl<T:Copy + Num> Mat4<T> {
self.col(3).add_v(other.col(3)))
}
#[inline(always)]
#[inline]
pub fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self.col(0).sub_v(other.col(0)),
self.col(1).sub_v(other.col(1)),
@ -1216,7 +1209,7 @@ impl<T:Copy + Num> Mat4<T> {
self.col(3).sub_v(other.col(3)))
}
#[inline(always)]
#[inline]
pub fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::new(self.row(0).dot(other.col(0)),
self.row(1).dot(other.col(0)),
@ -1239,7 +1232,7 @@ impl<T:Copy + Num> Mat4<T> {
self.row(3).dot(other.col(3)))
}
#[inline(always)]
#[inline]
pub fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(value);
self.col_mut(1).mul_self_t(value);
@ -1247,7 +1240,7 @@ impl<T:Copy + Num> Mat4<T> {
self.col_mut(3).mul_self_t(value);
}
#[inline(always)]
#[inline]
pub fn add_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).add_self_v(other.col(0));
self.col_mut(1).add_self_v(other.col(1));
@ -1255,7 +1248,7 @@ impl<T:Copy + Num> Mat4<T> {
self.col_mut(3).add_self_v(other.col(3));
}
#[inline(always)]
#[inline]
pub fn sub_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).sub_self_v(other.col(0));
self.col_mut(1).sub_self_v(other.col(1));
@ -1294,19 +1287,19 @@ impl<T:Copy + Num> Mat4<T> {
*self.elem(3, 3)
}
#[inline(always)]
#[inline]
pub fn to_identity(&mut self) {
*self = Mat4::identity();
}
#[inline(always)]
#[inline]
pub fn to_zero(&mut self) {
*self = Mat4::zero();
}
}
impl<T:Copy + Num> Neg<Mat4<T>> for Mat4<T> {
#[inline(always)]
#[inline]
pub fn neg(&self) -> Mat4<T> {
Mat4::from_cols(-self.col(0), -self.col(1), -self.col(2), -self.col(3))
}
@ -1359,17 +1352,17 @@ impl<T:Copy + Real + ApproxEq<T>> Mat4<T> {
}
}
#[inline(always)]
#[inline]
pub fn invert_self(&mut self) {
*self = self.inverse().expect("Couldn't invert the matrix!");
}
#[inline(always)]
#[inline]
pub fn is_identity(&self) -> bool {
self.approx_eq(&Mat4::identity())
}
#[inline(always)]
#[inline]
pub fn is_diagonal(&self) -> bool {
self.elem(0, 1).approx_eq(&Zero::zero()) &&
self.elem(0, 2).approx_eq(&Zero::zero()) &&
@ -1388,12 +1381,12 @@ impl<T:Copy + Real + ApproxEq<T>> Mat4<T> {
self.elem(3, 2).approx_eq(&Zero::zero())
}
#[inline(always)]
#[inline]
pub fn is_rotated(&self) -> bool {
!self.approx_eq(&Mat4::identity())
}
#[inline(always)]
#[inline]
pub fn is_symmetric(&self) -> bool {
self.elem(0, 1).approx_eq(self.elem(1, 0)) &&
self.elem(0, 2).approx_eq(self.elem(2, 0)) &&
@ -1412,24 +1405,24 @@ impl<T:Copy + Real + ApproxEq<T>> Mat4<T> {
self.elem(3, 2).approx_eq(self.elem(2, 3))
}
#[inline(always)]
#[inline]
pub fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&Zero::zero())
}
}
impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Mat4<T> {
#[inline(always)]
#[inline]
pub fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline(always)]
#[inline]
pub fn approx_eq(&self, other: &Mat4<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline(always)]
#[inline]
pub fn approx_eq_eps(&self, other: &Mat4<T>, epsilon: &T) -> bool {
self.col(0).approx_eq_eps(other.col(0), epsilon) &&
self.col(1).approx_eq_eps(other.col(1), epsilon) &&

View file

@ -17,7 +17,7 @@ use std::num::{Zero, One};
use mat::Mat4;
// FIXME: We can remove this once we have numeric conversions in std
#[inline(always)]
#[inline]
priv fn two<T:Num>() -> T {
One::one::<T>() + One::one::<T>()
}
@ -30,7 +30,6 @@ priv fn two<T:Num>() -> T {
/// This is the equivalent of the gluPerspective function, the algorithm of which
/// can be found [here](http://www.opengl.org/wiki/GluPerspective_code).
///
#[inline(always)]
pub fn perspective<T:Copy + Real>(fovy: T, aspectRatio: T, near: T, far: T) -> Mat4<T> {
let ymax = near * (fovy / two::<T>()).to_radians().tan();
let xmax = ymax * aspectRatio;
@ -44,7 +43,6 @@ pub fn perspective<T:Copy + Real>(fovy: T, aspectRatio: T, near: T, far: T) -> M
/// This is the equivalent of the now deprecated [glFrustrum]
/// (http://www.opengl.org/sdk/docs/man2/xhtml/glFrustum.xml) function.
///
#[inline(always)]
pub fn frustum<T:Copy + Real>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> Mat4<T> {
let c0r0 = (two::<T>() * near) / (right - left);
let c0r1 = Zero::zero();
@ -78,7 +76,6 @@ pub fn frustum<T:Copy + Real>(left: T, right: T, bottom: T, top: T, near: T, far
/// This is the equivalent of the now deprecated [glOrtho]
/// (http://www.opengl.org/sdk/docs/man2/xhtml/glOrtho.xml) function.
///
#[inline(always)]
pub fn ortho<T:Copy + Real>(left: T, right: T, bottom: T, top: T, near: T, far: T) -> Mat4<T> {
let c0r0 = two::<T>() / (right - left);
let c0r1 = Zero::zero();

View file

@ -21,7 +21,7 @@ use mat::Mat3;
use vec::Vec3;
// FIXME: We can remove this once we have numeric conversions in std
#[inline(always)]
#[inline]
priv fn two<T:Num>() -> T {
One::one::<T>() + One::one::<T>()
}
@ -40,22 +40,22 @@ priv fn two<T:Num>() -> T {
pub struct Quat<T> { s: T, v: Vec3<T> }
impl<T> Quat<T> {
#[inline(always)]
#[inline]
pub fn index<'a>(&'a self, i: uint) -> &'a T {
&'a self.as_slice()[i]
}
#[inline(always)]
#[inline]
pub fn index_mut<'a>(&'a mut self, i: uint) -> &'a mut T {
&'a mut self.as_mut_slice()[i]
}
#[inline(always)]
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [T,..4] {
unsafe { transmute(self) }
}
#[inline(always)]
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T,..4] {
unsafe { transmute(self) }
}
@ -71,7 +71,7 @@ impl<T:Copy> Quat<T> {
/// - `xi`: the fist imaginary component
/// - `yj`: the second imaginary component
/// - `zk`: the third imaginary component
#[inline(always)]
#[inline]
pub fn new(w: T, xi: T, yj: T, zk: T) -> Quat<T> {
Quat::from_sv(w, Vec3::new(xi, yj, zk))
}
@ -82,19 +82,19 @@ impl<T:Copy> Quat<T> {
///
/// - `s`: the scalar component
/// - `v`: a vector containing the three imaginary components
#[inline(always)]
#[inline]
pub fn from_sv(s: T, v: Vec3<T>) -> Quat<T> {
Quat { s: s, v: v }
}
#[inline(always)]
#[inline]
pub fn swap(&mut self, a: uint, b: uint) {
let tmp = *self.index(a);
*self.index_mut(a) = *self.index(b);
*self.index_mut(b) = tmp;
}
#[inline(always)]
#[inline]
pub fn map(&self, f: &fn(&T) -> T) -> Quat<T> {
Quat::new(f(self.index(0)),
f(self.index(1)),
@ -105,7 +105,7 @@ impl<T:Copy> Quat<T> {
impl<T:Copy + Real> Quat<T> {
/// The multiplicative identity, ie: `q = 1 + 0i + 0j + 0i`
#[inline(always)]
#[inline]
pub fn identity() -> Quat<T> {
Quat::new(One::one(),
Zero::zero(),
@ -114,7 +114,7 @@ impl<T:Copy + Real> Quat<T> {
}
/// The additive identity, ie: `q = 0 + 0i + 0j + 0i`
#[inline(always)]
#[inline]
pub fn zero() -> Quat<T> {
Quat::new(Zero::zero(),
Zero::zero(),
@ -122,7 +122,7 @@ impl<T:Copy + Real> Quat<T> {
Zero::zero())
}
#[inline(always)]
#[inline]
pub fn from_angle_x(radians: T) -> Quat<T> {
Quat::new((radians / two()).cos(),
radians.sin(),
@ -130,7 +130,7 @@ impl<T:Copy + Real> Quat<T> {
Zero::zero())
}
#[inline(always)]
#[inline]
pub fn from_angle_y(radians: T) -> Quat<T> {
Quat::new((radians / two()).cos(),
Zero::zero(),
@ -138,7 +138,7 @@ impl<T:Copy + Real> Quat<T> {
Zero::zero())
}
#[inline(always)]
#[inline]
pub fn from_angle_z(radians: T) -> Quat<T> {
Quat::new((radians / two()).cos(),
Zero::zero(),
@ -146,7 +146,6 @@ impl<T:Copy + Real> Quat<T> {
radians.sin())
}
#[inline(always)]
pub fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Quat<T> {
// http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Conversion
let xdiv2 = radians_x / two();
@ -158,7 +157,7 @@ impl<T:Copy + Real> Quat<T> {
zdiv2.cos() * xdiv2.cos() * ydiv2.sin() - zdiv2.sin() * xdiv2.sin() * ydiv2.cos())
}
#[inline(always)]
#[inline]
pub fn from_angle_axis(radians: T, axis: &Vec3<T>) -> Quat<T> {
let half = radians / two();
Quat::from_sv(half.cos(), axis.mul_t(half.sin()))
@ -169,7 +168,7 @@ impl<T:Copy + Real> Quat<T> {
}
/// The result of multiplying the quaternion a scalar
#[inline(always)]
#[inline]
pub fn mul_t(&self, value: T) -> Quat<T> {
Quat::new(*self.index(0) * value,
*self.index(1) * value,
@ -178,7 +177,7 @@ impl<T:Copy + Real> Quat<T> {
}
/// The result of dividing the quaternion a scalar
#[inline(always)]
#[inline]
pub fn div_t(&self, value: T) -> Quat<T> {
Quat::new(*self.index(0) / value,
*self.index(1) / value,
@ -187,14 +186,14 @@ impl<T:Copy + Real> Quat<T> {
}
/// The result of multiplying the quaternion by a vector
#[inline(always)]
#[inline]
pub fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
let tmp = self.v.cross(vec).add_v(&vec.mul_t(self.s));
self.v.cross(&tmp).mul_t(two()).add_v(vec)
}
/// The sum of this quaternion and `other`
#[inline(always)]
#[inline]
pub fn add_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(*self.index(0) + *other.index(0),
*self.index(1) + *other.index(1),
@ -203,7 +202,7 @@ impl<T:Copy + Real> Quat<T> {
}
/// The sum of this quaternion and `other`
#[inline(always)]
#[inline]
pub fn sub_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(*self.index(0) - *other.index(0),
*self.index(1) - *other.index(1),
@ -212,7 +211,6 @@ impl<T:Copy + Real> Quat<T> {
}
/// The the result of multipliplying the quaternion by `other`
#[inline(always)]
pub fn mul_q(&self, other: &Quat<T>) -> Quat<T> {
Quat::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z,
self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y,
@ -221,19 +219,19 @@ impl<T:Copy + Real> Quat<T> {
}
/// The dot product of the quaternion and `other`
#[inline(always)]
#[inline]
pub fn dot(&self, other: &Quat<T>) -> T {
self.s * other.s + self.v.dot(&other.v)
}
/// The conjugate of the quaternion
#[inline(always)]
#[inline]
pub fn conjugate(&self) -> Quat<T> {
Quat::from_sv(self.s, -self.v)
}
/// The multiplicative inverse of the quaternion
#[inline(always)]
#[inline]
pub fn inverse(&self) -> Quat<T> {
self.conjugate().div_t(self.magnitude2())
}
@ -241,7 +239,7 @@ impl<T:Copy + Real> Quat<T> {
/// The squared magnitude of the quaternion. This is useful for
/// magnitude comparisons where the exact magnitude does not need to be
/// calculated.
#[inline(always)]
#[inline]
pub fn magnitude2(&self) -> T {
self.s * self.s + self.v.length2()
}
@ -253,19 +251,18 @@ impl<T:Copy + Real> Quat<T> {
/// For instances where the exact magnitude of the quaternion does not need
/// to be known, for example for quaternion-quaternion magnitude comparisons,
/// it is advisable to use the `magnitude2` method instead.
#[inline(always)]
#[inline]
pub fn magnitude(&self) -> T {
self.magnitude2().sqrt()
}
/// The normalized quaternion
#[inline(always)]
#[inline]
pub fn normalize(&self) -> Quat<T> {
self.mul_t(One::one::<T>() / self.magnitude())
}
/// Convert the quaternion to a 3 x 3 rotation matrix
#[inline(always)]
pub fn to_mat3(&self) -> Mat3<T> {
let x2 = self.v.x + self.v.x;
let y2 = self.v.y + self.v.y;
@ -295,14 +292,13 @@ impl<T:Copy + Real> Quat<T> {
/// # Return value
///
/// The intoperlated quaternion
#[inline(always)]
pub fn nlerp(&self, other: &Quat<T>, amount: T) -> Quat<T> {
self.mul_t(One::one::<T>() - amount).add_q(&other.mul_t(amount)).normalize()
}
}
impl<T:Copy + Float> Neg<Quat<T>> for Quat<T> {
#[inline(always)]
#[inline]
pub fn neg(&self) -> Quat<T> {
Quat::new(-*self.index(0),
-*self.index(1),
@ -312,12 +308,12 @@ impl<T:Copy + Float> Neg<Quat<T>> for Quat<T> {
}
impl<T:Copy + Float> Quat<T> {
#[inline(always)]
#[inline]
pub fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Quat<T> {
Mat3::look_at(dir, up).to_quat()
}
#[inline(always)]
#[inline]
pub fn from_axes(x: Vec3<T>, y: Vec3<T>, z: Vec3<T>) -> Quat<T> {
Mat3::from_axes(x, y, z).to_quat()
}
@ -341,7 +337,6 @@ impl<T:Copy + Float> Quat<T> {
/// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)
/// - [Arcsynthesis OpenGL tutorial]
/// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html)
#[inline(always)]
pub fn slerp(&self, other: &Quat<T>, amount: T) -> Quat<T> {
let dot = self.dot(other);
let dot_threshold = cast(0.9995);
@ -365,17 +360,17 @@ impl<T:Copy + Float> Quat<T> {
}
impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Quat<T> {
#[inline(always)]
#[inline]
pub fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline(always)]
#[inline]
pub fn approx_eq(&self, other: &Quat<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline(always)]
#[inline]
pub fn approx_eq_eps(&self, other: &Quat<T>, epsilon: &T) -> bool {
self.index(0).approx_eq_eps(other.index(0), epsilon) &&
self.index(1).approx_eq_eps(other.index(1), epsilon) &&

File diff suppressed because it is too large Load diff