New ApproxEq replaced the one in std

This commit is contained in:
kvark 2014-01-08 19:26:50 -05:00
parent c8134ee828
commit 2fdf34cd18
14 changed files with 189 additions and 152 deletions

View file

@ -10,13 +10,13 @@ The library provides:
- square matrices: `Mat2`, `Mat3`, `Mat4`
- a quaternion type: `Quat`
- rotation matrices: `Rot2`, `Rot3`
- rotations: `Euler`, `AxisAngle`
- angle units: `Rad`, `Deg`
- points: `Point2`, `Point3`
- rays: `Ray2`, `Ray3`
- plane: `Plane`
- a plane: `Plane`
- perspective projections: `Perspective`, `PerspectiveFov`, `Ortho`
- a view frustum: `Frustrum`
- spatial transformations: `AffineMatrix3`, `Transform3D`
- axis-aligned bounding boxes: `Aabb2`, `Aabb3`
- oriented bounding boxes: `Obb2`, `Obb3`
- collision primitives: `Sphere`, `Cylinder`

View file

@ -21,6 +21,8 @@ pub use std::num::{asinh, acosh, atanh};
use std::fmt;
use std::num::{Zero, zero, cast};
use approx::ApproxEq;
#[deriving(Clone, Eq, Ord, Zero)] pub struct Rad<S> { s: S }
#[deriving(Clone, Eq, Ord, Zero)] pub struct Deg<S> { s: S }
@ -126,7 +128,8 @@ pub trait Angle
#[inline] pub fn bisect<S: Float, A: Angle<S>>(a: A, b: A) -> A { a.bisect(b) }
impl<S: Float> Rad<S> {
impl<S: Float + ApproxEq<S>>
Rad<S> {
#[inline] pub fn zero() -> Rad<S> { zero() }
#[inline] pub fn full_turn() -> Rad<S> { Angle::full_turn() }
#[inline] pub fn turn_div_2() -> Rad<S> { Angle::turn_div_2() }
@ -135,7 +138,8 @@ impl<S: Float> Rad<S> {
#[inline] pub fn turn_div_6() -> Rad<S> { Angle::turn_div_6() }
}
impl<S: Float> Deg<S> {
impl<S: Float + ApproxEq<S>>
Deg<S> {
#[inline] pub fn zero() -> Deg<S> { zero() }
#[inline] pub fn full_turn() -> Deg<S> { Angle::full_turn() }
#[inline] pub fn turn_div_2() -> Deg<S> { Angle::turn_div_2() }
@ -144,24 +148,28 @@ impl<S: Float> Deg<S> {
#[inline] pub fn turn_div_6() -> Deg<S> { Angle::turn_div_6() }
}
impl<S: Float> Equiv<Rad<S>> for Rad<S> {
impl<S: Float + ApproxEq<S>>
Equiv<Rad<S>> for Rad<S> {
fn equiv(&self, other: &Rad<S>) -> bool {
self.normalize() == other.normalize()
}
}
impl<S: Float> Equiv<Deg<S>> for Deg<S> {
impl<S: Float + ApproxEq<S>>
Equiv<Deg<S>> for Deg<S> {
fn equiv(&self, other: &Deg<S>) -> bool {
self.normalize() == other.normalize()
}
}
impl<S: Float> Angle<S> for Rad<S> {
impl<S: Float + ApproxEq<S>>
Angle<S> for Rad<S> {
#[inline] fn from<A: Angle<S>>(theta: A) -> Rad<S> { theta.to_rad() }
#[inline] fn full_turn() -> Rad<S> { rad(Real::two_pi()) }
}
impl<S: Float> Angle<S> for Deg<S> {
impl<S: Float + ApproxEq<S>>
Angle<S> for Deg<S> {
#[inline] fn from<A: Angle<S>>(theta: A) -> Deg<S> { theta.to_deg() }
#[inline] fn full_turn() -> Deg<S> { deg(cast(360).unwrap()) }
}
@ -183,38 +191,18 @@ impl<S: Float> Angle<S> for Deg<S> {
impl<S: Float + fmt::Default> ToStr for Rad<S> { fn to_str(&self) -> ~str { format!("{} rad", self.s) } }
impl<S: Float + fmt::Default> ToStr for Deg<S> { fn to_str(&self) -> ~str { format!("{}°", self.s) } }
impl<S: Float> ApproxEq<S> for Rad<S> {
impl<S: Float + ApproxEq<S>>
ApproxEq<S> for Rad<S> {
#[inline]
fn approx_epsilon() -> S {
// TODO: fix this after static methods are fixed in rustc
fail!(~"Doesn't work!");
}
#[inline]
fn approx_eq(&self, other: &Rad<S>) -> bool {
self.s.approx_eq(&other.s)
}
#[inline]
fn approx_eq_eps(&self, other: &Rad<S>, approx_epsilon: &S) -> bool {
self.s.approx_eq_eps(&other.s, approx_epsilon)
fn approx_eq_eps(&self, other: &Rad<S>, epsilon: &S) -> bool {
self.s.approx_eq_eps(&other.s, epsilon)
}
}
impl<S: Float> ApproxEq<S> for Deg<S> {
impl<S: Float + ApproxEq<S>>
ApproxEq<S> for Deg<S> {
#[inline]
fn approx_epsilon() -> S {
// TODO: fix this after static methods are fixed in rustc
fail!(~"Doesn't work!");
}
#[inline]
fn approx_eq(&self, other: &Deg<S>) -> bool {
self.s.approx_eq(&other.s)
}
#[inline]
fn approx_eq_eps(&self, other: &Deg<S>, approx_epsilon: &S) -> bool {
self.s.approx_eq_eps(&other.s, approx_epsilon)
fn approx_eq_eps(&self, other: &Deg<S>, epsilon: &S) -> bool {
self.s.approx_eq_eps(&other.s, epsilon)
}
}

77
src/cgmath/approx.rs Normal file
View file

@ -0,0 +1,77 @@
// Copyright 2013 The CGMath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::num;
use array::Array;
use matrix::{Mat2, Mat3, Mat4};
use point::{Point2, Point3};
use quaternion::Quat;
use vector::{Vec2, Vec3, Vec4};
pub trait ApproxEq<T: Float> {
fn approx_epsilon(_hack: Option<Self>) -> T {
num::cast(1.0e-5).unwrap()
}
fn approx_eq(&self, other: &Self) -> bool {
let eps: T = ApproxEq::approx_epsilon(None::<Self>);
self.approx_eq_eps(other, &eps)
}
fn approx_eq_eps(&self, other: &Self, epsilon: &T) -> bool;
}
macro_rules! approx_simple(
($S:ident) => (
impl ApproxEq<$S> for $S {
#[inline]
fn approx_eq_eps(&self, other: &$S, epsilon: &$S) -> bool {
num::abs(*self - *other) < *epsilon
}
}
)
)
approx_simple!(f32)
approx_simple!(f64)
macro_rules! approx_array(
(impl<$S:ident> $Self:ty) => (
impl<$S: Float + Clone + ApproxEq<$S>> ApproxEq<$S> for $Self {
#[inline]
fn approx_eq_eps(&self, other: &$Self, epsilon: &$S) -> bool {
self.iter().zip(other.iter())
.all(|(a, b)| a.approx_eq_eps(b, epsilon))
}
}
)
)
approx_array!(impl<S> Mat2<S>)
approx_array!(impl<S> Mat3<S>)
approx_array!(impl<S> Mat4<S>)
approx_array!(impl<S> Quat<S>)
approx_array!(impl<S> Vec2<S>)
approx_array!(impl<S> Vec3<S>)
approx_array!(impl<S> Vec4<S>)
approx_array!(impl<S> Point2<S>)
approx_array!(impl<S> Point3<S>)

View file

@ -123,26 +123,3 @@ macro_rules! gen_each_mut(
(_4) => ({ f(0, self.mut_i(0)); f(1, self.mut_i(1)); f(2, self.mut_i(2)); f(3, self.mut_i(3)); });
)
macro_rules! approx_eq(
(impl<$S:ident> $Self:ty) => (
impl<$S: Clone + ApproxEq<$S>> ApproxEq<$S> for $Self {
#[inline]
fn approx_epsilon() -> $S {
// TODO: fix this after static methods are fixed in rustc
fail!(~"Doesn't work!");
}
#[inline]
fn approx_eq(&self, other: &$Self) -> bool {
self.iter().zip(other.iter())
.all(|(a, b)| a.approx_eq(b))
}
#[inline]
fn approx_eq_eps(&self, other: &$Self, approx_epsilon: &$S) -> bool {
self.iter().zip(other.iter())
.all(|(a, b)| a.approx_eq_eps(b, approx_epsilon))
}
}
)
)

View file

@ -15,6 +15,7 @@
//! View frustum for visibility determination
use approx::ApproxEq;
use matrix::{Matrix, Mat4};
use plane::Plane;
use point::Point3;
@ -30,7 +31,8 @@ pub struct Frustum<S> {
far: Plane<S>,
}
impl<S: Float> Frustum<S> {
impl<S: Float + ApproxEq<S>>
Frustum<S> {
/// Constructs a frustum
pub fn new(left: Plane<S>, right: Plane<S>,
bottom: Plane<S>, top: Plane<S>,

View file

@ -13,10 +13,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#[pkgid="cgmath#0.1"];
#[crate_id="cgmath#0.1"];
#[crate_type = "lib"];
#[comment = "A mathematics library for computer graphics."];
#[license = "ASL2"];
#[crate_type = "lib"];
#[feature(globs)];
#[feature(macro_rules)];
@ -42,4 +42,5 @@ pub mod intersect;
pub mod obb;
pub mod sphere;
pub mod approx;
pub mod ptr;

View file

@ -18,6 +18,7 @@
use std::num::{Zero, zero, One, one, cast, sqrt};
use angle::{Rad, sin, cos, sin_cos};
use approx::ApproxEq;
use array::{Array, build};
use point::{Point, Point3};
use quaternion::{Quat, ToQuat};
@ -36,9 +37,6 @@ pub struct Mat3<S> { x: Vec3<S>, y: Vec3<S>, z: Vec3<S> }
#[deriving(Clone, Eq, Zero)]
pub struct Mat4<S> { x: Vec4<S>, y: Vec4<S>, z: Vec4<S>, w: Vec4<S> }
approx_eq!(impl<S> Mat2<S>)
approx_eq!(impl<S> Mat3<S>)
approx_eq!(impl<S> Mat4<S>)
impl<S: Primitive> Mat2<S> {
#[inline]
@ -114,7 +112,8 @@ impl<S: Primitive> Mat3<S> {
}
}
impl<S: Float> Mat3<S> {
impl<S: Float + ApproxEq<S>>
Mat3<S> {
pub fn look_at(dir: &Vec3<S>, up: &Vec3<S>) -> Mat3<S> {
let dir = dir.normalize();
let side = dir.cross(&up.normalize());
@ -223,7 +222,8 @@ impl<S: Primitive> Mat4<S> {
}
}
impl<S: Float> Mat4<S> {
impl<S: Float + ApproxEq<S>>
Mat4<S> {
pub fn look_at(eye: &Point3<S>, center: &Point3<S>, up: &Vec3<S>) -> Mat4<S> {
let f = center.sub_p(eye).normalize();
let s = f.cross(up).normalize();
@ -246,7 +246,7 @@ array!(impl<S> Mat4<S> -> [Vec4<S>, ..4] _4)
pub trait Matrix
<
S: Float, Slice,
S: Float + ApproxEq<S>, Slice,
V: Clone + Vector<S, VSlice> + Array<S, VSlice>, VSlice
>
: Array<V, Slice>
@ -362,7 +362,7 @@ impl<S: Float> Neg<Mat2<S>> for Mat2<S> { #[inline] fn neg(&self) -> Mat2<S> { b
impl<S: Float> Neg<Mat3<S>> for Mat3<S> { #[inline] fn neg(&self) -> Mat3<S> { build(|i| self.i(i).neg()) } }
impl<S: Float> Neg<Mat4<S>> for Mat4<S> { #[inline] fn neg(&self) -> Mat4<S> { build(|i| self.i(i).neg()) } }
impl<S: Float>
impl<S: Float + ApproxEq<S>>
Matrix<S, [Vec2<S>, ..2], Vec2<S>, [S, ..2]>
for Mat2<S>
{
@ -411,7 +411,7 @@ for Mat2<S>
}
}
impl<S: Float>
impl<S: Float + ApproxEq<S>>
Matrix<S, [Vec3<S>, ..3], Vec3<S>, [S, ..3]>
for Mat3<S>
{
@ -484,7 +484,7 @@ macro_rules! dot_mat4(
(*$A.cr(3, $I)) * (*$B.cr($J, 3))
))
impl<S: Float>
impl<S: Float + ApproxEq<S>>
Matrix<S, [Vec4<S>, ..4], Vec4<S>, [S, ..4]>
for Mat4<S>
{
@ -617,7 +617,8 @@ pub trait ToMat2<S: Primitive> { fn to_mat2(&self) -> Mat2<S>; }
pub trait ToMat3<S: Primitive> { fn to_mat3(&self) -> Mat3<S>; }
pub trait ToMat4<S: Primitive> { fn to_mat4(&self) -> Mat4<S>; }
impl<S: Float> ToMat3<S> for Mat2<S> {
impl<S: Float + ApproxEq<S>>
ToMat3<S> for Mat2<S> {
/// Clone the elements of a 2-dimensional matrix into the top corner of a
/// 3-dimensional identity matrix.
fn to_mat3(&self) -> Mat3<S> {
@ -627,7 +628,8 @@ impl<S: Float> ToMat3<S> for Mat2<S> {
}
}
impl<S: Float> ToMat4<S> for Mat2<S> {
impl<S: Float + ApproxEq<S>>
ToMat4<S> for Mat2<S> {
/// Clone the elements of a 2-dimensional matrix into the top corner of a
/// 4-dimensional identity matrix.
fn to_mat4(&self) -> Mat4<S> {
@ -638,7 +640,8 @@ impl<S: Float> ToMat4<S> for Mat2<S> {
}
}
impl<S: Float> ToMat4<S> for Mat3<S> {
impl<S: Float + ApproxEq<S>>
ToMat4<S> for Mat3<S> {
/// Clone the elements of a 3-dimensional matrix into the top corner of a
/// 4-dimensional identity matrix.
fn to_mat4(&self) -> Mat4<S> {
@ -649,7 +652,8 @@ impl<S: Float> ToMat4<S> for Mat3<S> {
}
}
impl<S:Float> ToQuat<S> for Mat3<S> {
impl<S: Float + ApproxEq<S>>
ToQuat<S> for Mat3<S> {
/// Convert the matrix to a quaternion
fn to_quat(&self) -> Quat<S> {
// http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf

View file

@ -17,6 +17,7 @@ use std::cast::transmute;
use std::fmt;
use std::num::Zero;
use approx::ApproxEq;
use intersect::Intersect;
use point::{Point, Point3};
use ray::Ray3;
@ -45,7 +46,8 @@ pub struct Plane<S> {
d: S,
}
impl<S: Float> Plane<S> {
impl<S: Float + ApproxEq<S>>
Plane<S> {
/// Construct a plane from a normal vector and a scalar distance
pub fn new(n: Vec3<S>, d: S) -> Plane<S> {
Plane { n: n, d: d }
@ -110,23 +112,12 @@ impl<S: Float> Intersect<Option<Point3<S>>> for (Plane<S>, Plane<S>, Plane<S>) {
}
}
impl<S: Float> ApproxEq<S> for Plane<S> {
impl<S: Float + ApproxEq<S>>
ApproxEq<S> for Plane<S> {
#[inline]
fn approx_epsilon() -> S {
// TODO: fix this after static methods are fixed in rustc
fail!(~"Doesn't work!");
}
#[inline]
fn approx_eq(&self, other: &Plane<S>) -> bool {
self.n.approx_eq(&other.n) &&
self.d.approx_eq(&other.d)
}
#[inline]
fn approx_eq_eps(&self, other: &Plane<S>, approx_epsilon: &S) -> bool {
self.n.approx_eq_eps(&other.n, approx_epsilon) &&
self.d.approx_eq_eps(&other.d, approx_epsilon)
fn approx_eq_eps(&self, other: &Plane<S>, epsilon: &S) -> bool {
self.n.approx_eq_eps(&other.n, epsilon) &&
self.d.approx_eq_eps(&other.d, epsilon)
}
}

View file

@ -31,8 +31,6 @@ pub struct Point2<S> { x: S, y: S }
#[deriving(Eq, Zero, Clone)]
pub struct Point3<S> { x: S, y: S, z: S }
approx_eq!(impl<S> Point2<S>)
approx_eq!(impl<S> Point3<S>)
impl<S: Num> Point2<S> {
#[inline]

View file

@ -16,6 +16,7 @@
use std::num::{zero, one, cast};
use angle::{Angle, tan, cot};
use approx::ApproxEq;
use frustum::Frustum;
use matrix::{Mat4, ToMat4};
use plane::Plane;
@ -93,7 +94,8 @@ impl<S: Float, A: Angle<S>> PerspectiveFov<S, A> {
}
}
impl<S: Float, A: Angle<S>> Projection<S> for PerspectiveFov<S, A> {
impl<S: Float + ApproxEq<S>, A: Angle<S>>
Projection<S> for PerspectiveFov<S, A> {
fn to_frustum(&self) -> Frustum<S> {
// TODO: Could this be faster?
Frustum::from_mat4(self.to_mat4())
@ -149,7 +151,8 @@ pub struct Perspective<S> {
near: S, far: S,
}
impl<S: Float> Projection<S> for Perspective<S> {
impl<S: Float + ApproxEq<S>>
Projection<S> for Perspective<S> {
fn to_frustum(&self) -> Frustum<S> {
// TODO: Could this be faster?
Frustum::from_mat4(self.to_mat4())
@ -199,7 +202,8 @@ pub struct Ortho<S> {
near: S, far: S,
}
impl<S: Float> Projection<S> for Ortho<S> {
impl<S: Float + ApproxEq<S>>
Projection<S> for Ortho<S> {
fn to_frustum(&self) -> Frustum<S> {
Frustum {
left: Plane::from_abcd( one::<S>(), zero::<S>(), zero::<S>(), self.left.clone()),

View file

@ -17,6 +17,7 @@ use std::fmt;
use std::num::{zero, one, cast, sqrt};
use angle::{Angle, Rad, acos, cos, sin, sin_cos};
use approx::ApproxEq;
use array::{Array, build};
use matrix::{Mat3, ToMat3};
use vector::{Vec3, Vector, EuclideanVector};
@ -26,13 +27,13 @@ use vector::{Vec3, Vector, EuclideanVector};
pub struct Quat<S> { s: S, v: Vec3<S> }
array!(impl<S> Quat<S> -> [S, ..4] _4)
approx_eq!(impl<S> Quat<S>)
pub trait ToQuat<S: Float> {
fn to_quat(&self) -> Quat<S>;
}
impl<S: Float> Quat<S> {
impl<S: Float + ApproxEq<S>>
Quat<S> {
/// Construct a new quaternion from one scalar component and three
/// imaginary components
#[inline]
@ -220,7 +221,8 @@ impl<S: Float> Quat<S> {
}
}
impl<S: Float> Quat<S> {
impl<S: Float + ApproxEq<S>>
Quat<S> {
/// Spherical Linear Intoperlation
///
/// Perform a spherical linear interpolation between the quaternion and
@ -265,7 +267,8 @@ impl<S: Float> Quat<S> {
}
}
impl<S: Float> ToMat3<S> for Quat<S> {
impl<S: Float + ApproxEq<S>>
ToMat3<S> for Quat<S> {
/// Convert the quaternion to a 3 x 3 rotation matrix
fn to_mat3(&self) -> Mat3<S> {
let x2 = self.v.x + self.v.x;
@ -290,7 +293,8 @@ impl<S: Float> ToMat3<S> for Quat<S> {
}
}
impl<S: Float> Neg<Quat<S>> for Quat<S> {
impl<S: Float + ApproxEq<S>>
Neg<Quat<S>> for Quat<S> {
#[inline]
fn neg(&self) -> Quat<S> {
Quat::from_sv(-self.s, -self.v)

View file

@ -14,6 +14,7 @@
// limitations under the License.
use angle::Rad;
use approx::ApproxEq;
use array::Array;
use matrix::Matrix;
use matrix::{Mat2, ToMat2};
@ -115,7 +116,8 @@ impl<S: Float> ToMat2<S> for Basis2<S> {
fn to_mat2(&self) -> Mat2<S> { self.mat.clone() }
}
impl<S: Float> Rotation<S, [S, ..2], Vec2<S>, Point2<S>> for Basis2<S> {
impl<S: Float + ApproxEq<S>>
Rotation<S, [S, ..2], Vec2<S>, Point2<S>> for Basis2<S> {
#[inline]
fn identity() -> Basis2<S> { Basis2{ mat: Mat2::identity() } }
@ -139,25 +141,16 @@ impl<S: Float> Rotation<S, [S, ..2], Vec2<S>, Point2<S>> for Basis2<S> {
fn invert_self(&mut self) { self.mat.invert_self(); }
}
impl<S: Float> ApproxEq<S> for Basis2<S> {
impl<S: Float + ApproxEq<S>>
ApproxEq<S> for Basis2<S> {
#[inline]
fn approx_epsilon() -> S {
// TODO: fix this after static methods are fixed in rustc
fail!(~"Doesn't work!");
}
#[inline]
fn approx_eq(&self, other: &Basis2<S>) -> bool {
self.mat.approx_eq(&other.mat)
}
#[inline]
fn approx_eq_eps(&self, other: &Basis2<S>, approx_epsilon: &S) -> bool {
self.mat.approx_eq_eps(&other.mat, approx_epsilon)
fn approx_eq_eps(&self, other: &Basis2<S>, epsilon: &S) -> bool {
self.mat.approx_eq_eps(&other.mat, epsilon)
}
}
impl<S: Float> Rotation2<S> for Basis2<S> {}
impl<S: Float + ApproxEq<S>>
Rotation2<S> for Basis2<S> {}
/// A three-dimensional rotation matrix.
///
@ -170,7 +163,8 @@ pub struct Basis3<S> {
priv mat: Mat3<S>
}
impl<S: Float> Basis3<S> {
impl<S: Float + ApproxEq<S>>
Basis3<S> {
#[inline]
pub fn look_at(dir: &Vec3<S>, up: &Vec3<S>) -> Basis3<S> {
Basis3 { mat: Mat3::look_at(dir, up) }
@ -225,12 +219,14 @@ impl<S: Float> ToMat3<S> for Basis3<S> {
fn to_mat3(&self) -> Mat3<S> { self.mat.clone() }
}
impl<S: Float> ToQuat<S> for Basis3<S> {
impl<S: Float + ApproxEq<S>>
ToQuat<S> for Basis3<S> {
#[inline]
fn to_quat(&self) -> Quat<S> { self.mat.to_quat() }
}
impl<S: Float> Rotation<S, [S, ..3], Vec3<S>, Point3<S>> for Basis3<S> {
impl<S: Float + ApproxEq<S>>
Rotation<S, [S, ..3], Vec3<S>, Point3<S>> for Basis3<S> {
#[inline]
fn identity() -> Basis3<S> { Basis3{ mat: Mat3::identity() } }
@ -254,29 +250,21 @@ impl<S: Float> Rotation<S, [S, ..3], Vec3<S>, Point3<S>> for Basis3<S> {
fn invert_self(&mut self) { self.mat.invert_self(); }
}
impl<S: Float> ApproxEq<S> for Basis3<S> {
impl<S: Float + ApproxEq<S>>
ApproxEq<S> for Basis3<S> {
#[inline]
fn approx_epsilon() -> S {
// TODO: fix this after static methods are fixed in rustc
fail!(~"Doesn't work!");
}
#[inline]
fn approx_eq(&self, other: &Basis3<S>) -> bool {
self.mat.approx_eq(&other.mat)
}
#[inline]
fn approx_eq_eps(&self, other: &Basis3<S>, approx_epsilon: &S) -> bool {
self.mat.approx_eq_eps(&other.mat, approx_epsilon)
fn approx_eq_eps(&self, other: &Basis3<S>, epsilon: &S) -> bool {
self.mat.approx_eq_eps(&other.mat, epsilon)
}
}
impl<S: Float> Rotation3<S> for Basis3<S> {}
impl<S: Float + ApproxEq<S>>
Rotation3<S> for Basis3<S> {}
// Quaternion Rotation impls
impl<S: Float> ToBasis3<S> for Quat<S> {
impl<S: Float + ApproxEq<S>>
ToBasis3<S> for Quat<S> {
#[inline]
fn to_rot3(&self) -> Basis3<S> { Basis3 { mat: self.to_mat3() } }
}
@ -286,7 +274,8 @@ impl<S: Float> ToQuat<S> for Quat<S> {
fn to_quat(&self) -> Quat<S> { self.clone() }
}
impl<S: Float> Rotation<S, [S, ..3], Vec3<S>, Point3<S>> for Quat<S> {
impl<S: Float + ApproxEq<S>>
Rotation<S, [S, ..3], Vec3<S>, Point3<S>> for Quat<S> {
#[inline]
fn identity() -> Quat<S> { Quat::identity() }
@ -306,4 +295,5 @@ impl<S: Float> Rotation<S, [S, ..3], Vec3<S>, Point3<S>> for Quat<S> {
fn invert_self(&mut self) { *self = self.invert() }
}
impl<S: Float> Rotation3<S> for Quat<S> {}
impl<S: Float + ApproxEq<S>>
Rotation3<S> for Quat<S> {}

View file

@ -15,6 +15,7 @@
use std::{fmt,num};
use approx::ApproxEq;
use matrix::{Matrix, Mat4, ToMat4};
use point::{Point, Point3};
use ray::Ray;
@ -73,7 +74,7 @@ pub struct Decomposed<S,V,R> {
impl
<
S: Float,
S: Float + ApproxEq<S>,
Slice,
V: Vector<S, Slice>,
P: Point<S, V, Slice>,
@ -129,7 +130,7 @@ pub trait Transform3<S>
+ ToMat4<S>
{}
impl<S: Float + Clone, R: Rotation3<S>>
impl<S: Float + Clone + ApproxEq<S>, R: Rotation3<S>>
ToMat4<S> for Decomposed<S, Vec3<S>, R> {
fn to_mat4(&self) -> Mat4<S> {
let mut m = self.rot.to_mat3().mul_s( self.scale.clone() ).to_mat4();
@ -138,7 +139,7 @@ ToMat4<S> for Decomposed<S, Vec3<S>, R> {
}
}
impl<S: Float, R: Rotation3<S>>
impl<S: Float + ApproxEq<S>, R: Rotation3<S>>
Transform3<S> for Decomposed<S,Vec3<S>,R> {}
impl<S: fmt::Default + Float, R: ToStr + Rotation3<S>>
@ -155,7 +156,7 @@ pub struct AffineMatrix3<S> {
mat: Mat4<S>,
}
impl<S : Clone + Float>
impl<S : Clone + Float + ApproxEq<S>>
Transform<S, [S, ..3], Vec3<S>, Point3<S>> for AffineMatrix3<S> {
#[inline]
fn identity() -> AffineMatrix3<S> {
@ -188,7 +189,7 @@ ToMat4<S> for AffineMatrix3<S> {
#[inline] fn to_mat4(&self) -> Mat4<S> { self.mat.clone() }
}
impl<S: Float>
impl<S: Float + ApproxEq<S>>
Transform3<S> for AffineMatrix3<S> {}

View file

@ -17,6 +17,7 @@ use std::fmt;
use std::num::{Zero, zero, One, one, sqrt};
use angle::{Rad, atan2, acos};
use approx::ApproxEq;
use array::{Array, build};
/// A 2-dimensional vector.
@ -112,10 +113,6 @@ array!(impl<S> Vec2<S> -> [S, ..2] _2)
array!(impl<S> Vec3<S> -> [S, ..3] _3)
array!(impl<S> Vec4<S> -> [S, ..4] _4)
approx_eq!(impl<S> Vec2<S>)
approx_eq!(impl<S> Vec3<S>)
approx_eq!(impl<S> Vec4<S>)
/// A trait that specifies a range of numeric operations for vectors. Not all
/// of these make sense from a linear algebra point of view, but are included
/// for pragmatic reasons.
@ -215,7 +212,7 @@ impl<S: Primitive> Vec3<S> {
/// 2-dimensional and 3-dimensional vectors.
pub trait EuclideanVector
<
S: Float,
S: Float + ApproxEq<S>,
Slice
>
: Vector<S, Slice>
@ -286,21 +283,24 @@ pub trait EuclideanVector
}
}
impl<S: Float> EuclideanVector<S, [S, ..2]> for Vec2<S> {
impl<S: Float + ApproxEq<S>>
EuclideanVector<S, [S, ..2]> for Vec2<S> {
#[inline]
fn angle(&self, other: &Vec2<S>) -> Rad<S> {
atan2(self.perp_dot(other), self.dot(other))
}
}
impl<S: Float> EuclideanVector<S, [S, ..3]> for Vec3<S> {
impl<S: Float + ApproxEq<S>>
EuclideanVector<S, [S, ..3]> for Vec3<S> {
#[inline]
fn angle(&self, other: &Vec3<S>) -> Rad<S> {
atan2(self.cross(other).length(), self.dot(other))
}
}
impl<S: Float> EuclideanVector<S, [S, ..4]> for Vec4<S> {
impl<S: Float + ApproxEq<S>>
EuclideanVector<S, [S, ..4]> for Vec4<S> {
#[inline]
fn angle(&self, other: &Vec4<S>) -> Rad<S> {
acos(self.dot(other) / (self.length() * other.length()))