iter traits: impl iter::{Sum, Product}

This adds `Sum` trait for the `MatrixN`, `VectorN`, `Quaternion`
structures and the `Product` trait for `MatrixN`, `BasisN` and
`Quaternion`.

It also add constraints on the `Rotation` and `SquareMatrix` to require
the `Product` trait and `VectorSpace` to require `Sum`.
This commit is contained in:
Ben Boeckel 2017-04-24 19:54:30 -04:00
parent adbf511bc5
commit 240559b941
8 changed files with 186 additions and 0 deletions

View file

@ -16,6 +16,7 @@
use rand::{Rand, Rng};
use num_traits::{cast, NumCast};
use std::fmt;
use std::iter;
use std::mem;
use std::ops::*;
use std::ptr;
@ -967,6 +968,34 @@ macro_rules! impl_matrix {
fn sub_assign(&mut self, other: $MatrixN<S>) { $(self.$field -= other.$field);+ }
}
impl<S: BaseFloat> iter::Sum for $MatrixN<S> {
#[inline]
fn sum<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Add::add)
}
}
impl<'a, S: 'a + BaseFloat> iter::Sum<&'a Self> for $MatrixN<S> {
#[inline]
fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Add::add)
}
}
impl<S: BaseFloat> iter::Product for $MatrixN<S> {
#[inline]
fn product<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(Self::identity(), Mul::mul)
}
}
impl<'a, S: 'a + BaseFloat> iter::Product<&'a Self> for $MatrixN<S> {
#[inline]
fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(Self::identity(), Mul::mul)
}
}
impl_scalar_ops!($MatrixN<usize> { $($field),+ });
impl_scalar_ops!($MatrixN<u8> { $($field),+ });
impl_scalar_ops!($MatrixN<u16> { $($field),+ });

View file

@ -13,6 +13,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::iter;
use std::mem;
use std::ops::*;
@ -187,6 +188,34 @@ impl<S: BaseFloat> One for Quaternion<S> {
}
}
impl<S: BaseFloat> iter::Sum for Quaternion<S> {
#[inline]
fn sum<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Add::add)
}
}
impl<'a, S: 'a + BaseFloat> iter::Sum<&'a Self> for Quaternion<S> {
#[inline]
fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Add::add)
}
}
impl<S: BaseFloat> iter::Product for Quaternion<S> {
#[inline]
fn product<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(Self::one(), Mul::mul)
}
}
impl<'a, S: 'a + BaseFloat> iter::Product<&'a Self> for Quaternion<S> {
#[inline]
fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(Self::one(), Mul::mul)
}
}
impl<S: BaseFloat> VectorSpace for Quaternion<S> {
type Scalar = S;
}

View file

@ -14,6 +14,7 @@
// limitations under the License.
use std::fmt;
use std::iter;
use std::ops::*;
use structure::*;
@ -33,6 +34,7 @@ pub trait Rotation<P: EuclideanSpace>: Sized + Copy + One where
// FIXME: Ugly type signatures - blocked by rust-lang/rust#24092
Self: ApproxEq<Epsilon = <P as EuclideanSpace>::Scalar>,
<P as EuclideanSpace>::Scalar: BaseFloat,
Self: iter::Product<Self>,
{
/// Create a rotation to a given direction with an 'up' vector.
fn look_at(dir: P::Diff, up: P::Diff) -> Self;
@ -157,6 +159,20 @@ impl<S: BaseFloat> From<Basis2<S>> for Matrix2<S> {
fn from(b: Basis2<S>) -> Matrix2<S> { b.mat }
}
impl<S: BaseFloat> iter::Product for Basis2<S> {
#[inline]
fn product<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(Basis2 { mat: Matrix2::identity() }, Mul::mul)
}
}
impl<'a, S: 'a + BaseFloat> iter::Product<&'a Self> for Basis2<S> {
#[inline]
fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(Basis2 { mat: Matrix2::identity() }, Mul::mul)
}
}
impl<S: BaseFloat> Rotation<Point2<S>> for Basis2<S> {
#[inline]
fn look_at(dir: Vector2<S>, up: Vector2<S>) -> Basis2<S> {
@ -263,6 +279,20 @@ impl<S: BaseFloat> From<Basis3<S>> for Quaternion<S> {
fn from(b: Basis3<S>) -> Quaternion<S> { b.mat.into() }
}
impl<S: BaseFloat> iter::Product for Basis3<S> {
#[inline]
fn product<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(Basis3 { mat: Matrix3::identity() }, Mul::mul)
}
}
impl<'a, S: 'a + BaseFloat> iter::Product<&'a Self> for Basis3<S> {
#[inline]
fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(Basis3 { mat: Matrix3::identity() }, Mul::mul)
}
}
impl<S: BaseFloat> Rotation<Point3<S>> for Basis3<S> {
#[inline]
fn look_at(dir: Vector3<S>, up: Vector3<S>) -> Basis3<S> {

View file

@ -17,6 +17,7 @@
use num_traits::{cast, Float};
use std::cmp;
use std::iter;
use std::ops::*;
use approx::ApproxEq;
@ -153,6 +154,7 @@ pub trait ElementWise<Rhs = Self> {
/// ```
pub trait VectorSpace: Copy + Clone where
Self: Zero,
Self: iter::Sum<Self>,
Self: Add<Self, Output = Self>,
Self: Sub<Self, Output = Self>,
@ -455,6 +457,7 @@ pub trait SquareMatrix where
Self::Scalar: BaseFloat,
Self: One,
Self: iter::Product,
Self: Matrix<
// FIXME: Can be cleaned up once equality constraints in where clauses are implemented

View file

@ -16,6 +16,7 @@
use rand::{Rand, Rng};
use num_traits::NumCast;
use std::fmt;
use std::iter;
use std::mem;
use std::ops::*;
@ -163,6 +164,20 @@ macro_rules! impl_vector {
}
}
impl<S: BaseNum> iter::Sum for $VectorN<S> {
#[inline]
fn sum<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Add::add)
}
}
impl<'a, S: 'a + BaseNum> iter::Sum<&'a Self> for $VectorN<S> {
#[inline]
fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Add::add)
}
}
impl<S: BaseNum> VectorSpace for $VectorN<S> {
type Scalar = S;
}
@ -371,6 +386,20 @@ macro_rules! impl_vector_default {
}
}
impl<S: BaseNum> iter::Sum for $VectorN<S> {
#[inline]
fn sum<I: Iterator<Item=Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Add::add)
}
}
impl<'a, S: 'a + BaseNum> iter::Sum<&'a Self> for $VectorN<S> {
#[inline]
fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Add::add)
}
}
impl<S: BaseNum> VectorSpace for $VectorN<S> {
type Scalar = S;
}

View file

@ -96,6 +96,18 @@ pub mod matrix2 {
assert_eq!(A * B, &A * &B);
}
#[test]
fn test_sum_matrix() {
let res: Matrix2<f64> = [A, B, C].iter().sum();
assert_eq!(res, A + B + C);
}
#[test]
fn test_product_matrix() {
let res: Matrix2<f64> = [A, B, C].iter().product();
assert_eq!(res, A * B * C);
}
#[test]
fn test_determinant() {
assert_eq!(A.determinant(), -2.0f64)
@ -258,6 +270,18 @@ pub mod matrix3 {
assert_eq!(A * B, &A * &B);
}
#[test]
fn test_sum_matrix() {
let res: Matrix3<f64> = [A, B, C, D].iter().sum();
assert_eq!(res, A + B + C + D);
}
#[test]
fn test_product_matrix() {
let res: Matrix3<f64> = [A, B, C, D].iter().product();
assert_eq!(res, A * B * C * D);
}
#[test]
fn test_determinant() {;
assert_eq!(A.determinant(), 0.0f64);
@ -615,6 +639,18 @@ pub mod matrix4 {
assert_eq!(A * B, &A * &B);
}
#[test]
fn test_sum_matrix() {
let res: Matrix4<f64> = [A, B, C, D].iter().sum();
assert_eq!(res, A + B + C + D);
}
#[test]
fn test_product_matrix() {
let res: Matrix4<f64> = [A, B, C, D].iter().product();
assert_eq!(res, A * B * C * D);
}
#[test]
fn test_determinant() {
assert_eq!(A.determinant(), 0.0f64);

View file

@ -52,6 +52,16 @@ mod operators {
fn test_div() {
impl_test_div!(2.0f32, Quaternion::from(Euler { x: Rad(1f32), y: Rad(1f32), z: Rad(1f32) }));
}
#[test]
fn test_iter_product() {
let q1 = Quaternion::from(Euler { x: Rad(2f32), y: Rad(1f32), z: Rad(1f32) });
let q2 = Quaternion::from(Euler { x: Rad(1f32), y: Rad(2f32), z: Rad(1f32) });
let q3 = Quaternion::from(Euler { x: Rad(1f32), y: Rad(1f32), z: Rad(2f32) });
let res: Quaternion<f32> = [q1, q2, q3].iter().product();
assert_eq!(res, q1 * q2 * q3);
}
}
mod to_from_euler {

View file

@ -20,6 +20,7 @@ extern crate cgmath;
use cgmath::*;
use std::f64;
use std::iter;
#[test]
fn test_constructor() {
@ -87,6 +88,14 @@ macro_rules! impl_test_rem {
)
}
macro_rules! impl_test_iter_sum {
($VectorN:ident { $($field:ident),+ }, $ty:ty, $s:expr, $v:expr) => (
let res: $VectorN<$ty> = iter::repeat($v).take($s as usize).sum();
assert_eq!(res,
$VectorN::new($($v.$field * $s),+));
)
}
#[test]
fn test_add() {
impl_test_add!(Vector4 { x, y, z, w }, 2.0f32, vec4(2.0f32, 4.0, 6.0, 8.0));
@ -140,6 +149,17 @@ fn test_sum() {
assert_eq!(Vector4::new(5.0f64, 6.0f64, 7.0f64, 8.0f64).sum(), 26.0f64);
}
#[test]
fn test_iter_sum() {
impl_test_iter_sum!(Vector4 { x, y, z, w }, f32, 2.0f32, vec4(2.0f32, 4.0, 6.0, 8.0));
impl_test_iter_sum!(Vector3 { x, y, z }, f32, 2.0f32, vec3(2.0f32, 4.0, 6.0));
impl_test_iter_sum!(Vector2 { x, y }, f32, 2.0f32, vec2(2.0f32, 4.0));
impl_test_iter_sum!(Vector4 { x, y, z, w }, usize, 2usize, vec4(2usize, 4, 6, 8));
impl_test_iter_sum!(Vector3 { x, y, z }, usize, 2usize, vec3(2usize, 4, 6));
impl_test_iter_sum!(Vector2 { x, y }, usize, 2usize, vec2(2usize, 4));
}
#[test]
fn test_product() {
assert_eq!(Vector2::new(1isize, 2isize).product(), 2isize);