Merge pull request #9 from JeffBelgum/intersections

ray-plane and ray-sphere intersection
This commit is contained in:
Brendan Zabarauskas 2013-11-08 06:33:03 -08:00
commit 2e2a75e7ed
6 changed files with 75 additions and 4 deletions

View file

@ -15,6 +15,7 @@
use std::cast::transmute;
use std::fmt;
use std::num::Zero;
use intersect::Intersect;
use point::{Point, Point3};
@ -22,6 +23,7 @@ use ray::Ray3;
use vector::{Vec3, Vec4};
use vector::{Vector, EuclideanVector};
/// A 3-dimendional plane formed from the equation: `a*x + b*y + c*z - d = 0`.
///
/// # Fields
@ -86,7 +88,14 @@ impl<S: Float> Plane<S> {
impl<S: Float> Intersect<Option<Point3<S>>> for (Plane<S>, Ray3<S>) {
fn intersection(&self) -> Option<Point3<S>> {
fail!("Not yet implemented");
match *self {
(ref p, ref r) =>
{
let t = -(p.d + r.origin.dot(&p.n)) / r.direction.dot(&p.n);
if t < Zero::zero() { None }
else { Some(r.origin.add_v(&r.direction.mul_s(t))) }
}
}
}
}

View file

@ -27,7 +27,7 @@ use vector::*;
#[deriving(Eq, Zero, Clone)]
pub struct Point2<S> { x: S, y: S }
/// A point in 2-dimensional space.
/// A point in 3-dimensional space.
#[deriving(Eq, Zero, Clone)]
pub struct Point3<S> { x: S, y: S, z: S }

View file

@ -15,10 +15,37 @@
//! Bounding sphere
use point::Point3;
use intersect::Intersect;
use point::{Point, Point3};
use ray::Ray3;
use vector::Vector;
use std::num::NumCast;
use std::num;
fn cast<T: NumCast, U: NumCast>(n: T) -> U {
num::cast(n).unwrap()
}
#[deriving(Clone, Eq)]
pub struct Sphere<S> {
center: Point3<S>,
radius: S,
}
impl<S: Float> Intersect<Option<Point3<S>>> for (Sphere<S>, Ray3<S>) {
fn intersection(&self) -> Option<Point3<S>> {
match *self {
(ref s, ref r) =>
{
let l = s.center.sub_p(&r.origin);
let tca = l.dot(&r.direction);
if tca < cast(0.0) { return None; }
let d2 = l.dot(&l) - tca*tca;
if (d2 > s.radius*s.radius) { return None; }
let thc = num::sqrt(s.radius*s.radius - d2);
Some(r.origin.add_v(&r.direction.mul_s(tca - thc)))
}
}
}
}

View file

@ -15,6 +15,9 @@
use cgmath::plane::*;
use cgmath::point::*;
use cgmath::vector::*;
use cgmath::ray::*;
use cgmath::intersect::Intersect;
#[test]
fn test_from_points() {
@ -28,3 +31,16 @@ fn test_from_points() {
Point3::new(0.0, 5.0, 5.0)),
None); // The points are parallel
}
#[test]
fn test_ray_intersection() {
let p0 = Plane::from_abcd(1f64, 0f64, 0f64, -7f64);
let r0: Ray3<f64> = Ray::new(Point3::new(2f64, 3f64, 4f64), Vec3::new(1f64, 1f64, 1f64).normalize());
assert_eq!((p0, r0).intersection(), Some(Point3::new(7f64, 8f64, 9f64)));
let p1 = Plane::from_points(Point3::new(5f64, 0f64, 5f64),
Point3::new(5f64, 5f64, 5f64),
Point3::new(5f64, 0f64, -1f64)).unwrap();
let r1: Ray3<f64> = Ray::new(Point3::new(0f64, 0f64, 0f64), Vec3::new(-1f64, 0f64, 0f64).normalize());
assert_eq!((p1, r1).intersection(), None); // r1 points away from p1
}

19
src/tests/sphere.rs Normal file
View file

@ -0,0 +1,19 @@
use cgmath::sphere::*;
use cgmath::point::*;
use cgmath::vector::*;
use cgmath::ray::*;
use cgmath::intersect::Intersect;
use std::num;
#[test]
fn test_intersection() {
let sphere = Sphere {center: Point3::new(0f64,0f64,0f64), radius: 1f64};
let r0: Ray3<f64> = Ray::new(Point3::new(0f64, 0f64, 5f64), Vec3::new(0f64, 0f64, -5f64).normalize());
let r1: Ray3<f64> = Ray::new(Point3::new(num::cos(1f64), 0f64, 5f64), Vec3::new(0f64, 0f64, -5f64).normalize());
let r2: Ray3<f64> = Ray::new(Point3::new(1f64, 0f64, 5f64), Vec3::new(0f64, 0f64, -5f64).normalize());
let r3: Ray3<f64> = Ray::new(Point3::new(2f64, 0f64, 5f64), Vec3::new(0f64, 0f64, -5f64).normalize());
assert_eq!((sphere,r0).intersection(), Some(Point3::new(0f64, 0f64, 1f64)));
assert_approx_eq!((sphere,r1).intersection().unwrap(), Point3::new(num::cos(1f64), 0f64, num::sin(1f64)));
assert_eq!((sphere,r2).intersection(), Some(Point3::new(1f64, 0f64, 0f64)));
assert_eq!((sphere,r3).intersection(), None);
}

View file

@ -37,4 +37,4 @@ pub mod transform;
// pub mod frustum;
// pub mod intersect;
// pub mod obb;
// pub mod sphere;
pub mod sphere;