Split up vec and mat modules

This commit is contained in:
Brendan Zabarauskas 2012-12-13 23:01:42 +10:00
parent 3d31797d8d
commit 5ce765367a
8 changed files with 2255 additions and 2210 deletions

1441
src/mat.rs

File diff suppressed because it is too large Load diff

381
src/mat2.rs Normal file
View file

@ -0,0 +1,381 @@
use core::cast::transmute;
use core::cmp::Eq;
use core::ptr::to_unsafe_ptr;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
use funs::common::*;
use funs::exponential::*;
use num::types::{Float, Number};
use vec::Vec2;
/**
* A 2 x 2 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
*/
pub struct Mat2<T> { x: Vec2<T>, y: Vec2<T> }
pub impl<T:Copy Float> Mat2<T> {
/**
* Construct a 2 x 2 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1` - the first column of the matrix
* * `c1r0`, `c1r1` - the second column of the matrix
*
* ~~~
* c0 c1
* +------+------+
* r0 | c0r0 | c1r0 |
* +------+------+
* r1 | c0r1 | c1r1 |
* +------+------+
* ~~~
*/
#[inline(always)]
static pure fn new(c0r0: T, c0r1: T,
c1r0: T, c1r1: T) -> Mat2<T> {
Mat2::from_cols(Vec2::new(move c0r0, move c0r1),
Vec2::new(move c1r0, move c1r1))
}
/**
* Construct a 2 x 2 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
*
* ~~~
* c0 c1
* +------+------+
* r0 | c0.x | c1.x |
* +------+------+
* r1 | c0.y | c1.y |
* +------+------+
* ~~~
*/
#[inline(always)]
static pure fn from_cols(c0: Vec2<T>, c1: Vec2<T>) -> Mat2<T> {
Mat2 { x: move c0,
y: move c1 }
}
/**
* Construct a 2 x 2 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1
* +-----+-----+
* r0 | val | 0 |
* +-----+-----+
* r1 | 0 | val |
* +-----+-----+
* ~~~
*/
#[inline(always)]
static pure fn from_value(value: T) -> Mat2<T> {
let _0 = Number::from(0);
Mat2::new(value, _0,
_0, value)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn identity() -> Mat2<T> {
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat2::new(_1, _0,
_0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn zero() -> Mat2<T> {
let _0 = Number::from(0);
Mat2::new(_0, _0,
_0, _0)
}
}
pub impl<T:Copy Float> Mat2<T>: Matrix<T, Vec2<T>> {
#[inline(always)]
pure fn col(&self, i: uint) -> Vec2<T> { self[i] }
#[inline(always)]
pure fn row(&self, i: uint) -> Vec2<T> {
Vec2::new(self[0][i],
self[1][i])
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1
* +----+----+
* r0 | 1 | 0 |
* +----+----+
* r1 | 0 | 1 |
* +----+----+
* ~~~
*/
#[inline(always)]
static pure fn identity() -> Mat2<T> {
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat2::new(_1, _0,
_0, _1)
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1
* +----+----+
* r0 | 0 | 0 |
* +----+----+
* r1 | 0 | 0 |
* +----+----+
* ~~~
*/
#[inline(always)]
static pure fn zero() -> Mat2<T> {
let _0 = Number::from(0);
Mat2::new(_0, _0,
_0, _0)
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Mat2<T> {
Mat2::from_cols(self[0].mul_t(value),
self[1].mul_t(value))
}
#[inline(always)]
pure fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
Vec2::new(self.row(0).dot(vec),
self.row(1).dot(vec))
}
#[inline(always)]
pure fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]))
}
#[inline(always)]
pure fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]))
}
#[inline(always)]
pure fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)))
}
pure fn dot(&self, other: &Mat2<T>) -> T {
other.transpose().mul_m(self).trace()
}
pure fn determinant(&self) -> T {
self[0][0] * self[1][1] - self[1][0] * self[0][1]
}
pure fn trace(&self) -> T {
self[0][0] + self[1][1]
}
#[inline(always)]
pure fn inverse(&self) -> Option<Mat2<T>> {
let d = self.determinant();
if d.fuzzy_eq(&Number::from(0)) {
None
} else {
Some(Mat2::new( self[1][1]/d, -self[0][1]/d,
-self[1][0]/d, self[0][0]/d))
}
}
#[inline(always)]
pure fn transpose(&self) -> Mat2<T> {
Mat2::new(self[0][0], self[1][0],
self[0][1], self[1][1])
}
#[inline(always)]
pure fn is_identity(&self) -> bool {
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
self.fuzzy_eq(&Mat2::identity())
}
#[inline(always)]
pure fn is_diagonal(&self) -> bool {
let _0 = Number::from(0);
self[0][1].fuzzy_eq(&_0) &&
self[1][0].fuzzy_eq(&_0)
}
#[inline(always)]
pure fn is_rotated(&self) -> bool {
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
!self.fuzzy_eq(&Mat2::identity())
}
#[inline(always)]
pure fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[1][0].fuzzy_eq(&self[0][1])
}
#[inline(always)]
pure fn is_invertible(&self) -> bool {
!self.determinant().fuzzy_eq(&Number::from(0))
}
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Mat2<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy Float Sign> Mat2<T>: MutableMatrix<T, Vec2<T>> {
#[inline(always)]
fn col_mut(&mut self, i: uint) -> &self/mut Vec2<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i))
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
util::swap(self.col_mut(a),
self.col_mut(b));
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat2<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
(*self) = Mat2::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
(*self) = Mat2::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(&value);
self.col_mut(1).mul_self_t(&value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat2<T>) {
self.col_mut(0).add_self_v(&other[0]);
self.col_mut(1).add_self_v(&other[1]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat2<T>) {
self.col_mut(0).sub_self_v(&other[0]);
self.col_mut(1).sub_self_v(&other[1]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
}
}
pub impl<T:Copy Float> Mat2<T>: Matrix2<T, Vec2<T>> {
#[inline(always)]
pure fn to_mat3(&self) -> Mat3<T> {
Mat3::from_Mat2(self)
}
#[inline(always)]
pure fn to_mat4(&self) -> Mat4<T> {
Mat4::from_Mat2(self)
}
}
pub impl<T:Copy> Mat2<T>: Index<uint, Vec2<T>> {
#[inline(always)]
pure fn index(&self, i: uint) -> Vec2<T> {
unsafe { do buf_as_slice(
transmute::<*Mat2<T>, *Vec2<T>>(
to_unsafe_ptr(self)), 2) |slice| { slice[i] }
}
}
}
pub impl<T:Copy Float> Mat2<T>: Neg<Mat2<T>> {
#[inline(always)]
pure fn neg(&self) -> Mat2<T> {
Mat2::from_cols(-self[0], -self[1])
}
}
pub impl<T:Copy Float> Mat2<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Mat2<T>) -> bool {
self[0] == other[0] &&
self[1] == other[1]
}
#[inline(always)]
pure fn ne(&self, other: &Mat2<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy Float> Mat2<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Mat2<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1])
}
}

504
src/mat3.rs Normal file
View file

@ -0,0 +1,504 @@
use core::cast::transmute;
use core::cmp::Eq;
use core::ptr::to_unsafe_ptr;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
use angle::Angle;
use funs::common::*;
use funs::exponential::*;
use funs::triganomic::{sin, cos};
use num::types::{Float, Number};
use quat::{Quat, ToQuat};
use vec::Vec3;
/**
* A 3 x 3 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
*/
pub struct Mat3<T> { x: Vec3<T>, y: Vec3<T>, z: Vec3<T> }
pub impl<T:Copy Float> Mat3<T> {
/**
* Construct a 3 x 3 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1`, `c0r2` - the first column of the matrix
* * `c1r0`, `c1r1`, `c1r2` - the second column of the matrix
* * `c2r0`, `c2r1`, `c2r2` - the third column of the matrix
*
* ~~~
* c0 c1 c2
* +------+------+------+
* r0 | c0r0 | c1r0 | c2r0 |
* +------+------+------+
* r1 | c0r1 | c1r1 | c2r1 |
* +------+------+------+
* r2 | c0r2 | c1r2 | c2r2 |
* +------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn new(c0r0:T, c0r1:T, c0r2:T,
c1r0:T, c1r1:T, c1r2:T,
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
Mat3::from_cols(Vec3::new(move c0r0, move c0r1, move c0r2),
Vec3::new(move c1r0, move c1r1, move c1r2),
Vec3::new(move c2r0, move c2r1, move c2r2))
}
/**
* Construct a 3 x 3 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
* * `c2` - the third column vector of the matrix
*
* ~~~
* c0 c1 c2
* +------+------+------+
* r0 | c0.x | c1.y | c2.z |
* +------+------+------+
* r1 | c0.x | c1.y | c2.z |
* +------+------+------+
* r2 | c0.x | c1.y | c2.z |
* +------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn from_cols(c0: Vec3<T>, c1: Vec3<T>, c2: Vec3<T>) -> Mat3<T> {
Mat3 { x: move c0,
y: move c1,
z: move c2 }
}
/**
* Construct a 3 x 3 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1 c2
* +-----+-----+-----+
* r0 | val | 0 | 0 |
* +-----+-----+-----+
* r1 | 0 | val | 0 |
* +-----+-----+-----+
* r2 | 0 | 0 | val |
* +-----+-----+-----+
* ~~~
*/
#[inline(always)]
static pure fn from_value(value: T) -> Mat3<T> {
let _0 = Number::from(0);
Mat3::new(value, _0, _0,
_0, value, _0,
_0, _0, value)
}
#[inline(always)]
static pure fn from_Mat2(m: &Mat2<T>) -> Mat3<T> {
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat3::new(m[0][0], m[0][1], _0,
m[1][0], m[1][1], _0,
_0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn identity() -> Mat3<T> {
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat3::new(_1, _0, _0,
_0, _1, _0,
_0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn zero() -> Mat3<T> {
let _0 = Number::from(0);
Mat3::new(_0, _0, _0,
_0, _0, _0,
_0, _0, _0)
}
}
pub impl<T:Copy Float> Mat3<T>: Matrix<T, Vec3<T>> {
#[inline(always)]
pure fn col(&self, i: uint) -> Vec3<T> { self[i] }
#[inline(always)]
pure fn row(&self, i: uint) -> Vec3<T> {
Vec3::new(self[0][i],
self[1][i],
self[2][i])
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1 c2
* +----+----+----+
* r0 | 1 | 0 | 0 |
* +----+----+----+
* r1 | 0 | 1 | 0 |
* +----+----+----+
* r2 | 0 | 0 | 1 |
* +----+----+----+
* ~~~
*/
#[inline(always)]
static pure fn identity() -> Mat3<T> {
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat3::new(_1, _0, _0,
_0, _1, _0,
_0, _0, _1)
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1 c2
* +----+----+----+
* r0 | 0 | 0 | 0 |
* +----+----+----+
* r1 | 0 | 0 | 0 |
* +----+----+----+
* r2 | 0 | 0 | 0 |
* +----+----+----+
* ~~~
*/
#[inline(always)]
static pure fn zero() -> Mat3<T> {
let _0 = Number::from(0);
Mat3::new(_0, _0, _0,
_0, _0, _0,
_0, _0, _0)
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Mat3<T> {
Mat3::from_cols(self[0].mul_t(value),
self[1].mul_t(value),
self[2].mul_t(value))
}
#[inline(always)]
pure fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
Vec3::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec))
}
#[inline(always)]
pure fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]),
self[2].add_v(&other[2]))
}
#[inline(always)]
pure fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]),
self[2].sub_v(&other[2]))
}
#[inline(always)]
pure fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)),
self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)))
}
pure fn dot(&self, other: &Mat3<T>) -> T {
other.transpose().mul_m(self).trace()
}
pure fn determinant(&self) -> T {
self.col(0).dot(&self.col(1).cross(&self.col(2)))
}
pure fn trace(&self) -> T {
self[0][0] + self[1][1] + self[2][2]
}
// #[inline(always)]
pure fn inverse(&self) -> Option<Mat3<T>> {
let d = self.determinant();
if d.fuzzy_eq(&Number::from(0)) {
None
} else {
Some(Mat3::from_cols(self[1].cross(&self[2]).div_t(d),
self[2].cross(&self[0]).div_t(d),
self[0].cross(&self[1]).div_t(d)).transpose())
}
}
#[inline(always)]
pure fn transpose(&self) -> Mat3<T> {
Mat3::new(self[0][0], self[1][0], self[2][0],
self[0][1], self[1][1], self[2][1],
self[0][2], self[1][2], self[2][2])
}
#[inline(always)]
pure fn is_identity(&self) -> bool {
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
self.fuzzy_eq(&Mat3::identity())
}
#[inline(always)]
pure fn is_diagonal(&self) -> bool {
let _0 = Number::from(0);
self[0][1].fuzzy_eq(&_0) &&
self[0][2].fuzzy_eq(&_0) &&
self[1][0].fuzzy_eq(&_0) &&
self[1][2].fuzzy_eq(&_0) &&
self[2][0].fuzzy_eq(&_0) &&
self[2][1].fuzzy_eq(&_0)
}
#[inline(always)]
pure fn is_rotated(&self) -> bool {
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
!self.fuzzy_eq(&Mat3::identity())
}
#[inline(always)]
pure fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[0][2].fuzzy_eq(&self[2][0]) &&
self[1][0].fuzzy_eq(&self[0][1]) &&
self[1][2].fuzzy_eq(&self[2][1]) &&
self[2][0].fuzzy_eq(&self[0][2]) &&
self[2][1].fuzzy_eq(&self[1][2])
}
#[inline(always)]
pure fn is_invertible(&self) -> bool {
!self.determinant().fuzzy_eq(&Number::zero())
}
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Mat3<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy Float Sign> Mat3<T>: MutableMatrix<T, Vec3<T>> {
#[inline(always)]
fn col_mut(&mut self, i: uint) -> &self/mut Vec3<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i))
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
util::swap(self.col_mut(a),
self.col_mut(b));
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat3<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
(*self) = Mat3::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
(*self) = Mat3::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(&value);
self.col_mut(1).mul_self_t(&value);
self.col_mut(2).mul_self_t(&value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).add_self_v(&other[0]);
self.col_mut(1).add_self_v(&other[1]);
self.col_mut(2).add_self_v(&other[2]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).sub_self_v(&other[0]);
self.col_mut(1).sub_self_v(&other[1]);
self.col_mut(2).sub_self_v(&other[2]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
util::swap(self.col_mut(0).index_mut(2), self.col_mut(2).index_mut(0));
util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
util::swap(self.col_mut(1).index_mut(2), self.col_mut(2).index_mut(1));
util::swap(self.col_mut(2).index_mut(0), self.col_mut(0).index_mut(2));
util::swap(self.col_mut(2).index_mut(1), self.col_mut(1).index_mut(2));
}
}
pub impl<T:Copy Float> Mat3<T>: Matrix3<T, Vec3<T>> {
#[inline(always)]
static pure fn from_axis_angle<A:Angle<T>>(axis: &Vec3<T>, theta: A) -> Mat3<T> {
let c: T = cos(&theta.to_radians());
let s: T = sin(&theta.to_radians());
let _0: T = Number::from(0);
let _1: T = Number::from(1);
let _1_c: T = _1 - c;
let x = axis.x;
let y = axis.y;
let z = axis.z;
Mat3::new(_1_c * x * x + c, _1_c * x * y + s * z, _1_c * x * z - s * y,
_1_c * x * y - s * z, _1_c * y * y + c, _1_c * y * z + s * x,
_1_c * x * z + s * y, _1_c * y * z - s * x, _1_c * z * z + c)
}
#[inline(always)]
pure fn to_mat4(&self) -> Mat4<T> {
Mat4::from_Mat3(self)
}
}
pub impl<T:Copy Float Exp> Mat3<T>: ToQuat<T> {
pure fn to_Quat() -> Quat<T> {
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
let mut s;
let w, x, y, z;
let trace = self.trace();
let _1: T = Number::from(1.0);
let half: T = Number::from(0.5);
if trace >= Number::from(0) {
s = (_1 + trace).sqrt();
w = half * s;
s = half / s;
x = (self[1][2] - self[2][1]) * s;
y = (self[2][0] - self[0][2]) * s;
z = (self[0][1] - self[1][0]) * s;
} else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) {
s = (half + (self[0][0] - self[1][1] - self[2][2])).sqrt();
w = half * s;
s = half / s;
x = (self[0][1] - self[1][0]) * s;
y = (self[2][0] - self[0][2]) * s;
z = (self[1][2] - self[2][1]) * s;
} else if self[1][1] > self[2][2] {
s = (half + (self[1][1] - self[0][0] - self[2][2])).sqrt();
w = half * s;
s = half / s;
x = (self[0][1] - self[1][0]) * s;
y = (self[1][2] - self[2][1]) * s;
z = (self[2][0] - self[0][2]) * s;
} else {
s = (half + (self[2][2] - self[0][0] - self[1][1])).sqrt();
w = half * s;
s = half / s;
x = (self[2][0] - self[0][2]) * s;
y = (self[1][2] - self[2][1]) * s;
z = (self[0][1] - self[1][0]) * s;
}
Quat::new(w, x, y, z)
}
}
pub impl<T:Copy> Mat3<T>: Index<uint, Vec3<T>> {
#[inline(always)]
pure fn index(&self, i: uint) -> Vec3<T> {
unsafe { do buf_as_slice(
transmute::<*Mat3<T>, *Vec3<T>>(
to_unsafe_ptr(self)), 3) |slice| { slice[i] }
}
}
}
pub impl<T:Copy Float> Mat3<T>: Neg<Mat3<T>> {
#[inline(always)]
pure fn neg(&self) -> Mat3<T> {
Mat3::from_cols(-self[0], -self[1], -self[2])
}
}
pub impl<T:Copy Float> Mat3<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Mat3<T>) -> bool {
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2]
}
#[inline(always)]
pure fn ne(&self, other: &Mat3<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy Float> Mat3<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Mat3<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2])
}
}

551
src/mat4.rs Normal file
View file

@ -0,0 +1,551 @@
use core::cast::transmute;
use core::cmp::Eq;
use core::ptr::to_unsafe_ptr;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
use angle::Angle;
use funs::common::*;
use funs::exponential::*;
use num::types::{Float, Number};
use vec::Vec4;
/**
* A 4 x 4 column major matrix
*
* # Type parameters
*
* * `T` - The type of the elements of the matrix. Should be a floating point type.
*
* # Fields
*
* * `x` - the first column vector of the matrix
* * `y` - the second column vector of the matrix
* * `z` - the third column vector of the matrix
* * `w` - the fourth column vector of the matrix
*/
pub struct Mat4<T> { x: Vec4<T>, y: Vec4<T>, z: Vec4<T>, w: Vec4<T> }
pub impl<T:Copy Float> Mat4<T> {
/**
* Construct a 4 x 4 matrix
*
* # Arguments
*
* * `c0r0`, `c0r1`, `c0r2`, `c0r3` - the first column of the matrix
* * `c1r0`, `c1r1`, `c1r2`, `c1r3` - the second column of the matrix
* * `c2r0`, `c2r1`, `c2r2`, `c2r3` - the third column of the matrix
* * `c3r0`, `c3r1`, `c3r2`, `c3r3` - the fourth column of the matrix
*
* ~~~
* c0 c1 c2 c3
* +------+------+------+------+
* r0 | c0r0 | c1r0 | c2r0 | c3r0 |
* +------+------+------+------+
* r1 | c0r1 | c1r1 | c2r1 | c3r1 |
* +------+------+------+------+
* r2 | c0r2 | c1r2 | c2r2 | c3r2 |
* +------+------+------+------+
* r3 | c0r3 | c1r3 | c2r3 | c3r3 |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4<T> {
Mat4::from_cols(Vec4::new(move c0r0, move c0r1, move c0r2, move c0r3),
Vec4::new(move c1r0, move c1r1, move c1r2, move c1r3),
Vec4::new(move c2r0, move c2r1, move c2r2, move c2r3),
Vec4::new(move c3r0, move c3r1, move c3r2, move c3r3))
}
/**
* Construct a 4 x 4 matrix from column vectors
*
* # Arguments
*
* * `c0` - the first column vector of the matrix
* * `c1` - the second column vector of the matrix
* * `c2` - the third column vector of the matrix
* * `c3` - the fourth column vector of the matrix
*
* ~~~
* c0 c1 c2 c3
* +------+------+------+------+
* r0 | c0.x | c1.x | c2.x | c3.x |
* +------+------+------+------+
* r1 | c0.y | c1.y | c2.y | c3.y |
* +------+------+------+------+
* r2 | c0.z | c1.z | c2.z | c3.z |
* +------+------+------+------+
* r3 | c0.w | c1.w | c2.w | c3.w |
* +------+------+------+------+
* ~~~
*/
#[inline(always)]
static pure fn from_cols(c0: Vec4<T>, c1: Vec4<T>, c2: Vec4<T>, c3: Vec4<T>) -> Mat4<T> {
Mat4 { x: move c0,
y: move c1,
z: move c2,
w: move c3 }
}
/**
* Construct a 4 x 4 diagonal matrix with the major diagonal set to `value`
*
* # Arguments
*
* * `value` - the value to set the major diagonal to
*
* ~~~
* c0 c1 c2 c3
* +-----+-----+-----+-----+
* r0 | val | 0 | 0 | 0 |
* +-----+-----+-----+-----+
* r1 | 0 | val | 0 | 0 |
* +-----+-----+-----+-----+
* r2 | 0 | 0 | val | 0 |
* +-----+-----+-----+-----+
* r3 | 0 | 0 | 0 | val |
* +-----+-----+-----+-----+
* ~~~
*/
#[inline(always)]
static pure fn from_value(value: T) -> Mat4<T> {
let _0 = Number::from(0);
Mat4::new(value, _0, _0, _0,
_0, value, _0, _0,
_0, _0, value, _0,
_0, _0, _0, value)
}
#[inline(always)]
static pure fn from_Mat2(m: &Mat2<T>) -> Mat4<T> {
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat4::new(m[0][0], m[0][1], _0, _0,
m[1][0], m[1][1], _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
#[inline(always)]
static pure fn from_Mat3(m: &Mat3<T>) -> Mat4<T> {
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat4::new(m[0][0], m[0][1], m[0][2], _0,
m[1][0], m[1][1], m[1][2], _0,
m[2][0], m[2][1], m[2][2], _0,
_0, _0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn identity() -> Mat4<T> {
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat4::new(_1, _0, _0, _0,
_0, _1, _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
// FIXME: An interim solution to the issues with static functions
#[inline(always)]
static pure fn zero() -> Mat4<T> {
let _0 = Number::from(0);
Mat4::new(_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0)
}
}
pub impl<T:Copy Float Sign> Mat4<T>: Matrix<T, Vec4<T>> {
#[inline(always)]
pure fn col(&self, i: uint) -> Vec4<T> { self[i] }
#[inline(always)]
pure fn row(&self, i: uint) -> Vec4<T> {
Vec4::new(self[0][i],
self[1][i],
self[2][i],
self[3][i])
}
/**
* Returns the multiplicative identity matrix
* ~~~
* c0 c1 c2 c3
* +----+----+----+----+
* r0 | 1 | 0 | 0 | 0 |
* +----+----+----+----+
* r1 | 0 | 1 | 0 | 0 |
* +----+----+----+----+
* r2 | 0 | 0 | 1 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 1 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
static pure fn identity() -> Mat4<T> {
let _0 = Number::from(0);
let _1 = Number::from(1);
Mat4::new(_1, _0, _0, _0,
_0, _1, _0, _0,
_0, _0, _1, _0,
_0, _0, _0, _1)
}
/**
* Returns the additive identity matrix
* ~~~
* c0 c1 c2 c3
* +----+----+----+----+
* r0 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r1 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r2 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* r3 | 0 | 0 | 0 | 0 |
* +----+----+----+----+
* ~~~
*/
#[inline(always)]
static pure fn zero() -> Mat4<T> {
let _0 = Number::from(0);
Mat4::new(_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0,
_0, _0, _0, _0)
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Mat4<T> {
Mat4::from_cols(self[0].mul_t(value),
self[1].mul_t(value),
self[2].mul_t(value),
self[3].mul_t(value))
}
#[inline(always)]
pure fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
Vec4::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec),
self.row(3).dot(vec))
}
#[inline(always)]
pure fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self[0].add_v(&other[0]),
self[1].add_v(&other[1]),
self[2].add_v(&other[2]),
self[3].add_v(&other[3]))
}
#[inline(always)]
pure fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self[0].sub_v(&other[0]),
self[1].sub_v(&other[1]),
self[2].sub_v(&other[2]),
self[3].sub_v(&other[3]))
}
#[inline(always)]
pure fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
// Surprisingly when building with optimisation turned on this is actually
// faster than writing out the matrix multiplication in expanded form.
// If you don't believe me, see ./test/performance/matrix_mul.rs
Mat4::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), self.row(3).dot(&other.col(0)),
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), self.row(3).dot(&other.col(1)),
self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)), self.row(3).dot(&other.col(2)),
self.row(0).dot(&other.col(3)), self.row(1).dot(&other.col(3)), self.row(2).dot(&other.col(3)), self.row(3).dot(&other.col(3)))
}
pure fn dot(&self, other: &Mat4<T>) -> T {
other.transpose().mul_m(self).trace()
}
pure fn determinant(&self) -> T {
self[0][0]*Mat3::new(self[1][1], self[2][1], self[3][1],
self[1][2], self[2][2], self[3][2],
self[1][3], self[2][3], self[3][3]).determinant() -
self[1][0]*Mat3::new(self[0][1], self[2][1], self[3][1],
self[0][2], self[2][2], self[3][2],
self[0][3], self[2][3], self[3][3]).determinant() +
self[2][0]*Mat3::new(self[0][1], self[1][1], self[3][1],
self[0][2], self[1][2], self[3][2],
self[0][3], self[1][3], self[3][3]).determinant() -
self[3][0]*Mat3::new(self[0][1], self[1][1], self[2][1],
self[0][2], self[1][2], self[2][2],
self[0][3], self[1][3], self[2][3]).determinant()
}
pure fn trace(&self) -> T {
self[0][0] + self[1][1] + self[2][2] + self[3][3]
}
pure fn inverse(&self) -> Option<Mat4<T>> {
let d = self.determinant();
if d.fuzzy_eq(&Number::from(0)) {
None
} else {
// Gauss Jordan Elimination with partial pivoting
// So take this matrix, A, augmented with the identity
// and essentially reduce [A|I]
let mut A = *self;
// let mut I: Mat4<T> = Matrix::identity(); // FIXME: there's something wrong with static functions here!
let mut I = Mat4::identity();
for uint::range(0, 4) |j| {
// Find largest element in col j
let mut i1 = j;
for uint::range(j + 1, 4) |i| {
if abs(&A[j][i]) > abs(&A[j][i1]) {
i1 = i;
}
}
unsafe {
// Swap columns i1 and j in A and I to
// put pivot on diagonal
A.swap_cols(i1, j);
I.swap_cols(i1, j);
// Scale col j to have a unit diagonal
I.col_mut(j).div_self_t(&A[j][j]);
A.col_mut(j).div_self_t(&A[j][j]);
// Eliminate off-diagonal elems in col j of A,
// doing identical ops to I
for uint::range(0, 4) |i| {
if i != j {
I.col_mut(i).sub_self_v(&I[j].mul_t(A[i][j]));
A.col_mut(i).sub_self_v(&A[j].mul_t(A[i][j]));
}
}
}
}
Some(I)
}
}
#[inline(always)]
pure fn transpose(&self) -> Mat4<T> {
Mat4::new(self[0][0], self[1][0], self[2][0], self[3][0],
self[0][1], self[1][1], self[2][1], self[3][1],
self[0][2], self[1][2], self[2][2], self[3][2],
self[0][3], self[1][3], self[2][3], self[3][3])
}
#[inline(always)]
pure fn is_identity(&self) -> bool {
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
self.fuzzy_eq(&Mat4::identity())
}
#[inline(always)]
pure fn is_diagonal(&self) -> bool {
let _0 = Number::from(0);
self[0][1].fuzzy_eq(&_0) &&
self[0][2].fuzzy_eq(&_0) &&
self[0][3].fuzzy_eq(&_0) &&
self[1][0].fuzzy_eq(&_0) &&
self[1][2].fuzzy_eq(&_0) &&
self[1][3].fuzzy_eq(&_0) &&
self[2][0].fuzzy_eq(&_0) &&
self[2][1].fuzzy_eq(&_0) &&
self[2][3].fuzzy_eq(&_0) &&
self[3][0].fuzzy_eq(&_0) &&
self[3][1].fuzzy_eq(&_0) &&
self[3][2].fuzzy_eq(&_0)
}
#[inline(always)]
pure fn is_rotated(&self) -> bool {
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
!self.fuzzy_eq(&Mat4::identity())
}
#[inline(always)]
pure fn is_symmetric(&self) -> bool {
self[0][1].fuzzy_eq(&self[1][0]) &&
self[0][2].fuzzy_eq(&self[2][0]) &&
self[0][3].fuzzy_eq(&self[3][0]) &&
self[1][0].fuzzy_eq(&self[0][1]) &&
self[1][2].fuzzy_eq(&self[2][1]) &&
self[1][3].fuzzy_eq(&self[3][1]) &&
self[2][0].fuzzy_eq(&self[0][2]) &&
self[2][1].fuzzy_eq(&self[1][2]) &&
self[2][3].fuzzy_eq(&self[3][2]) &&
self[3][0].fuzzy_eq(&self[0][3]) &&
self[3][1].fuzzy_eq(&self[1][3]) &&
self[3][2].fuzzy_eq(&self[2][3])
}
#[inline(always)]
pure fn is_invertible(&self) -> bool {
!self.determinant().fuzzy_eq(&Number::zero())
}
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Mat4<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy Float Sign> Mat4<T>: MutableMatrix<T, Vec4<T>> {
#[inline(always)]
fn col_mut(&mut self, i: uint) -> &self/mut Vec4<T> {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
3 => &mut self.w,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i))
}
}
#[inline(always)]
fn swap_cols(&mut self, a: uint, b: uint) {
util::swap(self.col_mut(a),
self.col_mut(b));
}
#[inline(always)]
fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
self.w.swap(a, b);
}
#[inline(always)]
fn set(&mut self, other: &Mat4<T>) {
(*self) = (*other);
}
#[inline(always)]
fn to_identity(&mut self) {
(*self) = Mat4::identity();
}
#[inline(always)]
fn to_zero(&mut self) {
(*self) = Mat4::zero();
}
#[inline(always)]
fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(&value);
self.col_mut(1).mul_self_t(&value);
self.col_mut(2).mul_self_t(&value);
self.col_mut(3).mul_self_t(&value);
}
#[inline(always)]
fn add_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).add_self_v(&other[0]);
self.col_mut(1).add_self_v(&other[1]);
self.col_mut(2).add_self_v(&other[2]);
self.col_mut(3).add_self_v(&other[3]);
}
#[inline(always)]
fn sub_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).sub_self_v(&other[0]);
self.col_mut(1).sub_self_v(&other[1]);
self.col_mut(2).sub_self_v(&other[2]);
self.col_mut(3).sub_self_v(&other[3]);
}
#[inline(always)]
fn invert_self(&mut self) {
match self.inverse() {
Some(m) => (*self) = m,
None => fail(~"Couldn't invert the matrix!")
}
}
#[inline(always)]
fn transpose_self(&mut self) {
util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
util::swap(self.col_mut(0).index_mut(2), self.col_mut(2).index_mut(0));
util::swap(self.col_mut(0).index_mut(3), self.col_mut(3).index_mut(0));
util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
util::swap(self.col_mut(1).index_mut(2), self.col_mut(2).index_mut(1));
util::swap(self.col_mut(1).index_mut(3), self.col_mut(3).index_mut(1));
util::swap(self.col_mut(2).index_mut(0), self.col_mut(0).index_mut(2));
util::swap(self.col_mut(2).index_mut(1), self.col_mut(1).index_mut(2));
util::swap(self.col_mut(2).index_mut(3), self.col_mut(3).index_mut(2));
util::swap(self.col_mut(3).index_mut(0), self.col_mut(0).index_mut(3));
util::swap(self.col_mut(3).index_mut(1), self.col_mut(1).index_mut(3));
util::swap(self.col_mut(3).index_mut(2), self.col_mut(2).index_mut(3));
}
}
pub impl<T> Mat4<T>: Matrix4<T, Vec4<T>> {
}
pub impl<T:Copy Float> Mat4<T>: Neg<Mat4<T>> {
#[inline(always)]
pure fn neg(&self) -> Mat4<T> {
Mat4::from_cols(-self[0], -self[1], -self[2], -self[3])
}
}
pub impl<T:Copy> Mat4<T>: Index<uint, Vec4<T>> {
#[inline(always)]
pure fn index(&self, i: uint) -> Vec4<T> {
unsafe { do buf_as_slice(
transmute::<*Mat4<T>, *Vec4<T>>(
to_unsafe_ptr(self)), 4) |slice| { slice[i] }
}
}
}
pub impl<T:Copy Float> Mat4<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Mat4<T>) -> bool {
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2] &&
self[3] == other[3]
}
#[inline(always)]
pure fn ne(&self, other: &Mat4<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy Float> Mat4<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Mat4<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2]) &&
self[3].fuzzy_eq(&other[3])
}
}

View file

@ -1,16 +1,20 @@
use core::cast::transmute;
use core::cmp::Eq;
use core::ptr::to_unsafe_ptr;
use core::sys::size_of;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
use angle::Radians;
use funs::exponential::Exp;
use funs::triganomic::{InvTrig, acos, atan2};
use num::types::Number;
pub mod vec2;
pub mod vec3;
pub mod vec4;
pub use vec2::Vec2;
pub use vec3::Vec3;
pub use vec4::Vec4;
/**
* The base generic vector trait.
*
@ -127,7 +131,8 @@ pub trait NumericVector<T>: Vector<T> Neg<self> {
/**
* A mutable vector with numeric components
*/
pub trait MutableNumericVector<T>: MutableVector<&self/T> NumericVector<T> {
pub trait MutableNumericVector<T>: MutableVector<&self/T>
NumericVector<T> {
/**
* Negate the vector
*/
@ -300,779 +305,4 @@ pub trait MutableEuclideanVector<T>: MutableNumericVector<&self/T>
* Linearly intoperlate the vector towards `other`
*/
fn lerp_self(&mut self, other: &self, amount: T);
}
/**
* A 2-dimensional vector
*
* # Type parameters
*
* * `T` - The type of the components. This is intended to support boolean,
* integer, unsigned integer, and floating point types.
*
* # Fields
*
* * `x` - the first component of the vector
* * `y` - the second component of the vector
*/
pub struct Vec2<T> { x: T, y: T }
pub impl<T> Vec2<T>/*: Vector2<T>*/ {
#[inline(always)]
static pure fn new(x: T, y: T ) -> Vec2<T> {
Vec2 { x: move x, y: move y }
}
}
pub impl<T:Copy> Vec2<T>: Vector<T> {
#[inline(always)]
static pure fn from_value(value: T) -> Vec2<T> {
Vec2::new(value, value)
}
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Vec2<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy> Vec2<T>: Index<uint, T> {
#[inline(always)]
pure fn index(&self, i: uint) -> T {
unsafe { do buf_as_slice(self.to_ptr(), 2) |slice| { slice[i] } }
}
}
pub impl<T:Copy> Vec2<T>: MutableVector<T> {
#[inline(always)]
fn index_mut(&mut self, i: uint) -> &self/mut T {
match i {
0 => &mut self.x,
1 => &mut self.y,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i))
}
}
#[inline(always)]
fn swap(&mut self, a: uint, b: uint) {
util::swap(self.index_mut(a),
self.index_mut(b));
}
}
pub impl<T:Copy Number> Vec2<T>: NumericVector<T> {
#[inline(always)]
static pure fn identity() -> Vec2<T> {
Vec2::new(Number::one(),
Number::one())
}
#[inline(always)]
static pure fn zero() -> Vec2<T> {
Vec2::new(Number::zero(),
Number::zero())
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Vec2<T> {
Vec2::new(self[0] * value,
self[1] * value)
}
#[inline(always)]
pure fn div_t(&self, value: T) -> Vec2<T> {
Vec2::new(self[0] / value,
self[1] / value)
}
#[inline(always)]
pure fn add_v(&self, other: &Vec2<T>) -> Vec2<T> {
Vec2::new(self[0] + other[0],
self[1] + other[1])
}
#[inline(always)]
pure fn sub_v(&self, other: &Vec2<T>) -> Vec2<T> {
Vec2::new(self[0] - other[0],
self[1] - other[1])
}
#[inline(always)]
pure fn dot(&self, other: &Vec2<T>) -> T {
self[0] * other[0] +
self[1] * other[1]
}
}
pub impl<T:Copy Number> Vec2<T>: Neg<Vec2<T>> {
#[inline(always)]
pure fn neg(&self) -> Vec2<T> {
Vec2::new(-self[0], -self[1])
}
}
pub impl<T:Copy Number> Vec2<T>: MutableNumericVector<&self/T> {
#[inline(always)]
fn neg_self(&mut self) {
*self.index_mut(0) = -*self.index_mut(0);
*self.index_mut(1) = -*self.index_mut(1);
}
#[inline(always)]
fn mul_self_t(&mut self, value: &T) {
*self.index_mut(0) *= (*value);
*self.index_mut(1) *= (*value);
}
#[inline(always)]
fn div_self_t(&mut self, value: &T) {
*self.index_mut(0) /= (*value);
*self.index_mut(1) /= (*value);
}
#[inline(always)]
fn add_self_v(&mut self, other: &Vec2<T>) {
*self.index_mut(0) += other[0];
*self.index_mut(1) += other[1];
}
#[inline(always)]
fn sub_self_v(&mut self, other: &Vec2<T>) {
*self.index_mut(0) -= other[0];
*self.index_mut(1) -= other[1];
}
}
pub impl<T:Copy Number> Vec2<T>: NumericVector2<T> {
#[inline(always)]
pure fn perp_dot(&self, other: &Vec2<T>) ->T {
(self[0] * other[1]) - (self[1] * other[0])
}
}
pub impl<T:Copy Number Exp InvTrig> Vec2<T>: EuclideanVector<T> {
#[inline(always)]
pure fn length2(&self) -> T {
self.dot(self)
}
#[inline(always)]
pure fn length(&self) -> T {
self.length2().sqrt()
}
#[inline(always)]
pure fn distance2(&self, other: &Vec2<T>) -> T {
other.sub_v(self).length2()
}
#[inline(always)]
pure fn distance(&self, other: &Vec2<T>) -> T {
other.distance2(self).sqrt()
}
#[inline(always)]
pure fn angle(&self, other: &Vec2<T>) -> Radians<T> {
atan2(&self.perp_dot(other), &self.dot(other))
}
#[inline(always)]
pure fn normalize(&self) -> Vec2<T> {
let mut n: T = Number::from(1);
n /= self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn normalize_to(&self, length: T) -> Vec2<T> {
let mut n: T = length / self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn lerp(&self, other: &Vec2<T>, amount: T) -> Vec2<T> {
self.add_v(&other.sub_v(self).mul_t(amount))
}
}
pub impl<T:Copy Number Exp InvTrig> Vec2<T>: MutableEuclideanVector<&self/T> {
#[inline(always)]
fn normalize_self(&mut self) {
let mut n: T = Number::from(1);
n /= self.length();
self.mul_self_t(&n);
}
#[inline(always)]
fn normalize_self_to(&mut self, length: &T) {
let mut n: T = length / self.length();
self.mul_self_t(&n);
}
fn lerp_self(&mut self, other: &Vec2<T>, amount: &T) {
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
}
}
pub impl<T:Copy Eq> Vec2<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Vec2<T>) -> bool {
self[0] == other[0] &&
self[1] == other[1]
}
#[inline(always)]
pure fn ne(&self, other: &Vec2<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy FuzzyEq> Vec2<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Vec2<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1])
}
}
/**
* A 3-dimensional vector
*
* # Type parameters
*
* * `T` - The type of the components. This is intended to support boolean,
* integer, unsigned integer, and floating point types.
*
* # Fields
*
* * `x` - the first component of the vector
* * `y` - the second component of the vector
* * `z` - the third component of the vector
*/
pub struct Vec3<T> { x: T, y: T, z: T }
pub impl<T> Vec3<T>/*: Vector3<T>*/ {
#[inline(always)]
static pure fn new(x: T, y: T, z: T) -> Vec3<T> {
Vec3 { x: move x, y: move y, z: move z }
}
}
pub impl<T:Copy> Vec3<T>: Vector<T> {
#[inline(always)]
static pure fn from_value(value: T) -> Vec3<T> {
Vec3::new(value, value, value)
}
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Vec3<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy> Vec3<T>: Index<uint, T> {
#[inline(always)]
pure fn index(&self, i: uint) -> T {
unsafe { do buf_as_slice(self.to_ptr(), 3) |slice| { slice[i] } }
}
}
pub impl<T:Copy> Vec3<T>: MutableVector<T> {
#[inline(always)]
fn index_mut(&mut self, i: uint) -> &self/mut T {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i))
}
}
#[inline(always)]
fn swap(&mut self, a: uint, b: uint) {
util::swap(self.index_mut(a),
self.index_mut(b));
}
}
pub impl<T:Copy Number> Vec3<T>: NumericVector<T> {
#[inline(always)]
static pure fn identity() -> Vec3<T> {
Vec3::new(Number::one(),
Number::one(),
Number::one())
}
#[inline(always)]
static pure fn zero() -> Vec3<T> {
Vec3::new(Number::zero(),
Number::zero(),
Number::zero())
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Vec3<T> {
Vec3::new(self[0] * value,
self[1] * value,
self[2] * value)
}
#[inline(always)]
pure fn div_t(&self, value: T) -> Vec3<T> {
Vec3::new(self[0] / value,
self[1] / value,
self[2] / value)
}
#[inline(always)]
pure fn add_v(&self, other: &Vec3<T>) -> Vec3<T>{
Vec3::new(self[0] + other[0],
self[1] + other[1],
self[2] + other[2])
}
#[inline(always)]
pure fn sub_v(&self, other: &Vec3<T>) -> Vec3<T>{
Vec3::new(self[0] - other[0],
self[1] - other[1],
self[2] - other[2])
}
#[inline(always)]
pure fn dot(&self, other: &Vec3<T>) -> T {
self[0] * other[0] +
self[1] * other[1] +
self[2] * other[2]
}
}
pub impl<T:Copy Number> Vec3<T>: Neg<Vec3<T>> {
#[inline(always)]
pure fn neg(&self) -> Vec3<T> {
Vec3::new(-self[0], -self[1], -self[2])
}
}
pub impl<T:Copy Number> Vec3<T>: MutableNumericVector<&self/T> {
#[inline(always)]
fn neg_self(&mut self) {
*self.index_mut(0) = -*self.index_mut(0);
*self.index_mut(1) = -*self.index_mut(1);
*self.index_mut(2) = -*self.index_mut(2);
}
#[inline(always)]
fn mul_self_t(&mut self, value: &T) {
*self.index_mut(0) *= (*value);
*self.index_mut(1) *= (*value);
*self.index_mut(2) *= (*value);
}
#[inline(always)]
fn div_self_t(&mut self, value: &T) {
*self.index_mut(0) /= (*value);
*self.index_mut(1) /= (*value);
*self.index_mut(2) /= (*value);
}
#[inline(always)]
fn add_self_v(&mut self, other: &Vec3<T>) {
*self.index_mut(0) += other[0];
*self.index_mut(1) += other[1];
*self.index_mut(2) += other[2];
}
#[inline(always)]
fn sub_self_v(&mut self, other: &Vec3<T>) {
*self.index_mut(0) -= other[0];
*self.index_mut(1) -= other[1];
*self.index_mut(2) -= other[2];
}
}
pub impl<T:Copy Number> Vec3<T>: NumericVector3<T> {
#[inline(always)]
pure fn cross(&self, other: &Vec3<T>) -> Vec3<T> {
Vec3::new((self[1] * other[2]) - (self[2] * other[1]),
(self[2] * other[0]) - (self[0] * other[2]),
(self[0] * other[1]) - (self[1] * other[0]))
}
}
pub impl<T:Copy Number> Vec3<T>: MutableNumericVector3<&self/T> {
#[inline(always)]
fn cross_self(&mut self, other: &Vec3<T>) {
*self = self.cross(other);
}
}
pub impl<T:Copy Number Exp InvTrig> Vec3<T>: EuclideanVector<T> {
#[inline(always)]
pure fn length2(&self) -> T {
self.dot(self)
}
#[inline(always)]
pure fn length(&self) -> T {
self.length2().sqrt()
}
#[inline(always)]
pure fn distance2(&self, other: &Vec3<T>) -> T {
other.sub_v(self).length2()
}
#[inline(always)]
pure fn distance(&self, other: &Vec3<T>) -> T {
other.distance2(self).sqrt()
}
#[inline(always)]
pure fn angle(&self, other: &Vec3<T>) -> Radians<T> {
atan2(&self.cross(other).length(), &self.dot(other))
}
#[inline(always)]
pure fn normalize(&self) -> Vec3<T> {
let mut n: T = Number::from(1);
n /= self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn normalize_to(&self, length: T) -> Vec3<T> {
let mut n: T = length / self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn lerp(&self, other: &Vec3<T>, amount: T) -> Vec3<T> {
self.add_v(&other.sub_v(self).mul_t(amount))
}
}
pub impl<T:Copy Number Exp InvTrig> Vec3<T>: MutableEuclideanVector<&self/T> {
#[inline(always)]
fn normalize_self(&mut self) {
let mut n: T = Number::from(1);
n /= self.length();
self.mul_self_t(&n);
}
#[inline(always)]
fn normalize_self_to(&mut self, length: &T) {
let mut n: T = length / self.length();
self.mul_self_t(&n);
}
fn lerp_self(&mut self, other: &Vec3<T>, amount: &T) {
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
}
}
pub impl<T:Copy Eq> Vec3<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Vec3<T>) -> bool {
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2]
}
#[inline(always)]
pure fn ne(&self, other: &Vec3<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy FuzzyEq> Vec3<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Vec3<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2])
}
}
/**
* A 4-dimensional vector
*
* # Type parameters
*
* * `T` - The type of the components. This is intended to support boolean,
* integer, unsigned integer, and floating point types.
*
* # Fields
*
* * `x` - the first component of the vector
* * `y` - the second component of the vector
* * `z` - the third component of the vector
* * `w` - the fourth component of the vector
*/
pub struct Vec4<T> { x: T, y: T, z: T, w: T }
pub impl<T> Vec4<T>/*: Vector4<T>*/ {
#[inline(always)]
static pure fn new(x: T, y: T, z: T, w: T) -> Vec4<T> {
Vec4 { x: move x, y: move y, z: move z, w: move w }
}
}
pub impl<T:Copy> Vec4<T>: Vector<T> {
#[inline(always)]
static pure fn from_value(value: T) -> Vec4<T> {
Vec4::new(value, value, value, value)
}
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Vec4<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy> Vec4<T>: Index<uint, T> {
#[inline(always)]
pure fn index(&self, i: uint) -> T {
unsafe { do buf_as_slice(self.to_ptr(), 4) |slice| { slice[i] } }
}
}
pub impl<T:Copy> Vec4<T>: MutableVector<T> {
#[inline(always)]
fn index_mut(&mut self, i: uint) -> &self/mut T {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
3 => &mut self.w,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i))
}
}
#[inline(always)]
fn swap(&mut self, a: uint, b: uint) {
util::swap(self.index_mut(a),
self.index_mut(b));
}
}
pub impl<T:Copy Number> Vec4<T>: NumericVector<T> {
#[inline(always)]
static pure fn identity() -> Vec4<T> {
Vec4::new(Number::one(),
Number::one(),
Number::one(),
Number::one())
}
#[inline(always)]
static pure fn zero() -> Vec4<T> {
Vec4::new(Number::zero(),
Number::zero(),
Number::zero(),
Number::zero())
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Vec4<T> {
Vec4::new(self[0] * value,
self[1] * value,
self[2] * value,
self[3] * value)
}
#[inline(always)]
pure fn div_t(&self, value: T) -> Vec4<T> {
Vec4::new(self[0] / value,
self[1] / value,
self[2] / value,
self[3] / value)
}
#[inline(always)]
pure fn add_v(&self, other: &Vec4<T>) -> Vec4<T> {
Vec4::new(self[0] + other[0],
self[1] + other[1],
self[2] + other[2],
self[3] + other[3])
}
#[inline(always)]
pure fn sub_v(&self, other: &Vec4<T>) -> Vec4<T> {
Vec4::new(self[0] - other[0],
self[1] - other[1],
self[2] - other[2],
self[3] - other[3])
}
#[inline(always)]
pure fn dot(&self, other: &Vec4<T>) -> T {
self[0] * other[0] +
self[1] * other[1] +
self[2] * other[2] +
self[3] * other[3]
}
}
pub impl<T:Copy Number> Vec4<T>: Neg<Vec4<T>> {
#[inline(always)]
pure fn neg(&self) -> Vec4<T> {
Vec4::new(-self[0], -self[1], -self[2], -self[3])
}
}
pub impl<T:Copy Number> Vec4<T>: MutableNumericVector<&self/T> {
#[inline(always)]
fn neg_self(&mut self) {
*self.index_mut(0) = -*self.index_mut(0);
*self.index_mut(1) = -*self.index_mut(1);
*self.index_mut(2) = -*self.index_mut(2);
*self.index_mut(3) = -*self.index_mut(3);
}
#[inline(always)]
fn mul_self_t(&mut self, value: &T) {
*self.index_mut(0) *= (*value);
*self.index_mut(1) *= (*value);
*self.index_mut(2) *= (*value);
*self.index_mut(3) *= (*value);
}
#[inline(always)]
fn div_self_t(&mut self, value: &T) {
*self.index_mut(0) /= (*value);
*self.index_mut(1) /= (*value);
*self.index_mut(2) /= (*value);
*self.index_mut(3) /= (*value);
}
#[inline(always)]
fn add_self_v(&mut self, other: &Vec4<T>) {
*self.index_mut(0) += other[0];
*self.index_mut(1) += other[1];
*self.index_mut(2) += other[2];
*self.index_mut(3) += other[3];
}
#[inline(always)]
fn sub_self_v(&mut self, other: &Vec4<T>) {
*self.index_mut(0) -= other[0];
*self.index_mut(1) -= other[1];
*self.index_mut(2) -= other[2];
*self.index_mut(3) -= other[3];
}
}
pub impl<T:Copy Number Exp InvTrig> Vec4<T>: EuclideanVector<T> {
#[inline(always)]
pure fn length2(&self) -> T {
self.dot(self)
}
#[inline(always)]
pure fn length(&self) -> T {
self.length2().sqrt()
}
#[inline(always)]
pure fn distance2(&self, other: &Vec4<T>) -> T {
other.sub_v(self).length2()
}
#[inline(always)]
pure fn distance(&self, other: &Vec4<T>) -> T {
other.distance2(self).sqrt()
}
#[inline(always)]
pure fn angle(&self, other: &Vec4<T>) -> Radians<T> {
acos(&(self.dot(other) / (self.length() * other.length())))
}
#[inline(always)]
pure fn normalize(&self) -> Vec4<T> {
let mut n: T = Number::from(1);
n /= self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn normalize_to(&self, length: T) -> Vec4<T> {
let mut n: T = length / self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn lerp(&self, other: &Vec4<T>, amount: T) -> Vec4<T> {
self.add_v(&other.sub_v(self).mul_t(amount))
}
}
pub impl<T:Copy Number Exp InvTrig> Vec4<T>: MutableEuclideanVector<&self/T> {
#[inline(always)]
fn normalize_self(&mut self) {
let mut n: T = Number::from(1);
n /= self.length();
self.mul_self_t(&n);
}
#[inline(always)]
fn normalize_self_to(&mut self, length: &T) {
let mut n: T = length / self.length();
self.mul_self_t(&n);
}
fn lerp_self(&mut self, other: &Vec4<T>, amount: &T) {
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
}
}
pub impl<T:Copy Eq> Vec4<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Vec4<T>) -> bool {
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2] &&
self[3] == other[3]
}
#[inline(always)]
pure fn ne(&self, other: &Vec4<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy FuzzyEq> Vec4<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Vec4<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2]) &&
self[3].fuzzy_eq(&other[3])
}
}

248
src/vec2.rs Normal file
View file

@ -0,0 +1,248 @@
use core::cast::transmute;
use core::cmp::Eq;
use core::ptr::to_unsafe_ptr;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
use angle::Radians;
use funs::exponential::Exp;
use funs::triganomic::{InvTrig, atan2};
use num::types::Number;
/**
* A 2-dimensional vector
*
* # Type parameters
*
* * `T` - The type of the components. This is intended to support boolean,
* integer, unsigned integer, and floating point types.
*
* # Fields
*
* * `x` - the first component of the vector
* * `y` - the second component of the vector
*/
pub struct Vec2<T> { x: T, y: T }
pub impl<T> Vec2<T>/*: Vector2<T>*/ {
#[inline(always)]
static pure fn new(x: T, y: T ) -> Vec2<T> {
Vec2 { x: move x, y: move y }
}
}
pub impl<T:Copy> Vec2<T>: Vector<T> {
#[inline(always)]
static pure fn from_value(value: T) -> Vec2<T> {
Vec2::new(value, value)
}
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Vec2<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy> Vec2<T>: Index<uint, T> {
#[inline(always)]
pure fn index(&self, i: uint) -> T {
unsafe { do buf_as_slice(self.to_ptr(), 2) |slice| { slice[i] } }
}
}
pub impl<T:Copy> Vec2<T>: MutableVector<T> {
#[inline(always)]
fn index_mut(&mut self, i: uint) -> &self/mut T {
match i {
0 => &mut self.x,
1 => &mut self.y,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i))
}
}
#[inline(always)]
fn swap(&mut self, a: uint, b: uint) {
util::swap(self.index_mut(a),
self.index_mut(b));
}
}
pub impl<T:Copy Number> Vec2<T>: NumericVector<T> {
#[inline(always)]
static pure fn identity() -> Vec2<T> {
Vec2::new(Number::one(),
Number::one())
}
#[inline(always)]
static pure fn zero() -> Vec2<T> {
Vec2::new(Number::zero(),
Number::zero())
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Vec2<T> {
Vec2::new(self[0] * value,
self[1] * value)
}
#[inline(always)]
pure fn div_t(&self, value: T) -> Vec2<T> {
Vec2::new(self[0] / value,
self[1] / value)
}
#[inline(always)]
pure fn add_v(&self, other: &Vec2<T>) -> Vec2<T> {
Vec2::new(self[0] + other[0],
self[1] + other[1])
}
#[inline(always)]
pure fn sub_v(&self, other: &Vec2<T>) -> Vec2<T> {
Vec2::new(self[0] - other[0],
self[1] - other[1])
}
#[inline(always)]
pure fn dot(&self, other: &Vec2<T>) -> T {
self[0] * other[0] +
self[1] * other[1]
}
}
pub impl<T:Copy Number> Vec2<T>: Neg<Vec2<T>> {
#[inline(always)]
pure fn neg(&self) -> Vec2<T> {
Vec2::new(-self[0], -self[1])
}
}
pub impl<T:Copy Number> Vec2<T>: MutableNumericVector<&self/T> {
#[inline(always)]
fn neg_self(&mut self) {
*self.index_mut(0) = -*self.index_mut(0);
*self.index_mut(1) = -*self.index_mut(1);
}
#[inline(always)]
fn mul_self_t(&mut self, value: &T) {
*self.index_mut(0) *= (*value);
*self.index_mut(1) *= (*value);
}
#[inline(always)]
fn div_self_t(&mut self, value: &T) {
*self.index_mut(0) /= (*value);
*self.index_mut(1) /= (*value);
}
#[inline(always)]
fn add_self_v(&mut self, other: &Vec2<T>) {
*self.index_mut(0) += other[0];
*self.index_mut(1) += other[1];
}
#[inline(always)]
fn sub_self_v(&mut self, other: &Vec2<T>) {
*self.index_mut(0) -= other[0];
*self.index_mut(1) -= other[1];
}
}
pub impl<T:Copy Number> Vec2<T>: NumericVector2<T> {
#[inline(always)]
pure fn perp_dot(&self, other: &Vec2<T>) ->T {
(self[0] * other[1]) - (self[1] * other[0])
}
}
pub impl<T:Copy Number Exp InvTrig> Vec2<T>: EuclideanVector<T> {
#[inline(always)]
pure fn length2(&self) -> T {
self.dot(self)
}
#[inline(always)]
pure fn length(&self) -> T {
self.length2().sqrt()
}
#[inline(always)]
pure fn distance2(&self, other: &Vec2<T>) -> T {
other.sub_v(self).length2()
}
#[inline(always)]
pure fn distance(&self, other: &Vec2<T>) -> T {
other.distance2(self).sqrt()
}
#[inline(always)]
pure fn angle(&self, other: &Vec2<T>) -> Radians<T> {
atan2(&self.perp_dot(other), &self.dot(other))
}
#[inline(always)]
pure fn normalize(&self) -> Vec2<T> {
let mut n: T = Number::from(1);
n /= self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn normalize_to(&self, length: T) -> Vec2<T> {
let mut n: T = length / self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn lerp(&self, other: &Vec2<T>, amount: T) -> Vec2<T> {
self.add_v(&other.sub_v(self).mul_t(amount))
}
}
pub impl<T:Copy Number Exp InvTrig> Vec2<T>: MutableEuclideanVector<&self/T> {
#[inline(always)]
fn normalize_self(&mut self) {
let mut n: T = Number::from(1);
n /= self.length();
self.mul_self_t(&n);
}
#[inline(always)]
fn normalize_self_to(&mut self, length: &T) {
let mut n: T = length / self.length();
self.mul_self_t(&n);
}
fn lerp_self(&mut self, other: &Vec2<T>, amount: &T) {
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
}
}
pub impl<T:Copy Eq> Vec2<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Vec2<T>) -> bool {
self[0] == other[0] &&
self[1] == other[1]
}
#[inline(always)]
pure fn ne(&self, other: &Vec2<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy FuzzyEq> Vec2<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Vec2<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1])
}
}

273
src/vec3.rs Normal file
View file

@ -0,0 +1,273 @@
use core::cast::transmute;
use core::cmp::Eq;
use core::ptr::to_unsafe_ptr;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
use angle::Radians;
use funs::exponential::Exp;
use funs::triganomic::{InvTrig, atan2};
use num::types::Number;
/**
* A 3-dimensional vector
*
* # Type parameters
*
* * `T` - The type of the components. This is intended to support boolean,
* integer, unsigned integer, and floating point types.
*
* # Fields
*
* * `x` - the first component of the vector
* * `y` - the second component of the vector
* * `z` - the third component of the vector
*/
pub struct Vec3<T> { x: T, y: T, z: T }
pub impl<T> Vec3<T>/*: Vector3<T>*/ {
#[inline(always)]
static pure fn new(x: T, y: T, z: T) -> Vec3<T> {
Vec3 { x: move x, y: move y, z: move z }
}
}
pub impl<T:Copy> Vec3<T>: Vector<T> {
#[inline(always)]
static pure fn from_value(value: T) -> Vec3<T> {
Vec3::new(value, value, value)
}
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Vec3<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy> Vec3<T>: Index<uint, T> {
#[inline(always)]
pure fn index(&self, i: uint) -> T {
unsafe { do buf_as_slice(self.to_ptr(), 3) |slice| { slice[i] } }
}
}
pub impl<T:Copy> Vec3<T>: MutableVector<T> {
#[inline(always)]
fn index_mut(&mut self, i: uint) -> &self/mut T {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i))
}
}
#[inline(always)]
fn swap(&mut self, a: uint, b: uint) {
util::swap(self.index_mut(a),
self.index_mut(b));
}
}
pub impl<T:Copy Number> Vec3<T>: NumericVector<T> {
#[inline(always)]
static pure fn identity() -> Vec3<T> {
Vec3::new(Number::one(),
Number::one(),
Number::one())
}
#[inline(always)]
static pure fn zero() -> Vec3<T> {
Vec3::new(Number::zero(),
Number::zero(),
Number::zero())
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Vec3<T> {
Vec3::new(self[0] * value,
self[1] * value,
self[2] * value)
}
#[inline(always)]
pure fn div_t(&self, value: T) -> Vec3<T> {
Vec3::new(self[0] / value,
self[1] / value,
self[2] / value)
}
#[inline(always)]
pure fn add_v(&self, other: &Vec3<T>) -> Vec3<T>{
Vec3::new(self[0] + other[0],
self[1] + other[1],
self[2] + other[2])
}
#[inline(always)]
pure fn sub_v(&self, other: &Vec3<T>) -> Vec3<T>{
Vec3::new(self[0] - other[0],
self[1] - other[1],
self[2] - other[2])
}
#[inline(always)]
pure fn dot(&self, other: &Vec3<T>) -> T {
self[0] * other[0] +
self[1] * other[1] +
self[2] * other[2]
}
}
pub impl<T:Copy Number> Vec3<T>: Neg<Vec3<T>> {
#[inline(always)]
pure fn neg(&self) -> Vec3<T> {
Vec3::new(-self[0], -self[1], -self[2])
}
}
pub impl<T:Copy Number> Vec3<T>: MutableNumericVector<&self/T> {
#[inline(always)]
fn neg_self(&mut self) {
*self.index_mut(0) = -*self.index_mut(0);
*self.index_mut(1) = -*self.index_mut(1);
*self.index_mut(2) = -*self.index_mut(2);
}
#[inline(always)]
fn mul_self_t(&mut self, value: &T) {
*self.index_mut(0) *= (*value);
*self.index_mut(1) *= (*value);
*self.index_mut(2) *= (*value);
}
#[inline(always)]
fn div_self_t(&mut self, value: &T) {
*self.index_mut(0) /= (*value);
*self.index_mut(1) /= (*value);
*self.index_mut(2) /= (*value);
}
#[inline(always)]
fn add_self_v(&mut self, other: &Vec3<T>) {
*self.index_mut(0) += other[0];
*self.index_mut(1) += other[1];
*self.index_mut(2) += other[2];
}
#[inline(always)]
fn sub_self_v(&mut self, other: &Vec3<T>) {
*self.index_mut(0) -= other[0];
*self.index_mut(1) -= other[1];
*self.index_mut(2) -= other[2];
}
}
pub impl<T:Copy Number> Vec3<T>: NumericVector3<T> {
#[inline(always)]
pure fn cross(&self, other: &Vec3<T>) -> Vec3<T> {
Vec3::new((self[1] * other[2]) - (self[2] * other[1]),
(self[2] * other[0]) - (self[0] * other[2]),
(self[0] * other[1]) - (self[1] * other[0]))
}
}
pub impl<T:Copy Number> Vec3<T>: MutableNumericVector3<&self/T> {
#[inline(always)]
fn cross_self(&mut self, other: &Vec3<T>) {
*self = self.cross(other);
}
}
pub impl<T:Copy Number Exp InvTrig> Vec3<T>: EuclideanVector<T> {
#[inline(always)]
pure fn length2(&self) -> T {
self.dot(self)
}
#[inline(always)]
pure fn length(&self) -> T {
self.length2().sqrt()
}
#[inline(always)]
pure fn distance2(&self, other: &Vec3<T>) -> T {
other.sub_v(self).length2()
}
#[inline(always)]
pure fn distance(&self, other: &Vec3<T>) -> T {
other.distance2(self).sqrt()
}
#[inline(always)]
pure fn angle(&self, other: &Vec3<T>) -> Radians<T> {
atan2(&self.cross(other).length(), &self.dot(other))
}
#[inline(always)]
pure fn normalize(&self) -> Vec3<T> {
let mut n: T = Number::from(1);
n /= self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn normalize_to(&self, length: T) -> Vec3<T> {
let mut n: T = length / self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn lerp(&self, other: &Vec3<T>, amount: T) -> Vec3<T> {
self.add_v(&other.sub_v(self).mul_t(amount))
}
}
pub impl<T:Copy Number Exp InvTrig> Vec3<T>: MutableEuclideanVector<&self/T> {
#[inline(always)]
fn normalize_self(&mut self) {
let mut n: T = Number::from(1);
n /= self.length();
self.mul_self_t(&n);
}
#[inline(always)]
fn normalize_self_to(&mut self, length: &T) {
let mut n: T = length / self.length();
self.mul_self_t(&n);
}
fn lerp_self(&mut self, other: &Vec3<T>, amount: &T) {
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
}
}
pub impl<T:Copy Eq> Vec3<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Vec3<T>) -> bool {
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2]
}
#[inline(always)]
pure fn ne(&self, other: &Vec3<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy FuzzyEq> Vec3<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Vec3<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2])
}
}

273
src/vec4.rs Normal file
View file

@ -0,0 +1,273 @@
use core::cast::transmute;
use core::cmp::Eq;
use core::ptr::to_unsafe_ptr;
use core::vec::raw::buf_as_slice;
use std::cmp::FuzzyEq;
use angle::Radians;
use funs::exponential::Exp;
use funs::triganomic::{InvTrig, acos};
use num::types::Number;
/**
* A 4-dimensional vector
*
* # Type parameters
*
* * `T` - The type of the components. This is intended to support boolean,
* integer, unsigned integer, and floating point types.
*
* # Fields
*
* * `x` - the first component of the vector
* * `y` - the second component of the vector
* * `z` - the third component of the vector
* * `w` - the fourth component of the vector
*/
pub struct Vec4<T> { x: T, y: T, z: T, w: T }
pub impl<T> Vec4<T>/*: Vector4<T>*/ {
#[inline(always)]
static pure fn new(x: T, y: T, z: T, w: T) -> Vec4<T> {
Vec4 { x: move x, y: move y, z: move z, w: move w }
}
}
pub impl<T:Copy> Vec4<T>: Vector<T> {
#[inline(always)]
static pure fn from_value(value: T) -> Vec4<T> {
Vec4::new(value, value, value, value)
}
#[inline(always)]
pure fn to_ptr(&self) -> *T {
unsafe {
transmute::<*Vec4<T>, *T>(
to_unsafe_ptr(self)
)
}
}
}
pub impl<T:Copy> Vec4<T>: Index<uint, T> {
#[inline(always)]
pure fn index(&self, i: uint) -> T {
unsafe { do buf_as_slice(self.to_ptr(), 4) |slice| { slice[i] } }
}
}
pub impl<T:Copy> Vec4<T>: MutableVector<T> {
#[inline(always)]
fn index_mut(&mut self, i: uint) -> &self/mut T {
match i {
0 => &mut self.x,
1 => &mut self.y,
2 => &mut self.z,
3 => &mut self.w,
_ => fail(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i))
}
}
#[inline(always)]
fn swap(&mut self, a: uint, b: uint) {
util::swap(self.index_mut(a),
self.index_mut(b));
}
}
pub impl<T:Copy Number> Vec4<T>: NumericVector<T> {
#[inline(always)]
static pure fn identity() -> Vec4<T> {
Vec4::new(Number::one(),
Number::one(),
Number::one(),
Number::one())
}
#[inline(always)]
static pure fn zero() -> Vec4<T> {
Vec4::new(Number::zero(),
Number::zero(),
Number::zero(),
Number::zero())
}
#[inline(always)]
pure fn mul_t(&self, value: T) -> Vec4<T> {
Vec4::new(self[0] * value,
self[1] * value,
self[2] * value,
self[3] * value)
}
#[inline(always)]
pure fn div_t(&self, value: T) -> Vec4<T> {
Vec4::new(self[0] / value,
self[1] / value,
self[2] / value,
self[3] / value)
}
#[inline(always)]
pure fn add_v(&self, other: &Vec4<T>) -> Vec4<T> {
Vec4::new(self[0] + other[0],
self[1] + other[1],
self[2] + other[2],
self[3] + other[3])
}
#[inline(always)]
pure fn sub_v(&self, other: &Vec4<T>) -> Vec4<T> {
Vec4::new(self[0] - other[0],
self[1] - other[1],
self[2] - other[2],
self[3] - other[3])
}
#[inline(always)]
pure fn dot(&self, other: &Vec4<T>) -> T {
self[0] * other[0] +
self[1] * other[1] +
self[2] * other[2] +
self[3] * other[3]
}
}
pub impl<T:Copy Number> Vec4<T>: Neg<Vec4<T>> {
#[inline(always)]
pure fn neg(&self) -> Vec4<T> {
Vec4::new(-self[0], -self[1], -self[2], -self[3])
}
}
pub impl<T:Copy Number> Vec4<T>: MutableNumericVector<&self/T> {
#[inline(always)]
fn neg_self(&mut self) {
*self.index_mut(0) = -*self.index_mut(0);
*self.index_mut(1) = -*self.index_mut(1);
*self.index_mut(2) = -*self.index_mut(2);
*self.index_mut(3) = -*self.index_mut(3);
}
#[inline(always)]
fn mul_self_t(&mut self, value: &T) {
*self.index_mut(0) *= (*value);
*self.index_mut(1) *= (*value);
*self.index_mut(2) *= (*value);
*self.index_mut(3) *= (*value);
}
#[inline(always)]
fn div_self_t(&mut self, value: &T) {
*self.index_mut(0) /= (*value);
*self.index_mut(1) /= (*value);
*self.index_mut(2) /= (*value);
*self.index_mut(3) /= (*value);
}
#[inline(always)]
fn add_self_v(&mut self, other: &Vec4<T>) {
*self.index_mut(0) += other[0];
*self.index_mut(1) += other[1];
*self.index_mut(2) += other[2];
*self.index_mut(3) += other[3];
}
#[inline(always)]
fn sub_self_v(&mut self, other: &Vec4<T>) {
*self.index_mut(0) -= other[0];
*self.index_mut(1) -= other[1];
*self.index_mut(2) -= other[2];
*self.index_mut(3) -= other[3];
}
}
pub impl<T:Copy Number Exp InvTrig> Vec4<T>: EuclideanVector<T> {
#[inline(always)]
pure fn length2(&self) -> T {
self.dot(self)
}
#[inline(always)]
pure fn length(&self) -> T {
self.length2().sqrt()
}
#[inline(always)]
pure fn distance2(&self, other: &Vec4<T>) -> T {
other.sub_v(self).length2()
}
#[inline(always)]
pure fn distance(&self, other: &Vec4<T>) -> T {
other.distance2(self).sqrt()
}
#[inline(always)]
pure fn angle(&self, other: &Vec4<T>) -> Radians<T> {
acos(&(self.dot(other) / (self.length() * other.length())))
}
#[inline(always)]
pure fn normalize(&self) -> Vec4<T> {
let mut n: T = Number::from(1);
n /= self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn normalize_to(&self, length: T) -> Vec4<T> {
let mut n: T = length / self.length();
return self.mul_t(n);
}
#[inline(always)]
pure fn lerp(&self, other: &Vec4<T>, amount: T) -> Vec4<T> {
self.add_v(&other.sub_v(self).mul_t(amount))
}
}
pub impl<T:Copy Number Exp InvTrig> Vec4<T>: MutableEuclideanVector<&self/T> {
#[inline(always)]
fn normalize_self(&mut self) {
let mut n: T = Number::from(1);
n /= self.length();
self.mul_self_t(&n);
}
#[inline(always)]
fn normalize_self_to(&mut self, length: &T) {
let mut n: T = length / self.length();
self.mul_self_t(&n);
}
fn lerp_self(&mut self, other: &Vec4<T>, amount: &T) {
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
}
}
pub impl<T:Copy Eq> Vec4<T>: Eq {
#[inline(always)]
pure fn eq(&self, other: &Vec4<T>) -> bool {
self[0] == other[0] &&
self[1] == other[1] &&
self[2] == other[2] &&
self[3] == other[3]
}
#[inline(always)]
pure fn ne(&self, other: &Vec4<T>) -> bool {
!(self == other)
}
}
pub impl<T:Copy FuzzyEq> Vec4<T>: FuzzyEq {
#[inline(always)]
pure fn fuzzy_eq(other: &Vec4<T>) -> bool {
self[0].fuzzy_eq(&other[0]) &&
self[1].fuzzy_eq(&other[1]) &&
self[2].fuzzy_eq(&other[2]) &&
self[3].fuzzy_eq(&other[3])
}
}