Split up vec and mat modules
This commit is contained in:
parent
3d31797d8d
commit
5ce765367a
8 changed files with 2255 additions and 2210 deletions
1441
src/mat.rs
1441
src/mat.rs
File diff suppressed because it is too large
Load diff
381
src/mat2.rs
Normal file
381
src/mat2.rs
Normal file
|
@ -0,0 +1,381 @@
|
|||
use core::cast::transmute;
|
||||
use core::cmp::Eq;
|
||||
use core::ptr::to_unsafe_ptr;
|
||||
use core::vec::raw::buf_as_slice;
|
||||
|
||||
use std::cmp::FuzzyEq;
|
||||
|
||||
use funs::common::*;
|
||||
use funs::exponential::*;
|
||||
use num::types::{Float, Number};
|
||||
use vec::Vec2;
|
||||
|
||||
/**
|
||||
* A 2 x 2 column major matrix
|
||||
*
|
||||
* # Type parameters
|
||||
*
|
||||
* * `T` - The type of the elements of the matrix. Should be a floating point type.
|
||||
*
|
||||
* # Fields
|
||||
*
|
||||
* * `x` - the first column vector of the matrix
|
||||
* * `y` - the second column vector of the matrix
|
||||
* * `z` - the third column vector of the matrix
|
||||
*/
|
||||
pub struct Mat2<T> { x: Vec2<T>, y: Vec2<T> }
|
||||
|
||||
pub impl<T:Copy Float> Mat2<T> {
|
||||
/**
|
||||
* Construct a 2 x 2 matrix
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* * `c0r0`, `c0r1` - the first column of the matrix
|
||||
* * `c1r0`, `c1r1` - the second column of the matrix
|
||||
*
|
||||
* ~~~
|
||||
* c0 c1
|
||||
* +------+------+
|
||||
* r0 | c0r0 | c1r0 |
|
||||
* +------+------+
|
||||
* r1 | c0r1 | c1r1 |
|
||||
* +------+------+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn new(c0r0: T, c0r1: T,
|
||||
c1r0: T, c1r1: T) -> Mat2<T> {
|
||||
Mat2::from_cols(Vec2::new(move c0r0, move c0r1),
|
||||
Vec2::new(move c1r0, move c1r1))
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a 2 x 2 matrix from column vectors
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* * `c0` - the first column vector of the matrix
|
||||
* * `c1` - the second column vector of the matrix
|
||||
*
|
||||
* ~~~
|
||||
* c0 c1
|
||||
* +------+------+
|
||||
* r0 | c0.x | c1.x |
|
||||
* +------+------+
|
||||
* r1 | c0.y | c1.y |
|
||||
* +------+------+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn from_cols(c0: Vec2<T>, c1: Vec2<T>) -> Mat2<T> {
|
||||
Mat2 { x: move c0,
|
||||
y: move c1 }
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a 2 x 2 diagonal matrix with the major diagonal set to `value`
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* * `value` - the value to set the major diagonal to
|
||||
*
|
||||
* ~~~
|
||||
* c0 c1
|
||||
* +-----+-----+
|
||||
* r0 | val | 0 |
|
||||
* +-----+-----+
|
||||
* r1 | 0 | val |
|
||||
* +-----+-----+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn from_value(value: T) -> Mat2<T> {
|
||||
let _0 = Number::from(0);
|
||||
Mat2::new(value, _0,
|
||||
_0, value)
|
||||
}
|
||||
|
||||
// FIXME: An interim solution to the issues with static functions
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Mat2<T> {
|
||||
let _0 = Number::from(0);
|
||||
let _1 = Number::from(1);
|
||||
Mat2::new(_1, _0,
|
||||
_0, _1)
|
||||
}
|
||||
|
||||
// FIXME: An interim solution to the issues with static functions
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Mat2<T> {
|
||||
let _0 = Number::from(0);
|
||||
Mat2::new(_0, _0,
|
||||
_0, _0)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat2<T>: Matrix<T, Vec2<T>> {
|
||||
#[inline(always)]
|
||||
pure fn col(&self, i: uint) -> Vec2<T> { self[i] }
|
||||
|
||||
#[inline(always)]
|
||||
pure fn row(&self, i: uint) -> Vec2<T> {
|
||||
Vec2::new(self[0][i],
|
||||
self[1][i])
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the multiplicative identity matrix
|
||||
* ~~~
|
||||
* c0 c1
|
||||
* +----+----+
|
||||
* r0 | 1 | 0 |
|
||||
* +----+----+
|
||||
* r1 | 0 | 1 |
|
||||
* +----+----+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Mat2<T> {
|
||||
let _0 = Number::from(0);
|
||||
let _1 = Number::from(1);
|
||||
Mat2::new(_1, _0,
|
||||
_0, _1)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the additive identity matrix
|
||||
* ~~~
|
||||
* c0 c1
|
||||
* +----+----+
|
||||
* r0 | 0 | 0 |
|
||||
* +----+----+
|
||||
* r1 | 0 | 0 |
|
||||
* +----+----+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Mat2<T> {
|
||||
let _0 = Number::from(0);
|
||||
Mat2::new(_0, _0,
|
||||
_0, _0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_t(&self, value: T) -> Mat2<T> {
|
||||
Mat2::from_cols(self[0].mul_t(value),
|
||||
self[1].mul_t(value))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
|
||||
Vec2::new(self.row(0).dot(vec),
|
||||
self.row(1).dot(vec))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
|
||||
Mat2::from_cols(self[0].add_v(&other[0]),
|
||||
self[1].add_v(&other[1]))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
|
||||
Mat2::from_cols(self[0].sub_v(&other[0]),
|
||||
self[1].sub_v(&other[1]))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
|
||||
Mat2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)),
|
||||
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)))
|
||||
}
|
||||
|
||||
pure fn dot(&self, other: &Mat2<T>) -> T {
|
||||
other.transpose().mul_m(self).trace()
|
||||
}
|
||||
|
||||
pure fn determinant(&self) -> T {
|
||||
self[0][0] * self[1][1] - self[1][0] * self[0][1]
|
||||
}
|
||||
|
||||
pure fn trace(&self) -> T {
|
||||
self[0][0] + self[1][1]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn inverse(&self) -> Option<Mat2<T>> {
|
||||
let d = self.determinant();
|
||||
if d.fuzzy_eq(&Number::from(0)) {
|
||||
None
|
||||
} else {
|
||||
Some(Mat2::new( self[1][1]/d, -self[0][1]/d,
|
||||
-self[1][0]/d, self[0][0]/d))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn transpose(&self) -> Mat2<T> {
|
||||
Mat2::new(self[0][0], self[1][0],
|
||||
self[0][1], self[1][1])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_identity(&self) -> bool {
|
||||
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
|
||||
self.fuzzy_eq(&Mat2::identity())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_diagonal(&self) -> bool {
|
||||
let _0 = Number::from(0);
|
||||
self[0][1].fuzzy_eq(&_0) &&
|
||||
self[1][0].fuzzy_eq(&_0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_rotated(&self) -> bool {
|
||||
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
|
||||
!self.fuzzy_eq(&Mat2::identity())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_symmetric(&self) -> bool {
|
||||
self[0][1].fuzzy_eq(&self[1][0]) &&
|
||||
self[1][0].fuzzy_eq(&self[0][1])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_invertible(&self) -> bool {
|
||||
!self.determinant().fuzzy_eq(&Number::from(0))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_ptr(&self) -> *T {
|
||||
unsafe {
|
||||
transmute::<*Mat2<T>, *T>(
|
||||
to_unsafe_ptr(self)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float Sign> Mat2<T>: MutableMatrix<T, Vec2<T>> {
|
||||
#[inline(always)]
|
||||
fn col_mut(&mut self, i: uint) -> &self/mut Vec2<T> {
|
||||
match i {
|
||||
0 => &mut self.x,
|
||||
1 => &mut self.y,
|
||||
_ => fail(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap_cols(&mut self, a: uint, b: uint) {
|
||||
util::swap(self.col_mut(a),
|
||||
self.col_mut(b));
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap_rows(&mut self, a: uint, b: uint) {
|
||||
self.x.swap(a, b);
|
||||
self.y.swap(a, b);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn set(&mut self, other: &Mat2<T>) {
|
||||
(*self) = (*other);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn to_identity(&mut self) {
|
||||
(*self) = Mat2::identity();
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn to_zero(&mut self) {
|
||||
(*self) = Mat2::zero();
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul_self_t(&mut self, value: T) {
|
||||
self.col_mut(0).mul_self_t(&value);
|
||||
self.col_mut(1).mul_self_t(&value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_self_m(&mut self, other: &Mat2<T>) {
|
||||
self.col_mut(0).add_self_v(&other[0]);
|
||||
self.col_mut(1).add_self_v(&other[1]);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_self_m(&mut self, other: &Mat2<T>) {
|
||||
self.col_mut(0).sub_self_v(&other[0]);
|
||||
self.col_mut(1).sub_self_v(&other[1]);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn invert_self(&mut self) {
|
||||
match self.inverse() {
|
||||
Some(m) => (*self) = m,
|
||||
None => fail(~"Couldn't invert the matrix!")
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn transpose_self(&mut self) {
|
||||
util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
|
||||
util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat2<T>: Matrix2<T, Vec2<T>> {
|
||||
#[inline(always)]
|
||||
pure fn to_mat3(&self) -> Mat3<T> {
|
||||
Mat3::from_Mat2(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_mat4(&self) -> Mat4<T> {
|
||||
Mat4::from_Mat2(self)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Mat2<T>: Index<uint, Vec2<T>> {
|
||||
#[inline(always)]
|
||||
pure fn index(&self, i: uint) -> Vec2<T> {
|
||||
unsafe { do buf_as_slice(
|
||||
transmute::<*Mat2<T>, *Vec2<T>>(
|
||||
to_unsafe_ptr(self)), 2) |slice| { slice[i] }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat2<T>: Neg<Mat2<T>> {
|
||||
#[inline(always)]
|
||||
pure fn neg(&self) -> Mat2<T> {
|
||||
Mat2::from_cols(-self[0], -self[1])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat2<T>: Eq {
|
||||
#[inline(always)]
|
||||
pure fn eq(&self, other: &Mat2<T>) -> bool {
|
||||
self[0] == other[0] &&
|
||||
self[1] == other[1]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn ne(&self, other: &Mat2<T>) -> bool {
|
||||
!(self == other)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat2<T>: FuzzyEq {
|
||||
#[inline(always)]
|
||||
pure fn fuzzy_eq(other: &Mat2<T>) -> bool {
|
||||
self[0].fuzzy_eq(&other[0]) &&
|
||||
self[1].fuzzy_eq(&other[1])
|
||||
}
|
||||
}
|
504
src/mat3.rs
Normal file
504
src/mat3.rs
Normal file
|
@ -0,0 +1,504 @@
|
|||
use core::cast::transmute;
|
||||
use core::cmp::Eq;
|
||||
use core::ptr::to_unsafe_ptr;
|
||||
use core::vec::raw::buf_as_slice;
|
||||
|
||||
use std::cmp::FuzzyEq;
|
||||
|
||||
use angle::Angle;
|
||||
use funs::common::*;
|
||||
use funs::exponential::*;
|
||||
use funs::triganomic::{sin, cos};
|
||||
use num::types::{Float, Number};
|
||||
use quat::{Quat, ToQuat};
|
||||
use vec::Vec3;
|
||||
|
||||
/**
|
||||
* A 3 x 3 column major matrix
|
||||
*
|
||||
* # Type parameters
|
||||
*
|
||||
* * `T` - The type of the elements of the matrix. Should be a floating point type.
|
||||
*
|
||||
* # Fields
|
||||
*
|
||||
* * `x` - the first column vector of the matrix
|
||||
* * `y` - the second column vector of the matrix
|
||||
* * `z` - the third column vector of the matrix
|
||||
*/
|
||||
pub struct Mat3<T> { x: Vec3<T>, y: Vec3<T>, z: Vec3<T> }
|
||||
|
||||
pub impl<T:Copy Float> Mat3<T> {
|
||||
/**
|
||||
* Construct a 3 x 3 matrix
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* * `c0r0`, `c0r1`, `c0r2` - the first column of the matrix
|
||||
* * `c1r0`, `c1r1`, `c1r2` - the second column of the matrix
|
||||
* * `c2r0`, `c2r1`, `c2r2` - the third column of the matrix
|
||||
*
|
||||
* ~~~
|
||||
* c0 c1 c2
|
||||
* +------+------+------+
|
||||
* r0 | c0r0 | c1r0 | c2r0 |
|
||||
* +------+------+------+
|
||||
* r1 | c0r1 | c1r1 | c2r1 |
|
||||
* +------+------+------+
|
||||
* r2 | c0r2 | c1r2 | c2r2 |
|
||||
* +------+------+------+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn new(c0r0:T, c0r1:T, c0r2:T,
|
||||
c1r0:T, c1r1:T, c1r2:T,
|
||||
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
|
||||
Mat3::from_cols(Vec3::new(move c0r0, move c0r1, move c0r2),
|
||||
Vec3::new(move c1r0, move c1r1, move c1r2),
|
||||
Vec3::new(move c2r0, move c2r1, move c2r2))
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a 3 x 3 matrix from column vectors
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* * `c0` - the first column vector of the matrix
|
||||
* * `c1` - the second column vector of the matrix
|
||||
* * `c2` - the third column vector of the matrix
|
||||
*
|
||||
* ~~~
|
||||
* c0 c1 c2
|
||||
* +------+------+------+
|
||||
* r0 | c0.x | c1.y | c2.z |
|
||||
* +------+------+------+
|
||||
* r1 | c0.x | c1.y | c2.z |
|
||||
* +------+------+------+
|
||||
* r2 | c0.x | c1.y | c2.z |
|
||||
* +------+------+------+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn from_cols(c0: Vec3<T>, c1: Vec3<T>, c2: Vec3<T>) -> Mat3<T> {
|
||||
Mat3 { x: move c0,
|
||||
y: move c1,
|
||||
z: move c2 }
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a 3 x 3 diagonal matrix with the major diagonal set to `value`
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* * `value` - the value to set the major diagonal to
|
||||
*
|
||||
* ~~~
|
||||
* c0 c1 c2
|
||||
* +-----+-----+-----+
|
||||
* r0 | val | 0 | 0 |
|
||||
* +-----+-----+-----+
|
||||
* r1 | 0 | val | 0 |
|
||||
* +-----+-----+-----+
|
||||
* r2 | 0 | 0 | val |
|
||||
* +-----+-----+-----+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn from_value(value: T) -> Mat3<T> {
|
||||
let _0 = Number::from(0);
|
||||
Mat3::new(value, _0, _0,
|
||||
_0, value, _0,
|
||||
_0, _0, value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
static pure fn from_Mat2(m: &Mat2<T>) -> Mat3<T> {
|
||||
let _0 = Number::from(0);
|
||||
let _1 = Number::from(1);
|
||||
Mat3::new(m[0][0], m[0][1], _0,
|
||||
m[1][0], m[1][1], _0,
|
||||
_0, _0, _1)
|
||||
}
|
||||
|
||||
// FIXME: An interim solution to the issues with static functions
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Mat3<T> {
|
||||
let _0 = Number::from(0);
|
||||
let _1 = Number::from(1);
|
||||
Mat3::new(_1, _0, _0,
|
||||
_0, _1, _0,
|
||||
_0, _0, _1)
|
||||
}
|
||||
|
||||
// FIXME: An interim solution to the issues with static functions
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Mat3<T> {
|
||||
let _0 = Number::from(0);
|
||||
Mat3::new(_0, _0, _0,
|
||||
_0, _0, _0,
|
||||
_0, _0, _0)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat3<T>: Matrix<T, Vec3<T>> {
|
||||
#[inline(always)]
|
||||
pure fn col(&self, i: uint) -> Vec3<T> { self[i] }
|
||||
|
||||
#[inline(always)]
|
||||
pure fn row(&self, i: uint) -> Vec3<T> {
|
||||
Vec3::new(self[0][i],
|
||||
self[1][i],
|
||||
self[2][i])
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the multiplicative identity matrix
|
||||
* ~~~
|
||||
* c0 c1 c2
|
||||
* +----+----+----+
|
||||
* r0 | 1 | 0 | 0 |
|
||||
* +----+----+----+
|
||||
* r1 | 0 | 1 | 0 |
|
||||
* +----+----+----+
|
||||
* r2 | 0 | 0 | 1 |
|
||||
* +----+----+----+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Mat3<T> {
|
||||
let _0 = Number::from(0);
|
||||
let _1 = Number::from(1);
|
||||
Mat3::new(_1, _0, _0,
|
||||
_0, _1, _0,
|
||||
_0, _0, _1)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the additive identity matrix
|
||||
* ~~~
|
||||
* c0 c1 c2
|
||||
* +----+----+----+
|
||||
* r0 | 0 | 0 | 0 |
|
||||
* +----+----+----+
|
||||
* r1 | 0 | 0 | 0 |
|
||||
* +----+----+----+
|
||||
* r2 | 0 | 0 | 0 |
|
||||
* +----+----+----+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Mat3<T> {
|
||||
let _0 = Number::from(0);
|
||||
Mat3::new(_0, _0, _0,
|
||||
_0, _0, _0,
|
||||
_0, _0, _0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_t(&self, value: T) -> Mat3<T> {
|
||||
Mat3::from_cols(self[0].mul_t(value),
|
||||
self[1].mul_t(value),
|
||||
self[2].mul_t(value))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
|
||||
Vec3::new(self.row(0).dot(vec),
|
||||
self.row(1).dot(vec),
|
||||
self.row(2).dot(vec))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
|
||||
Mat3::from_cols(self[0].add_v(&other[0]),
|
||||
self[1].add_v(&other[1]),
|
||||
self[2].add_v(&other[2]))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
|
||||
Mat3::from_cols(self[0].sub_v(&other[0]),
|
||||
self[1].sub_v(&other[1]),
|
||||
self[2].sub_v(&other[2]))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
|
||||
Mat3::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)),
|
||||
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)),
|
||||
self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)))
|
||||
}
|
||||
|
||||
pure fn dot(&self, other: &Mat3<T>) -> T {
|
||||
other.transpose().mul_m(self).trace()
|
||||
}
|
||||
|
||||
pure fn determinant(&self) -> T {
|
||||
self.col(0).dot(&self.col(1).cross(&self.col(2)))
|
||||
}
|
||||
|
||||
pure fn trace(&self) -> T {
|
||||
self[0][0] + self[1][1] + self[2][2]
|
||||
}
|
||||
|
||||
// #[inline(always)]
|
||||
pure fn inverse(&self) -> Option<Mat3<T>> {
|
||||
let d = self.determinant();
|
||||
if d.fuzzy_eq(&Number::from(0)) {
|
||||
None
|
||||
} else {
|
||||
Some(Mat3::from_cols(self[1].cross(&self[2]).div_t(d),
|
||||
self[2].cross(&self[0]).div_t(d),
|
||||
self[0].cross(&self[1]).div_t(d)).transpose())
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn transpose(&self) -> Mat3<T> {
|
||||
Mat3::new(self[0][0], self[1][0], self[2][0],
|
||||
self[0][1], self[1][1], self[2][1],
|
||||
self[0][2], self[1][2], self[2][2])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_identity(&self) -> bool {
|
||||
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
|
||||
self.fuzzy_eq(&Mat3::identity())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_diagonal(&self) -> bool {
|
||||
let _0 = Number::from(0);
|
||||
self[0][1].fuzzy_eq(&_0) &&
|
||||
self[0][2].fuzzy_eq(&_0) &&
|
||||
|
||||
self[1][0].fuzzy_eq(&_0) &&
|
||||
self[1][2].fuzzy_eq(&_0) &&
|
||||
|
||||
self[2][0].fuzzy_eq(&_0) &&
|
||||
self[2][1].fuzzy_eq(&_0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_rotated(&self) -> bool {
|
||||
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
|
||||
!self.fuzzy_eq(&Mat3::identity())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_symmetric(&self) -> bool {
|
||||
self[0][1].fuzzy_eq(&self[1][0]) &&
|
||||
self[0][2].fuzzy_eq(&self[2][0]) &&
|
||||
|
||||
self[1][0].fuzzy_eq(&self[0][1]) &&
|
||||
self[1][2].fuzzy_eq(&self[2][1]) &&
|
||||
|
||||
self[2][0].fuzzy_eq(&self[0][2]) &&
|
||||
self[2][1].fuzzy_eq(&self[1][2])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_invertible(&self) -> bool {
|
||||
!self.determinant().fuzzy_eq(&Number::zero())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_ptr(&self) -> *T {
|
||||
unsafe {
|
||||
transmute::<*Mat3<T>, *T>(
|
||||
to_unsafe_ptr(self)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float Sign> Mat3<T>: MutableMatrix<T, Vec3<T>> {
|
||||
#[inline(always)]
|
||||
fn col_mut(&mut self, i: uint) -> &self/mut Vec3<T> {
|
||||
match i {
|
||||
0 => &mut self.x,
|
||||
1 => &mut self.y,
|
||||
2 => &mut self.z,
|
||||
_ => fail(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap_cols(&mut self, a: uint, b: uint) {
|
||||
util::swap(self.col_mut(a),
|
||||
self.col_mut(b));
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap_rows(&mut self, a: uint, b: uint) {
|
||||
self.x.swap(a, b);
|
||||
self.y.swap(a, b);
|
||||
self.z.swap(a, b);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn set(&mut self, other: &Mat3<T>) {
|
||||
(*self) = (*other);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn to_identity(&mut self) {
|
||||
(*self) = Mat3::identity();
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn to_zero(&mut self) {
|
||||
(*self) = Mat3::zero();
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul_self_t(&mut self, value: T) {
|
||||
self.col_mut(0).mul_self_t(&value);
|
||||
self.col_mut(1).mul_self_t(&value);
|
||||
self.col_mut(2).mul_self_t(&value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_self_m(&mut self, other: &Mat3<T>) {
|
||||
self.col_mut(0).add_self_v(&other[0]);
|
||||
self.col_mut(1).add_self_v(&other[1]);
|
||||
self.col_mut(2).add_self_v(&other[2]);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_self_m(&mut self, other: &Mat3<T>) {
|
||||
self.col_mut(0).sub_self_v(&other[0]);
|
||||
self.col_mut(1).sub_self_v(&other[1]);
|
||||
self.col_mut(2).sub_self_v(&other[2]);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn invert_self(&mut self) {
|
||||
match self.inverse() {
|
||||
Some(m) => (*self) = m,
|
||||
None => fail(~"Couldn't invert the matrix!")
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn transpose_self(&mut self) {
|
||||
util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
|
||||
util::swap(self.col_mut(0).index_mut(2), self.col_mut(2).index_mut(0));
|
||||
|
||||
util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
|
||||
util::swap(self.col_mut(1).index_mut(2), self.col_mut(2).index_mut(1));
|
||||
|
||||
util::swap(self.col_mut(2).index_mut(0), self.col_mut(0).index_mut(2));
|
||||
util::swap(self.col_mut(2).index_mut(1), self.col_mut(1).index_mut(2));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat3<T>: Matrix3<T, Vec3<T>> {
|
||||
#[inline(always)]
|
||||
static pure fn from_axis_angle<A:Angle<T>>(axis: &Vec3<T>, theta: A) -> Mat3<T> {
|
||||
let c: T = cos(&theta.to_radians());
|
||||
let s: T = sin(&theta.to_radians());
|
||||
let _0: T = Number::from(0);
|
||||
let _1: T = Number::from(1);
|
||||
let _1_c: T = _1 - c;
|
||||
|
||||
let x = axis.x;
|
||||
let y = axis.y;
|
||||
let z = axis.z;
|
||||
|
||||
Mat3::new(_1_c * x * x + c, _1_c * x * y + s * z, _1_c * x * z - s * y,
|
||||
_1_c * x * y - s * z, _1_c * y * y + c, _1_c * y * z + s * x,
|
||||
_1_c * x * z + s * y, _1_c * y * z - s * x, _1_c * z * z + c)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_mat4(&self) -> Mat4<T> {
|
||||
Mat4::from_Mat3(self)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float Exp> Mat3<T>: ToQuat<T> {
|
||||
pure fn to_Quat() -> Quat<T> {
|
||||
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
|
||||
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
|
||||
|
||||
let mut s;
|
||||
let w, x, y, z;
|
||||
let trace = self.trace();
|
||||
|
||||
let _1: T = Number::from(1.0);
|
||||
let half: T = Number::from(0.5);
|
||||
|
||||
if trace >= Number::from(0) {
|
||||
s = (_1 + trace).sqrt();
|
||||
w = half * s;
|
||||
s = half / s;
|
||||
x = (self[1][2] - self[2][1]) * s;
|
||||
y = (self[2][0] - self[0][2]) * s;
|
||||
z = (self[0][1] - self[1][0]) * s;
|
||||
} else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) {
|
||||
s = (half + (self[0][0] - self[1][1] - self[2][2])).sqrt();
|
||||
w = half * s;
|
||||
s = half / s;
|
||||
x = (self[0][1] - self[1][0]) * s;
|
||||
y = (self[2][0] - self[0][2]) * s;
|
||||
z = (self[1][2] - self[2][1]) * s;
|
||||
} else if self[1][1] > self[2][2] {
|
||||
s = (half + (self[1][1] - self[0][0] - self[2][2])).sqrt();
|
||||
w = half * s;
|
||||
s = half / s;
|
||||
x = (self[0][1] - self[1][0]) * s;
|
||||
y = (self[1][2] - self[2][1]) * s;
|
||||
z = (self[2][0] - self[0][2]) * s;
|
||||
} else {
|
||||
s = (half + (self[2][2] - self[0][0] - self[1][1])).sqrt();
|
||||
w = half * s;
|
||||
s = half / s;
|
||||
x = (self[2][0] - self[0][2]) * s;
|
||||
y = (self[1][2] - self[2][1]) * s;
|
||||
z = (self[0][1] - self[1][0]) * s;
|
||||
}
|
||||
|
||||
Quat::new(w, x, y, z)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Mat3<T>: Index<uint, Vec3<T>> {
|
||||
#[inline(always)]
|
||||
pure fn index(&self, i: uint) -> Vec3<T> {
|
||||
unsafe { do buf_as_slice(
|
||||
transmute::<*Mat3<T>, *Vec3<T>>(
|
||||
to_unsafe_ptr(self)), 3) |slice| { slice[i] }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat3<T>: Neg<Mat3<T>> {
|
||||
#[inline(always)]
|
||||
pure fn neg(&self) -> Mat3<T> {
|
||||
Mat3::from_cols(-self[0], -self[1], -self[2])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat3<T>: Eq {
|
||||
#[inline(always)]
|
||||
pure fn eq(&self, other: &Mat3<T>) -> bool {
|
||||
self[0] == other[0] &&
|
||||
self[1] == other[1] &&
|
||||
self[2] == other[2]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn ne(&self, other: &Mat3<T>) -> bool {
|
||||
!(self == other)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat3<T>: FuzzyEq {
|
||||
#[inline(always)]
|
||||
pure fn fuzzy_eq(other: &Mat3<T>) -> bool {
|
||||
self[0].fuzzy_eq(&other[0]) &&
|
||||
self[1].fuzzy_eq(&other[1]) &&
|
||||
self[2].fuzzy_eq(&other[2])
|
||||
}
|
||||
}
|
551
src/mat4.rs
Normal file
551
src/mat4.rs
Normal file
|
@ -0,0 +1,551 @@
|
|||
use core::cast::transmute;
|
||||
use core::cmp::Eq;
|
||||
use core::ptr::to_unsafe_ptr;
|
||||
use core::vec::raw::buf_as_slice;
|
||||
|
||||
use std::cmp::FuzzyEq;
|
||||
|
||||
use angle::Angle;
|
||||
use funs::common::*;
|
||||
use funs::exponential::*;
|
||||
use num::types::{Float, Number};
|
||||
use vec::Vec4;
|
||||
|
||||
/**
|
||||
* A 4 x 4 column major matrix
|
||||
*
|
||||
* # Type parameters
|
||||
*
|
||||
* * `T` - The type of the elements of the matrix. Should be a floating point type.
|
||||
*
|
||||
* # Fields
|
||||
*
|
||||
* * `x` - the first column vector of the matrix
|
||||
* * `y` - the second column vector of the matrix
|
||||
* * `z` - the third column vector of the matrix
|
||||
* * `w` - the fourth column vector of the matrix
|
||||
*/
|
||||
pub struct Mat4<T> { x: Vec4<T>, y: Vec4<T>, z: Vec4<T>, w: Vec4<T> }
|
||||
|
||||
pub impl<T:Copy Float> Mat4<T> {
|
||||
/**
|
||||
* Construct a 4 x 4 matrix
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* * `c0r0`, `c0r1`, `c0r2`, `c0r3` - the first column of the matrix
|
||||
* * `c1r0`, `c1r1`, `c1r2`, `c1r3` - the second column of the matrix
|
||||
* * `c2r0`, `c2r1`, `c2r2`, `c2r3` - the third column of the matrix
|
||||
* * `c3r0`, `c3r1`, `c3r2`, `c3r3` - the fourth column of the matrix
|
||||
*
|
||||
* ~~~
|
||||
* c0 c1 c2 c3
|
||||
* +------+------+------+------+
|
||||
* r0 | c0r0 | c1r0 | c2r0 | c3r0 |
|
||||
* +------+------+------+------+
|
||||
* r1 | c0r1 | c1r1 | c2r1 | c3r1 |
|
||||
* +------+------+------+------+
|
||||
* r2 | c0r2 | c1r2 | c2r2 | c3r2 |
|
||||
* +------+------+------+------+
|
||||
* r3 | c0r3 | c1r3 | c2r3 | c3r3 |
|
||||
* +------+------+------+------+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
|
||||
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
|
||||
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
|
||||
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4<T> {
|
||||
Mat4::from_cols(Vec4::new(move c0r0, move c0r1, move c0r2, move c0r3),
|
||||
Vec4::new(move c1r0, move c1r1, move c1r2, move c1r3),
|
||||
Vec4::new(move c2r0, move c2r1, move c2r2, move c2r3),
|
||||
Vec4::new(move c3r0, move c3r1, move c3r2, move c3r3))
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a 4 x 4 matrix from column vectors
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* * `c0` - the first column vector of the matrix
|
||||
* * `c1` - the second column vector of the matrix
|
||||
* * `c2` - the third column vector of the matrix
|
||||
* * `c3` - the fourth column vector of the matrix
|
||||
*
|
||||
* ~~~
|
||||
* c0 c1 c2 c3
|
||||
* +------+------+------+------+
|
||||
* r0 | c0.x | c1.x | c2.x | c3.x |
|
||||
* +------+------+------+------+
|
||||
* r1 | c0.y | c1.y | c2.y | c3.y |
|
||||
* +------+------+------+------+
|
||||
* r2 | c0.z | c1.z | c2.z | c3.z |
|
||||
* +------+------+------+------+
|
||||
* r3 | c0.w | c1.w | c2.w | c3.w |
|
||||
* +------+------+------+------+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn from_cols(c0: Vec4<T>, c1: Vec4<T>, c2: Vec4<T>, c3: Vec4<T>) -> Mat4<T> {
|
||||
Mat4 { x: move c0,
|
||||
y: move c1,
|
||||
z: move c2,
|
||||
w: move c3 }
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a 4 x 4 diagonal matrix with the major diagonal set to `value`
|
||||
*
|
||||
* # Arguments
|
||||
*
|
||||
* * `value` - the value to set the major diagonal to
|
||||
*
|
||||
* ~~~
|
||||
* c0 c1 c2 c3
|
||||
* +-----+-----+-----+-----+
|
||||
* r0 | val | 0 | 0 | 0 |
|
||||
* +-----+-----+-----+-----+
|
||||
* r1 | 0 | val | 0 | 0 |
|
||||
* +-----+-----+-----+-----+
|
||||
* r2 | 0 | 0 | val | 0 |
|
||||
* +-----+-----+-----+-----+
|
||||
* r3 | 0 | 0 | 0 | val |
|
||||
* +-----+-----+-----+-----+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn from_value(value: T) -> Mat4<T> {
|
||||
let _0 = Number::from(0);
|
||||
Mat4::new(value, _0, _0, _0,
|
||||
_0, value, _0, _0,
|
||||
_0, _0, value, _0,
|
||||
_0, _0, _0, value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
static pure fn from_Mat2(m: &Mat2<T>) -> Mat4<T> {
|
||||
let _0 = Number::from(0);
|
||||
let _1 = Number::from(1);
|
||||
Mat4::new(m[0][0], m[0][1], _0, _0,
|
||||
m[1][0], m[1][1], _0, _0,
|
||||
_0, _0, _1, _0,
|
||||
_0, _0, _0, _1)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
static pure fn from_Mat3(m: &Mat3<T>) -> Mat4<T> {
|
||||
let _0 = Number::from(0);
|
||||
let _1 = Number::from(1);
|
||||
Mat4::new(m[0][0], m[0][1], m[0][2], _0,
|
||||
m[1][0], m[1][1], m[1][2], _0,
|
||||
m[2][0], m[2][1], m[2][2], _0,
|
||||
_0, _0, _0, _1)
|
||||
}
|
||||
|
||||
// FIXME: An interim solution to the issues with static functions
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Mat4<T> {
|
||||
let _0 = Number::from(0);
|
||||
let _1 = Number::from(1);
|
||||
Mat4::new(_1, _0, _0, _0,
|
||||
_0, _1, _0, _0,
|
||||
_0, _0, _1, _0,
|
||||
_0, _0, _0, _1)
|
||||
}
|
||||
|
||||
// FIXME: An interim solution to the issues with static functions
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Mat4<T> {
|
||||
let _0 = Number::from(0);
|
||||
Mat4::new(_0, _0, _0, _0,
|
||||
_0, _0, _0, _0,
|
||||
_0, _0, _0, _0,
|
||||
_0, _0, _0, _0)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float Sign> Mat4<T>: Matrix<T, Vec4<T>> {
|
||||
#[inline(always)]
|
||||
pure fn col(&self, i: uint) -> Vec4<T> { self[i] }
|
||||
|
||||
#[inline(always)]
|
||||
pure fn row(&self, i: uint) -> Vec4<T> {
|
||||
Vec4::new(self[0][i],
|
||||
self[1][i],
|
||||
self[2][i],
|
||||
self[3][i])
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the multiplicative identity matrix
|
||||
* ~~~
|
||||
* c0 c1 c2 c3
|
||||
* +----+----+----+----+
|
||||
* r0 | 1 | 0 | 0 | 0 |
|
||||
* +----+----+----+----+
|
||||
* r1 | 0 | 1 | 0 | 0 |
|
||||
* +----+----+----+----+
|
||||
* r2 | 0 | 0 | 1 | 0 |
|
||||
* +----+----+----+----+
|
||||
* r3 | 0 | 0 | 0 | 1 |
|
||||
* +----+----+----+----+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Mat4<T> {
|
||||
let _0 = Number::from(0);
|
||||
let _1 = Number::from(1);
|
||||
Mat4::new(_1, _0, _0, _0,
|
||||
_0, _1, _0, _0,
|
||||
_0, _0, _1, _0,
|
||||
_0, _0, _0, _1)
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the additive identity matrix
|
||||
* ~~~
|
||||
* c0 c1 c2 c3
|
||||
* +----+----+----+----+
|
||||
* r0 | 0 | 0 | 0 | 0 |
|
||||
* +----+----+----+----+
|
||||
* r1 | 0 | 0 | 0 | 0 |
|
||||
* +----+----+----+----+
|
||||
* r2 | 0 | 0 | 0 | 0 |
|
||||
* +----+----+----+----+
|
||||
* r3 | 0 | 0 | 0 | 0 |
|
||||
* +----+----+----+----+
|
||||
* ~~~
|
||||
*/
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Mat4<T> {
|
||||
let _0 = Number::from(0);
|
||||
Mat4::new(_0, _0, _0, _0,
|
||||
_0, _0, _0, _0,
|
||||
_0, _0, _0, _0,
|
||||
_0, _0, _0, _0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_t(&self, value: T) -> Mat4<T> {
|
||||
Mat4::from_cols(self[0].mul_t(value),
|
||||
self[1].mul_t(value),
|
||||
self[2].mul_t(value),
|
||||
self[3].mul_t(value))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
|
||||
Vec4::new(self.row(0).dot(vec),
|
||||
self.row(1).dot(vec),
|
||||
self.row(2).dot(vec),
|
||||
self.row(3).dot(vec))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
|
||||
Mat4::from_cols(self[0].add_v(&other[0]),
|
||||
self[1].add_v(&other[1]),
|
||||
self[2].add_v(&other[2]),
|
||||
self[3].add_v(&other[3]))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
|
||||
Mat4::from_cols(self[0].sub_v(&other[0]),
|
||||
self[1].sub_v(&other[1]),
|
||||
self[2].sub_v(&other[2]),
|
||||
self[3].sub_v(&other[3]))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
|
||||
// Surprisingly when building with optimisation turned on this is actually
|
||||
// faster than writing out the matrix multiplication in expanded form.
|
||||
// If you don't believe me, see ./test/performance/matrix_mul.rs
|
||||
Mat4::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), self.row(3).dot(&other.col(0)),
|
||||
self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), self.row(3).dot(&other.col(1)),
|
||||
self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)), self.row(3).dot(&other.col(2)),
|
||||
self.row(0).dot(&other.col(3)), self.row(1).dot(&other.col(3)), self.row(2).dot(&other.col(3)), self.row(3).dot(&other.col(3)))
|
||||
}
|
||||
|
||||
pure fn dot(&self, other: &Mat4<T>) -> T {
|
||||
other.transpose().mul_m(self).trace()
|
||||
}
|
||||
|
||||
pure fn determinant(&self) -> T {
|
||||
self[0][0]*Mat3::new(self[1][1], self[2][1], self[3][1],
|
||||
self[1][2], self[2][2], self[3][2],
|
||||
self[1][3], self[2][3], self[3][3]).determinant() -
|
||||
self[1][0]*Mat3::new(self[0][1], self[2][1], self[3][1],
|
||||
self[0][2], self[2][2], self[3][2],
|
||||
self[0][3], self[2][3], self[3][3]).determinant() +
|
||||
self[2][0]*Mat3::new(self[0][1], self[1][1], self[3][1],
|
||||
self[0][2], self[1][2], self[3][2],
|
||||
self[0][3], self[1][3], self[3][3]).determinant() -
|
||||
self[3][0]*Mat3::new(self[0][1], self[1][1], self[2][1],
|
||||
self[0][2], self[1][2], self[2][2],
|
||||
self[0][3], self[1][3], self[2][3]).determinant()
|
||||
}
|
||||
|
||||
pure fn trace(&self) -> T {
|
||||
self[0][0] + self[1][1] + self[2][2] + self[3][3]
|
||||
}
|
||||
|
||||
pure fn inverse(&self) -> Option<Mat4<T>> {
|
||||
let d = self.determinant();
|
||||
if d.fuzzy_eq(&Number::from(0)) {
|
||||
None
|
||||
} else {
|
||||
|
||||
// Gauss Jordan Elimination with partial pivoting
|
||||
// So take this matrix, A, augmented with the identity
|
||||
// and essentially reduce [A|I]
|
||||
|
||||
let mut A = *self;
|
||||
// let mut I: Mat4<T> = Matrix::identity(); // FIXME: there's something wrong with static functions here!
|
||||
let mut I = Mat4::identity();
|
||||
|
||||
for uint::range(0, 4) |j| {
|
||||
// Find largest element in col j
|
||||
let mut i1 = j;
|
||||
for uint::range(j + 1, 4) |i| {
|
||||
if abs(&A[j][i]) > abs(&A[j][i1]) {
|
||||
i1 = i;
|
||||
}
|
||||
}
|
||||
|
||||
unsafe {
|
||||
// Swap columns i1 and j in A and I to
|
||||
// put pivot on diagonal
|
||||
A.swap_cols(i1, j);
|
||||
I.swap_cols(i1, j);
|
||||
|
||||
// Scale col j to have a unit diagonal
|
||||
I.col_mut(j).div_self_t(&A[j][j]);
|
||||
A.col_mut(j).div_self_t(&A[j][j]);
|
||||
|
||||
// Eliminate off-diagonal elems in col j of A,
|
||||
// doing identical ops to I
|
||||
for uint::range(0, 4) |i| {
|
||||
if i != j {
|
||||
I.col_mut(i).sub_self_v(&I[j].mul_t(A[i][j]));
|
||||
A.col_mut(i).sub_self_v(&A[j].mul_t(A[i][j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Some(I)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn transpose(&self) -> Mat4<T> {
|
||||
Mat4::new(self[0][0], self[1][0], self[2][0], self[3][0],
|
||||
self[0][1], self[1][1], self[2][1], self[3][1],
|
||||
self[0][2], self[1][2], self[2][2], self[3][2],
|
||||
self[0][3], self[1][3], self[2][3], self[3][3])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_identity(&self) -> bool {
|
||||
// self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
|
||||
self.fuzzy_eq(&Mat4::identity())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_diagonal(&self) -> bool {
|
||||
let _0 = Number::from(0);
|
||||
self[0][1].fuzzy_eq(&_0) &&
|
||||
self[0][2].fuzzy_eq(&_0) &&
|
||||
self[0][3].fuzzy_eq(&_0) &&
|
||||
|
||||
self[1][0].fuzzy_eq(&_0) &&
|
||||
self[1][2].fuzzy_eq(&_0) &&
|
||||
self[1][3].fuzzy_eq(&_0) &&
|
||||
|
||||
self[2][0].fuzzy_eq(&_0) &&
|
||||
self[2][1].fuzzy_eq(&_0) &&
|
||||
self[2][3].fuzzy_eq(&_0) &&
|
||||
|
||||
self[3][0].fuzzy_eq(&_0) &&
|
||||
self[3][1].fuzzy_eq(&_0) &&
|
||||
self[3][2].fuzzy_eq(&_0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_rotated(&self) -> bool {
|
||||
// !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here!
|
||||
!self.fuzzy_eq(&Mat4::identity())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_symmetric(&self) -> bool {
|
||||
self[0][1].fuzzy_eq(&self[1][0]) &&
|
||||
self[0][2].fuzzy_eq(&self[2][0]) &&
|
||||
self[0][3].fuzzy_eq(&self[3][0]) &&
|
||||
|
||||
self[1][0].fuzzy_eq(&self[0][1]) &&
|
||||
self[1][2].fuzzy_eq(&self[2][1]) &&
|
||||
self[1][3].fuzzy_eq(&self[3][1]) &&
|
||||
|
||||
self[2][0].fuzzy_eq(&self[0][2]) &&
|
||||
self[2][1].fuzzy_eq(&self[1][2]) &&
|
||||
self[2][3].fuzzy_eq(&self[3][2]) &&
|
||||
|
||||
self[3][0].fuzzy_eq(&self[0][3]) &&
|
||||
self[3][1].fuzzy_eq(&self[1][3]) &&
|
||||
self[3][2].fuzzy_eq(&self[2][3])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn is_invertible(&self) -> bool {
|
||||
!self.determinant().fuzzy_eq(&Number::zero())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_ptr(&self) -> *T {
|
||||
unsafe {
|
||||
transmute::<*Mat4<T>, *T>(
|
||||
to_unsafe_ptr(self)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float Sign> Mat4<T>: MutableMatrix<T, Vec4<T>> {
|
||||
#[inline(always)]
|
||||
fn col_mut(&mut self, i: uint) -> &self/mut Vec4<T> {
|
||||
match i {
|
||||
0 => &mut self.x,
|
||||
1 => &mut self.y,
|
||||
2 => &mut self.z,
|
||||
3 => &mut self.w,
|
||||
_ => fail(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap_cols(&mut self, a: uint, b: uint) {
|
||||
util::swap(self.col_mut(a),
|
||||
self.col_mut(b));
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap_rows(&mut self, a: uint, b: uint) {
|
||||
self.x.swap(a, b);
|
||||
self.y.swap(a, b);
|
||||
self.z.swap(a, b);
|
||||
self.w.swap(a, b);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn set(&mut self, other: &Mat4<T>) {
|
||||
(*self) = (*other);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn to_identity(&mut self) {
|
||||
(*self) = Mat4::identity();
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn to_zero(&mut self) {
|
||||
(*self) = Mat4::zero();
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul_self_t(&mut self, value: T) {
|
||||
self.col_mut(0).mul_self_t(&value);
|
||||
self.col_mut(1).mul_self_t(&value);
|
||||
self.col_mut(2).mul_self_t(&value);
|
||||
self.col_mut(3).mul_self_t(&value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_self_m(&mut self, other: &Mat4<T>) {
|
||||
self.col_mut(0).add_self_v(&other[0]);
|
||||
self.col_mut(1).add_self_v(&other[1]);
|
||||
self.col_mut(2).add_self_v(&other[2]);
|
||||
self.col_mut(3).add_self_v(&other[3]);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_self_m(&mut self, other: &Mat4<T>) {
|
||||
self.col_mut(0).sub_self_v(&other[0]);
|
||||
self.col_mut(1).sub_self_v(&other[1]);
|
||||
self.col_mut(2).sub_self_v(&other[2]);
|
||||
self.col_mut(3).sub_self_v(&other[3]);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn invert_self(&mut self) {
|
||||
match self.inverse() {
|
||||
Some(m) => (*self) = m,
|
||||
None => fail(~"Couldn't invert the matrix!")
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn transpose_self(&mut self) {
|
||||
util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0));
|
||||
util::swap(self.col_mut(0).index_mut(2), self.col_mut(2).index_mut(0));
|
||||
util::swap(self.col_mut(0).index_mut(3), self.col_mut(3).index_mut(0));
|
||||
|
||||
util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1));
|
||||
util::swap(self.col_mut(1).index_mut(2), self.col_mut(2).index_mut(1));
|
||||
util::swap(self.col_mut(1).index_mut(3), self.col_mut(3).index_mut(1));
|
||||
|
||||
util::swap(self.col_mut(2).index_mut(0), self.col_mut(0).index_mut(2));
|
||||
util::swap(self.col_mut(2).index_mut(1), self.col_mut(1).index_mut(2));
|
||||
util::swap(self.col_mut(2).index_mut(3), self.col_mut(3).index_mut(2));
|
||||
|
||||
util::swap(self.col_mut(3).index_mut(0), self.col_mut(0).index_mut(3));
|
||||
util::swap(self.col_mut(3).index_mut(1), self.col_mut(1).index_mut(3));
|
||||
util::swap(self.col_mut(3).index_mut(2), self.col_mut(2).index_mut(3));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T> Mat4<T>: Matrix4<T, Vec4<T>> {
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat4<T>: Neg<Mat4<T>> {
|
||||
#[inline(always)]
|
||||
pure fn neg(&self) -> Mat4<T> {
|
||||
Mat4::from_cols(-self[0], -self[1], -self[2], -self[3])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Mat4<T>: Index<uint, Vec4<T>> {
|
||||
#[inline(always)]
|
||||
pure fn index(&self, i: uint) -> Vec4<T> {
|
||||
unsafe { do buf_as_slice(
|
||||
transmute::<*Mat4<T>, *Vec4<T>>(
|
||||
to_unsafe_ptr(self)), 4) |slice| { slice[i] }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat4<T>: Eq {
|
||||
#[inline(always)]
|
||||
pure fn eq(&self, other: &Mat4<T>) -> bool {
|
||||
self[0] == other[0] &&
|
||||
self[1] == other[1] &&
|
||||
self[2] == other[2] &&
|
||||
self[3] == other[3]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn ne(&self, other: &Mat4<T>) -> bool {
|
||||
!(self == other)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Float> Mat4<T>: FuzzyEq {
|
||||
#[inline(always)]
|
||||
pure fn fuzzy_eq(other: &Mat4<T>) -> bool {
|
||||
self[0].fuzzy_eq(&other[0]) &&
|
||||
self[1].fuzzy_eq(&other[1]) &&
|
||||
self[2].fuzzy_eq(&other[2]) &&
|
||||
self[3].fuzzy_eq(&other[3])
|
||||
}
|
||||
}
|
794
src/vec.rs
794
src/vec.rs
|
@ -1,16 +1,20 @@
|
|||
use core::cast::transmute;
|
||||
use core::cmp::Eq;
|
||||
use core::ptr::to_unsafe_ptr;
|
||||
use core::sys::size_of;
|
||||
use core::vec::raw::buf_as_slice;
|
||||
|
||||
use std::cmp::FuzzyEq;
|
||||
|
||||
use angle::Radians;
|
||||
use funs::exponential::Exp;
|
||||
use funs::triganomic::{InvTrig, acos, atan2};
|
||||
use num::types::Number;
|
||||
|
||||
|
||||
pub mod vec2;
|
||||
pub mod vec3;
|
||||
pub mod vec4;
|
||||
|
||||
pub use vec2::Vec2;
|
||||
pub use vec3::Vec3;
|
||||
pub use vec4::Vec4;
|
||||
|
||||
|
||||
/**
|
||||
* The base generic vector trait.
|
||||
*
|
||||
|
@ -127,7 +131,8 @@ pub trait NumericVector<T>: Vector<T> Neg<self> {
|
|||
/**
|
||||
* A mutable vector with numeric components
|
||||
*/
|
||||
pub trait MutableNumericVector<T>: MutableVector<&self/T> NumericVector<T> {
|
||||
pub trait MutableNumericVector<T>: MutableVector<&self/T>
|
||||
NumericVector<T> {
|
||||
/**
|
||||
* Negate the vector
|
||||
*/
|
||||
|
@ -300,779 +305,4 @@ pub trait MutableEuclideanVector<T>: MutableNumericVector<&self/T>
|
|||
* Linearly intoperlate the vector towards `other`
|
||||
*/
|
||||
fn lerp_self(&mut self, other: &self, amount: T);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* A 2-dimensional vector
|
||||
*
|
||||
* # Type parameters
|
||||
*
|
||||
* * `T` - The type of the components. This is intended to support boolean,
|
||||
* integer, unsigned integer, and floating point types.
|
||||
*
|
||||
* # Fields
|
||||
*
|
||||
* * `x` - the first component of the vector
|
||||
* * `y` - the second component of the vector
|
||||
*/
|
||||
pub struct Vec2<T> { x: T, y: T }
|
||||
|
||||
pub impl<T> Vec2<T>/*: Vector2<T>*/ {
|
||||
#[inline(always)]
|
||||
static pure fn new(x: T, y: T ) -> Vec2<T> {
|
||||
Vec2 { x: move x, y: move y }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec2<T>: Vector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn from_value(value: T) -> Vec2<T> {
|
||||
Vec2::new(value, value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_ptr(&self) -> *T {
|
||||
unsafe {
|
||||
transmute::<*Vec2<T>, *T>(
|
||||
to_unsafe_ptr(self)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec2<T>: Index<uint, T> {
|
||||
#[inline(always)]
|
||||
pure fn index(&self, i: uint) -> T {
|
||||
unsafe { do buf_as_slice(self.to_ptr(), 2) |slice| { slice[i] } }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec2<T>: MutableVector<T> {
|
||||
#[inline(always)]
|
||||
fn index_mut(&mut self, i: uint) -> &self/mut T {
|
||||
match i {
|
||||
0 => &mut self.x,
|
||||
1 => &mut self.y,
|
||||
_ => fail(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap(&mut self, a: uint, b: uint) {
|
||||
util::swap(self.index_mut(a),
|
||||
self.index_mut(b));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec2<T>: NumericVector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Vec2<T> {
|
||||
Vec2::new(Number::one(),
|
||||
Number::one())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Vec2<T> {
|
||||
Vec2::new(Number::zero(),
|
||||
Number::zero())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_t(&self, value: T) -> Vec2<T> {
|
||||
Vec2::new(self[0] * value,
|
||||
self[1] * value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn div_t(&self, value: T) -> Vec2<T> {
|
||||
Vec2::new(self[0] / value,
|
||||
self[1] / value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn add_v(&self, other: &Vec2<T>) -> Vec2<T> {
|
||||
Vec2::new(self[0] + other[0],
|
||||
self[1] + other[1])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn sub_v(&self, other: &Vec2<T>) -> Vec2<T> {
|
||||
Vec2::new(self[0] - other[0],
|
||||
self[1] - other[1])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn dot(&self, other: &Vec2<T>) -> T {
|
||||
self[0] * other[0] +
|
||||
self[1] * other[1]
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec2<T>: Neg<Vec2<T>> {
|
||||
#[inline(always)]
|
||||
pure fn neg(&self) -> Vec2<T> {
|
||||
Vec2::new(-self[0], -self[1])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec2<T>: MutableNumericVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn neg_self(&mut self) {
|
||||
*self.index_mut(0) = -*self.index_mut(0);
|
||||
*self.index_mut(1) = -*self.index_mut(1);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) *= (*value);
|
||||
*self.index_mut(1) *= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) /= (*value);
|
||||
*self.index_mut(1) /= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_self_v(&mut self, other: &Vec2<T>) {
|
||||
*self.index_mut(0) += other[0];
|
||||
*self.index_mut(1) += other[1];
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_self_v(&mut self, other: &Vec2<T>) {
|
||||
*self.index_mut(0) -= other[0];
|
||||
*self.index_mut(1) -= other[1];
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec2<T>: NumericVector2<T> {
|
||||
#[inline(always)]
|
||||
pure fn perp_dot(&self, other: &Vec2<T>) ->T {
|
||||
(self[0] * other[1]) - (self[1] * other[0])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec2<T>: EuclideanVector<T> {
|
||||
#[inline(always)]
|
||||
pure fn length2(&self) -> T {
|
||||
self.dot(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn length(&self) -> T {
|
||||
self.length2().sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance2(&self, other: &Vec2<T>) -> T {
|
||||
other.sub_v(self).length2()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance(&self, other: &Vec2<T>) -> T {
|
||||
other.distance2(self).sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn angle(&self, other: &Vec2<T>) -> Radians<T> {
|
||||
atan2(&self.perp_dot(other), &self.dot(other))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize(&self) -> Vec2<T> {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize_to(&self, length: T) -> Vec2<T> {
|
||||
let mut n: T = length / self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn lerp(&self, other: &Vec2<T>, amount: T) -> Vec2<T> {
|
||||
self.add_v(&other.sub_v(self).mul_t(amount))
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec2<T>: MutableEuclideanVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn normalize_self(&mut self) {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn normalize_self_to(&mut self, length: &T) {
|
||||
let mut n: T = length / self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
fn lerp_self(&mut self, other: &Vec2<T>, amount: &T) {
|
||||
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Eq> Vec2<T>: Eq {
|
||||
#[inline(always)]
|
||||
pure fn eq(&self, other: &Vec2<T>) -> bool {
|
||||
self[0] == other[0] &&
|
||||
self[1] == other[1]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn ne(&self, other: &Vec2<T>) -> bool {
|
||||
!(self == other)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy FuzzyEq> Vec2<T>: FuzzyEq {
|
||||
#[inline(always)]
|
||||
pure fn fuzzy_eq(other: &Vec2<T>) -> bool {
|
||||
self[0].fuzzy_eq(&other[0]) &&
|
||||
self[1].fuzzy_eq(&other[1])
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* A 3-dimensional vector
|
||||
*
|
||||
* # Type parameters
|
||||
*
|
||||
* * `T` - The type of the components. This is intended to support boolean,
|
||||
* integer, unsigned integer, and floating point types.
|
||||
*
|
||||
* # Fields
|
||||
*
|
||||
* * `x` - the first component of the vector
|
||||
* * `y` - the second component of the vector
|
||||
* * `z` - the third component of the vector
|
||||
*/
|
||||
pub struct Vec3<T> { x: T, y: T, z: T }
|
||||
|
||||
pub impl<T> Vec3<T>/*: Vector3<T>*/ {
|
||||
#[inline(always)]
|
||||
static pure fn new(x: T, y: T, z: T) -> Vec3<T> {
|
||||
Vec3 { x: move x, y: move y, z: move z }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec3<T>: Vector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn from_value(value: T) -> Vec3<T> {
|
||||
Vec3::new(value, value, value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_ptr(&self) -> *T {
|
||||
unsafe {
|
||||
transmute::<*Vec3<T>, *T>(
|
||||
to_unsafe_ptr(self)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec3<T>: Index<uint, T> {
|
||||
#[inline(always)]
|
||||
pure fn index(&self, i: uint) -> T {
|
||||
unsafe { do buf_as_slice(self.to_ptr(), 3) |slice| { slice[i] } }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec3<T>: MutableVector<T> {
|
||||
#[inline(always)]
|
||||
fn index_mut(&mut self, i: uint) -> &self/mut T {
|
||||
match i {
|
||||
0 => &mut self.x,
|
||||
1 => &mut self.y,
|
||||
2 => &mut self.z,
|
||||
_ => fail(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap(&mut self, a: uint, b: uint) {
|
||||
util::swap(self.index_mut(a),
|
||||
self.index_mut(b));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec3<T>: NumericVector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Vec3<T> {
|
||||
Vec3::new(Number::one(),
|
||||
Number::one(),
|
||||
Number::one())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Vec3<T> {
|
||||
Vec3::new(Number::zero(),
|
||||
Number::zero(),
|
||||
Number::zero())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_t(&self, value: T) -> Vec3<T> {
|
||||
Vec3::new(self[0] * value,
|
||||
self[1] * value,
|
||||
self[2] * value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn div_t(&self, value: T) -> Vec3<T> {
|
||||
Vec3::new(self[0] / value,
|
||||
self[1] / value,
|
||||
self[2] / value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn add_v(&self, other: &Vec3<T>) -> Vec3<T>{
|
||||
Vec3::new(self[0] + other[0],
|
||||
self[1] + other[1],
|
||||
self[2] + other[2])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn sub_v(&self, other: &Vec3<T>) -> Vec3<T>{
|
||||
Vec3::new(self[0] - other[0],
|
||||
self[1] - other[1],
|
||||
self[2] - other[2])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn dot(&self, other: &Vec3<T>) -> T {
|
||||
self[0] * other[0] +
|
||||
self[1] * other[1] +
|
||||
self[2] * other[2]
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec3<T>: Neg<Vec3<T>> {
|
||||
#[inline(always)]
|
||||
pure fn neg(&self) -> Vec3<T> {
|
||||
Vec3::new(-self[0], -self[1], -self[2])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec3<T>: MutableNumericVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn neg_self(&mut self) {
|
||||
*self.index_mut(0) = -*self.index_mut(0);
|
||||
*self.index_mut(1) = -*self.index_mut(1);
|
||||
*self.index_mut(2) = -*self.index_mut(2);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) *= (*value);
|
||||
*self.index_mut(1) *= (*value);
|
||||
*self.index_mut(2) *= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) /= (*value);
|
||||
*self.index_mut(1) /= (*value);
|
||||
*self.index_mut(2) /= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_self_v(&mut self, other: &Vec3<T>) {
|
||||
*self.index_mut(0) += other[0];
|
||||
*self.index_mut(1) += other[1];
|
||||
*self.index_mut(2) += other[2];
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_self_v(&mut self, other: &Vec3<T>) {
|
||||
*self.index_mut(0) -= other[0];
|
||||
*self.index_mut(1) -= other[1];
|
||||
*self.index_mut(2) -= other[2];
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec3<T>: NumericVector3<T> {
|
||||
#[inline(always)]
|
||||
pure fn cross(&self, other: &Vec3<T>) -> Vec3<T> {
|
||||
Vec3::new((self[1] * other[2]) - (self[2] * other[1]),
|
||||
(self[2] * other[0]) - (self[0] * other[2]),
|
||||
(self[0] * other[1]) - (self[1] * other[0]))
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec3<T>: MutableNumericVector3<&self/T> {
|
||||
#[inline(always)]
|
||||
fn cross_self(&mut self, other: &Vec3<T>) {
|
||||
*self = self.cross(other);
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec3<T>: EuclideanVector<T> {
|
||||
#[inline(always)]
|
||||
pure fn length2(&self) -> T {
|
||||
self.dot(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn length(&self) -> T {
|
||||
self.length2().sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance2(&self, other: &Vec3<T>) -> T {
|
||||
other.sub_v(self).length2()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance(&self, other: &Vec3<T>) -> T {
|
||||
other.distance2(self).sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn angle(&self, other: &Vec3<T>) -> Radians<T> {
|
||||
atan2(&self.cross(other).length(), &self.dot(other))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize(&self) -> Vec3<T> {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize_to(&self, length: T) -> Vec3<T> {
|
||||
let mut n: T = length / self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn lerp(&self, other: &Vec3<T>, amount: T) -> Vec3<T> {
|
||||
self.add_v(&other.sub_v(self).mul_t(amount))
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec3<T>: MutableEuclideanVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn normalize_self(&mut self) {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn normalize_self_to(&mut self, length: &T) {
|
||||
let mut n: T = length / self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
fn lerp_self(&mut self, other: &Vec3<T>, amount: &T) {
|
||||
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Eq> Vec3<T>: Eq {
|
||||
#[inline(always)]
|
||||
pure fn eq(&self, other: &Vec3<T>) -> bool {
|
||||
self[0] == other[0] &&
|
||||
self[1] == other[1] &&
|
||||
self[2] == other[2]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn ne(&self, other: &Vec3<T>) -> bool {
|
||||
!(self == other)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy FuzzyEq> Vec3<T>: FuzzyEq {
|
||||
#[inline(always)]
|
||||
pure fn fuzzy_eq(other: &Vec3<T>) -> bool {
|
||||
self[0].fuzzy_eq(&other[0]) &&
|
||||
self[1].fuzzy_eq(&other[1]) &&
|
||||
self[2].fuzzy_eq(&other[2])
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* A 4-dimensional vector
|
||||
*
|
||||
* # Type parameters
|
||||
*
|
||||
* * `T` - The type of the components. This is intended to support boolean,
|
||||
* integer, unsigned integer, and floating point types.
|
||||
*
|
||||
* # Fields
|
||||
*
|
||||
* * `x` - the first component of the vector
|
||||
* * `y` - the second component of the vector
|
||||
* * `z` - the third component of the vector
|
||||
* * `w` - the fourth component of the vector
|
||||
*/
|
||||
pub struct Vec4<T> { x: T, y: T, z: T, w: T }
|
||||
|
||||
pub impl<T> Vec4<T>/*: Vector4<T>*/ {
|
||||
#[inline(always)]
|
||||
static pure fn new(x: T, y: T, z: T, w: T) -> Vec4<T> {
|
||||
Vec4 { x: move x, y: move y, z: move z, w: move w }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec4<T>: Vector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn from_value(value: T) -> Vec4<T> {
|
||||
Vec4::new(value, value, value, value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_ptr(&self) -> *T {
|
||||
unsafe {
|
||||
transmute::<*Vec4<T>, *T>(
|
||||
to_unsafe_ptr(self)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec4<T>: Index<uint, T> {
|
||||
#[inline(always)]
|
||||
pure fn index(&self, i: uint) -> T {
|
||||
unsafe { do buf_as_slice(self.to_ptr(), 4) |slice| { slice[i] } }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec4<T>: MutableVector<T> {
|
||||
#[inline(always)]
|
||||
fn index_mut(&mut self, i: uint) -> &self/mut T {
|
||||
match i {
|
||||
0 => &mut self.x,
|
||||
1 => &mut self.y,
|
||||
2 => &mut self.z,
|
||||
3 => &mut self.w,
|
||||
_ => fail(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap(&mut self, a: uint, b: uint) {
|
||||
util::swap(self.index_mut(a),
|
||||
self.index_mut(b));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec4<T>: NumericVector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Vec4<T> {
|
||||
Vec4::new(Number::one(),
|
||||
Number::one(),
|
||||
Number::one(),
|
||||
Number::one())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Vec4<T> {
|
||||
Vec4::new(Number::zero(),
|
||||
Number::zero(),
|
||||
Number::zero(),
|
||||
Number::zero())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_t(&self, value: T) -> Vec4<T> {
|
||||
Vec4::new(self[0] * value,
|
||||
self[1] * value,
|
||||
self[2] * value,
|
||||
self[3] * value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn div_t(&self, value: T) -> Vec4<T> {
|
||||
Vec4::new(self[0] / value,
|
||||
self[1] / value,
|
||||
self[2] / value,
|
||||
self[3] / value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn add_v(&self, other: &Vec4<T>) -> Vec4<T> {
|
||||
Vec4::new(self[0] + other[0],
|
||||
self[1] + other[1],
|
||||
self[2] + other[2],
|
||||
self[3] + other[3])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn sub_v(&self, other: &Vec4<T>) -> Vec4<T> {
|
||||
Vec4::new(self[0] - other[0],
|
||||
self[1] - other[1],
|
||||
self[2] - other[2],
|
||||
self[3] - other[3])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn dot(&self, other: &Vec4<T>) -> T {
|
||||
self[0] * other[0] +
|
||||
self[1] * other[1] +
|
||||
self[2] * other[2] +
|
||||
self[3] * other[3]
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec4<T>: Neg<Vec4<T>> {
|
||||
#[inline(always)]
|
||||
pure fn neg(&self) -> Vec4<T> {
|
||||
Vec4::new(-self[0], -self[1], -self[2], -self[3])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec4<T>: MutableNumericVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn neg_self(&mut self) {
|
||||
*self.index_mut(0) = -*self.index_mut(0);
|
||||
*self.index_mut(1) = -*self.index_mut(1);
|
||||
*self.index_mut(2) = -*self.index_mut(2);
|
||||
*self.index_mut(3) = -*self.index_mut(3);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) *= (*value);
|
||||
*self.index_mut(1) *= (*value);
|
||||
*self.index_mut(2) *= (*value);
|
||||
*self.index_mut(3) *= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) /= (*value);
|
||||
*self.index_mut(1) /= (*value);
|
||||
*self.index_mut(2) /= (*value);
|
||||
*self.index_mut(3) /= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_self_v(&mut self, other: &Vec4<T>) {
|
||||
*self.index_mut(0) += other[0];
|
||||
*self.index_mut(1) += other[1];
|
||||
*self.index_mut(2) += other[2];
|
||||
*self.index_mut(3) += other[3];
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_self_v(&mut self, other: &Vec4<T>) {
|
||||
*self.index_mut(0) -= other[0];
|
||||
*self.index_mut(1) -= other[1];
|
||||
*self.index_mut(2) -= other[2];
|
||||
*self.index_mut(3) -= other[3];
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec4<T>: EuclideanVector<T> {
|
||||
#[inline(always)]
|
||||
pure fn length2(&self) -> T {
|
||||
self.dot(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn length(&self) -> T {
|
||||
self.length2().sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance2(&self, other: &Vec4<T>) -> T {
|
||||
other.sub_v(self).length2()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance(&self, other: &Vec4<T>) -> T {
|
||||
other.distance2(self).sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn angle(&self, other: &Vec4<T>) -> Radians<T> {
|
||||
acos(&(self.dot(other) / (self.length() * other.length())))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize(&self) -> Vec4<T> {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize_to(&self, length: T) -> Vec4<T> {
|
||||
let mut n: T = length / self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn lerp(&self, other: &Vec4<T>, amount: T) -> Vec4<T> {
|
||||
self.add_v(&other.sub_v(self).mul_t(amount))
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec4<T>: MutableEuclideanVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn normalize_self(&mut self) {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn normalize_self_to(&mut self, length: &T) {
|
||||
let mut n: T = length / self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
fn lerp_self(&mut self, other: &Vec4<T>, amount: &T) {
|
||||
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Eq> Vec4<T>: Eq {
|
||||
#[inline(always)]
|
||||
pure fn eq(&self, other: &Vec4<T>) -> bool {
|
||||
self[0] == other[0] &&
|
||||
self[1] == other[1] &&
|
||||
self[2] == other[2] &&
|
||||
self[3] == other[3]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn ne(&self, other: &Vec4<T>) -> bool {
|
||||
!(self == other)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy FuzzyEq> Vec4<T>: FuzzyEq {
|
||||
#[inline(always)]
|
||||
pure fn fuzzy_eq(other: &Vec4<T>) -> bool {
|
||||
self[0].fuzzy_eq(&other[0]) &&
|
||||
self[1].fuzzy_eq(&other[1]) &&
|
||||
self[2].fuzzy_eq(&other[2]) &&
|
||||
self[3].fuzzy_eq(&other[3])
|
||||
}
|
||||
}
|
248
src/vec2.rs
Normal file
248
src/vec2.rs
Normal file
|
@ -0,0 +1,248 @@
|
|||
use core::cast::transmute;
|
||||
use core::cmp::Eq;
|
||||
use core::ptr::to_unsafe_ptr;
|
||||
use core::vec::raw::buf_as_slice;
|
||||
|
||||
use std::cmp::FuzzyEq;
|
||||
|
||||
use angle::Radians;
|
||||
use funs::exponential::Exp;
|
||||
use funs::triganomic::{InvTrig, atan2};
|
||||
use num::types::Number;
|
||||
|
||||
/**
|
||||
* A 2-dimensional vector
|
||||
*
|
||||
* # Type parameters
|
||||
*
|
||||
* * `T` - The type of the components. This is intended to support boolean,
|
||||
* integer, unsigned integer, and floating point types.
|
||||
*
|
||||
* # Fields
|
||||
*
|
||||
* * `x` - the first component of the vector
|
||||
* * `y` - the second component of the vector
|
||||
*/
|
||||
pub struct Vec2<T> { x: T, y: T }
|
||||
|
||||
pub impl<T> Vec2<T>/*: Vector2<T>*/ {
|
||||
#[inline(always)]
|
||||
static pure fn new(x: T, y: T ) -> Vec2<T> {
|
||||
Vec2 { x: move x, y: move y }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec2<T>: Vector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn from_value(value: T) -> Vec2<T> {
|
||||
Vec2::new(value, value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_ptr(&self) -> *T {
|
||||
unsafe {
|
||||
transmute::<*Vec2<T>, *T>(
|
||||
to_unsafe_ptr(self)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec2<T>: Index<uint, T> {
|
||||
#[inline(always)]
|
||||
pure fn index(&self, i: uint) -> T {
|
||||
unsafe { do buf_as_slice(self.to_ptr(), 2) |slice| { slice[i] } }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec2<T>: MutableVector<T> {
|
||||
#[inline(always)]
|
||||
fn index_mut(&mut self, i: uint) -> &self/mut T {
|
||||
match i {
|
||||
0 => &mut self.x,
|
||||
1 => &mut self.y,
|
||||
_ => fail(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap(&mut self, a: uint, b: uint) {
|
||||
util::swap(self.index_mut(a),
|
||||
self.index_mut(b));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec2<T>: NumericVector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Vec2<T> {
|
||||
Vec2::new(Number::one(),
|
||||
Number::one())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Vec2<T> {
|
||||
Vec2::new(Number::zero(),
|
||||
Number::zero())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_t(&self, value: T) -> Vec2<T> {
|
||||
Vec2::new(self[0] * value,
|
||||
self[1] * value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn div_t(&self, value: T) -> Vec2<T> {
|
||||
Vec2::new(self[0] / value,
|
||||
self[1] / value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn add_v(&self, other: &Vec2<T>) -> Vec2<T> {
|
||||
Vec2::new(self[0] + other[0],
|
||||
self[1] + other[1])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn sub_v(&self, other: &Vec2<T>) -> Vec2<T> {
|
||||
Vec2::new(self[0] - other[0],
|
||||
self[1] - other[1])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn dot(&self, other: &Vec2<T>) -> T {
|
||||
self[0] * other[0] +
|
||||
self[1] * other[1]
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec2<T>: Neg<Vec2<T>> {
|
||||
#[inline(always)]
|
||||
pure fn neg(&self) -> Vec2<T> {
|
||||
Vec2::new(-self[0], -self[1])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec2<T>: MutableNumericVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn neg_self(&mut self) {
|
||||
*self.index_mut(0) = -*self.index_mut(0);
|
||||
*self.index_mut(1) = -*self.index_mut(1);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) *= (*value);
|
||||
*self.index_mut(1) *= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) /= (*value);
|
||||
*self.index_mut(1) /= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_self_v(&mut self, other: &Vec2<T>) {
|
||||
*self.index_mut(0) += other[0];
|
||||
*self.index_mut(1) += other[1];
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_self_v(&mut self, other: &Vec2<T>) {
|
||||
*self.index_mut(0) -= other[0];
|
||||
*self.index_mut(1) -= other[1];
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec2<T>: NumericVector2<T> {
|
||||
#[inline(always)]
|
||||
pure fn perp_dot(&self, other: &Vec2<T>) ->T {
|
||||
(self[0] * other[1]) - (self[1] * other[0])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec2<T>: EuclideanVector<T> {
|
||||
#[inline(always)]
|
||||
pure fn length2(&self) -> T {
|
||||
self.dot(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn length(&self) -> T {
|
||||
self.length2().sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance2(&self, other: &Vec2<T>) -> T {
|
||||
other.sub_v(self).length2()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance(&self, other: &Vec2<T>) -> T {
|
||||
other.distance2(self).sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn angle(&self, other: &Vec2<T>) -> Radians<T> {
|
||||
atan2(&self.perp_dot(other), &self.dot(other))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize(&self) -> Vec2<T> {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize_to(&self, length: T) -> Vec2<T> {
|
||||
let mut n: T = length / self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn lerp(&self, other: &Vec2<T>, amount: T) -> Vec2<T> {
|
||||
self.add_v(&other.sub_v(self).mul_t(amount))
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec2<T>: MutableEuclideanVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn normalize_self(&mut self) {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn normalize_self_to(&mut self, length: &T) {
|
||||
let mut n: T = length / self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
fn lerp_self(&mut self, other: &Vec2<T>, amount: &T) {
|
||||
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Eq> Vec2<T>: Eq {
|
||||
#[inline(always)]
|
||||
pure fn eq(&self, other: &Vec2<T>) -> bool {
|
||||
self[0] == other[0] &&
|
||||
self[1] == other[1]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn ne(&self, other: &Vec2<T>) -> bool {
|
||||
!(self == other)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy FuzzyEq> Vec2<T>: FuzzyEq {
|
||||
#[inline(always)]
|
||||
pure fn fuzzy_eq(other: &Vec2<T>) -> bool {
|
||||
self[0].fuzzy_eq(&other[0]) &&
|
||||
self[1].fuzzy_eq(&other[1])
|
||||
}
|
||||
}
|
273
src/vec3.rs
Normal file
273
src/vec3.rs
Normal file
|
@ -0,0 +1,273 @@
|
|||
use core::cast::transmute;
|
||||
use core::cmp::Eq;
|
||||
use core::ptr::to_unsafe_ptr;
|
||||
use core::vec::raw::buf_as_slice;
|
||||
|
||||
use std::cmp::FuzzyEq;
|
||||
|
||||
use angle::Radians;
|
||||
use funs::exponential::Exp;
|
||||
use funs::triganomic::{InvTrig, atan2};
|
||||
use num::types::Number;
|
||||
|
||||
/**
|
||||
* A 3-dimensional vector
|
||||
*
|
||||
* # Type parameters
|
||||
*
|
||||
* * `T` - The type of the components. This is intended to support boolean,
|
||||
* integer, unsigned integer, and floating point types.
|
||||
*
|
||||
* # Fields
|
||||
*
|
||||
* * `x` - the first component of the vector
|
||||
* * `y` - the second component of the vector
|
||||
* * `z` - the third component of the vector
|
||||
*/
|
||||
pub struct Vec3<T> { x: T, y: T, z: T }
|
||||
|
||||
pub impl<T> Vec3<T>/*: Vector3<T>*/ {
|
||||
#[inline(always)]
|
||||
static pure fn new(x: T, y: T, z: T) -> Vec3<T> {
|
||||
Vec3 { x: move x, y: move y, z: move z }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec3<T>: Vector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn from_value(value: T) -> Vec3<T> {
|
||||
Vec3::new(value, value, value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_ptr(&self) -> *T {
|
||||
unsafe {
|
||||
transmute::<*Vec3<T>, *T>(
|
||||
to_unsafe_ptr(self)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec3<T>: Index<uint, T> {
|
||||
#[inline(always)]
|
||||
pure fn index(&self, i: uint) -> T {
|
||||
unsafe { do buf_as_slice(self.to_ptr(), 3) |slice| { slice[i] } }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec3<T>: MutableVector<T> {
|
||||
#[inline(always)]
|
||||
fn index_mut(&mut self, i: uint) -> &self/mut T {
|
||||
match i {
|
||||
0 => &mut self.x,
|
||||
1 => &mut self.y,
|
||||
2 => &mut self.z,
|
||||
_ => fail(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap(&mut self, a: uint, b: uint) {
|
||||
util::swap(self.index_mut(a),
|
||||
self.index_mut(b));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec3<T>: NumericVector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Vec3<T> {
|
||||
Vec3::new(Number::one(),
|
||||
Number::one(),
|
||||
Number::one())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Vec3<T> {
|
||||
Vec3::new(Number::zero(),
|
||||
Number::zero(),
|
||||
Number::zero())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_t(&self, value: T) -> Vec3<T> {
|
||||
Vec3::new(self[0] * value,
|
||||
self[1] * value,
|
||||
self[2] * value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn div_t(&self, value: T) -> Vec3<T> {
|
||||
Vec3::new(self[0] / value,
|
||||
self[1] / value,
|
||||
self[2] / value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn add_v(&self, other: &Vec3<T>) -> Vec3<T>{
|
||||
Vec3::new(self[0] + other[0],
|
||||
self[1] + other[1],
|
||||
self[2] + other[2])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn sub_v(&self, other: &Vec3<T>) -> Vec3<T>{
|
||||
Vec3::new(self[0] - other[0],
|
||||
self[1] - other[1],
|
||||
self[2] - other[2])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn dot(&self, other: &Vec3<T>) -> T {
|
||||
self[0] * other[0] +
|
||||
self[1] * other[1] +
|
||||
self[2] * other[2]
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec3<T>: Neg<Vec3<T>> {
|
||||
#[inline(always)]
|
||||
pure fn neg(&self) -> Vec3<T> {
|
||||
Vec3::new(-self[0], -self[1], -self[2])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec3<T>: MutableNumericVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn neg_self(&mut self) {
|
||||
*self.index_mut(0) = -*self.index_mut(0);
|
||||
*self.index_mut(1) = -*self.index_mut(1);
|
||||
*self.index_mut(2) = -*self.index_mut(2);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) *= (*value);
|
||||
*self.index_mut(1) *= (*value);
|
||||
*self.index_mut(2) *= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) /= (*value);
|
||||
*self.index_mut(1) /= (*value);
|
||||
*self.index_mut(2) /= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_self_v(&mut self, other: &Vec3<T>) {
|
||||
*self.index_mut(0) += other[0];
|
||||
*self.index_mut(1) += other[1];
|
||||
*self.index_mut(2) += other[2];
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_self_v(&mut self, other: &Vec3<T>) {
|
||||
*self.index_mut(0) -= other[0];
|
||||
*self.index_mut(1) -= other[1];
|
||||
*self.index_mut(2) -= other[2];
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec3<T>: NumericVector3<T> {
|
||||
#[inline(always)]
|
||||
pure fn cross(&self, other: &Vec3<T>) -> Vec3<T> {
|
||||
Vec3::new((self[1] * other[2]) - (self[2] * other[1]),
|
||||
(self[2] * other[0]) - (self[0] * other[2]),
|
||||
(self[0] * other[1]) - (self[1] * other[0]))
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec3<T>: MutableNumericVector3<&self/T> {
|
||||
#[inline(always)]
|
||||
fn cross_self(&mut self, other: &Vec3<T>) {
|
||||
*self = self.cross(other);
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec3<T>: EuclideanVector<T> {
|
||||
#[inline(always)]
|
||||
pure fn length2(&self) -> T {
|
||||
self.dot(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn length(&self) -> T {
|
||||
self.length2().sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance2(&self, other: &Vec3<T>) -> T {
|
||||
other.sub_v(self).length2()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance(&self, other: &Vec3<T>) -> T {
|
||||
other.distance2(self).sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn angle(&self, other: &Vec3<T>) -> Radians<T> {
|
||||
atan2(&self.cross(other).length(), &self.dot(other))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize(&self) -> Vec3<T> {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize_to(&self, length: T) -> Vec3<T> {
|
||||
let mut n: T = length / self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn lerp(&self, other: &Vec3<T>, amount: T) -> Vec3<T> {
|
||||
self.add_v(&other.sub_v(self).mul_t(amount))
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec3<T>: MutableEuclideanVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn normalize_self(&mut self) {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn normalize_self_to(&mut self, length: &T) {
|
||||
let mut n: T = length / self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
fn lerp_self(&mut self, other: &Vec3<T>, amount: &T) {
|
||||
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Eq> Vec3<T>: Eq {
|
||||
#[inline(always)]
|
||||
pure fn eq(&self, other: &Vec3<T>) -> bool {
|
||||
self[0] == other[0] &&
|
||||
self[1] == other[1] &&
|
||||
self[2] == other[2]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn ne(&self, other: &Vec3<T>) -> bool {
|
||||
!(self == other)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy FuzzyEq> Vec3<T>: FuzzyEq {
|
||||
#[inline(always)]
|
||||
pure fn fuzzy_eq(other: &Vec3<T>) -> bool {
|
||||
self[0].fuzzy_eq(&other[0]) &&
|
||||
self[1].fuzzy_eq(&other[1]) &&
|
||||
self[2].fuzzy_eq(&other[2])
|
||||
}
|
||||
}
|
273
src/vec4.rs
Normal file
273
src/vec4.rs
Normal file
|
@ -0,0 +1,273 @@
|
|||
use core::cast::transmute;
|
||||
use core::cmp::Eq;
|
||||
use core::ptr::to_unsafe_ptr;
|
||||
use core::vec::raw::buf_as_slice;
|
||||
|
||||
use std::cmp::FuzzyEq;
|
||||
|
||||
use angle::Radians;
|
||||
use funs::exponential::Exp;
|
||||
use funs::triganomic::{InvTrig, acos};
|
||||
use num::types::Number;
|
||||
|
||||
/**
|
||||
* A 4-dimensional vector
|
||||
*
|
||||
* # Type parameters
|
||||
*
|
||||
* * `T` - The type of the components. This is intended to support boolean,
|
||||
* integer, unsigned integer, and floating point types.
|
||||
*
|
||||
* # Fields
|
||||
*
|
||||
* * `x` - the first component of the vector
|
||||
* * `y` - the second component of the vector
|
||||
* * `z` - the third component of the vector
|
||||
* * `w` - the fourth component of the vector
|
||||
*/
|
||||
pub struct Vec4<T> { x: T, y: T, z: T, w: T }
|
||||
|
||||
pub impl<T> Vec4<T>/*: Vector4<T>*/ {
|
||||
#[inline(always)]
|
||||
static pure fn new(x: T, y: T, z: T, w: T) -> Vec4<T> {
|
||||
Vec4 { x: move x, y: move y, z: move z, w: move w }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec4<T>: Vector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn from_value(value: T) -> Vec4<T> {
|
||||
Vec4::new(value, value, value, value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn to_ptr(&self) -> *T {
|
||||
unsafe {
|
||||
transmute::<*Vec4<T>, *T>(
|
||||
to_unsafe_ptr(self)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec4<T>: Index<uint, T> {
|
||||
#[inline(always)]
|
||||
pure fn index(&self, i: uint) -> T {
|
||||
unsafe { do buf_as_slice(self.to_ptr(), 4) |slice| { slice[i] } }
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy> Vec4<T>: MutableVector<T> {
|
||||
#[inline(always)]
|
||||
fn index_mut(&mut self, i: uint) -> &self/mut T {
|
||||
match i {
|
||||
0 => &mut self.x,
|
||||
1 => &mut self.y,
|
||||
2 => &mut self.z,
|
||||
3 => &mut self.w,
|
||||
_ => fail(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i))
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn swap(&mut self, a: uint, b: uint) {
|
||||
util::swap(self.index_mut(a),
|
||||
self.index_mut(b));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec4<T>: NumericVector<T> {
|
||||
#[inline(always)]
|
||||
static pure fn identity() -> Vec4<T> {
|
||||
Vec4::new(Number::one(),
|
||||
Number::one(),
|
||||
Number::one(),
|
||||
Number::one())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
static pure fn zero() -> Vec4<T> {
|
||||
Vec4::new(Number::zero(),
|
||||
Number::zero(),
|
||||
Number::zero(),
|
||||
Number::zero())
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn mul_t(&self, value: T) -> Vec4<T> {
|
||||
Vec4::new(self[0] * value,
|
||||
self[1] * value,
|
||||
self[2] * value,
|
||||
self[3] * value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn div_t(&self, value: T) -> Vec4<T> {
|
||||
Vec4::new(self[0] / value,
|
||||
self[1] / value,
|
||||
self[2] / value,
|
||||
self[3] / value)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn add_v(&self, other: &Vec4<T>) -> Vec4<T> {
|
||||
Vec4::new(self[0] + other[0],
|
||||
self[1] + other[1],
|
||||
self[2] + other[2],
|
||||
self[3] + other[3])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn sub_v(&self, other: &Vec4<T>) -> Vec4<T> {
|
||||
Vec4::new(self[0] - other[0],
|
||||
self[1] - other[1],
|
||||
self[2] - other[2],
|
||||
self[3] - other[3])
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn dot(&self, other: &Vec4<T>) -> T {
|
||||
self[0] * other[0] +
|
||||
self[1] * other[1] +
|
||||
self[2] * other[2] +
|
||||
self[3] * other[3]
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec4<T>: Neg<Vec4<T>> {
|
||||
#[inline(always)]
|
||||
pure fn neg(&self) -> Vec4<T> {
|
||||
Vec4::new(-self[0], -self[1], -self[2], -self[3])
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number> Vec4<T>: MutableNumericVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn neg_self(&mut self) {
|
||||
*self.index_mut(0) = -*self.index_mut(0);
|
||||
*self.index_mut(1) = -*self.index_mut(1);
|
||||
*self.index_mut(2) = -*self.index_mut(2);
|
||||
*self.index_mut(3) = -*self.index_mut(3);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) *= (*value);
|
||||
*self.index_mut(1) *= (*value);
|
||||
*self.index_mut(2) *= (*value);
|
||||
*self.index_mut(3) *= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div_self_t(&mut self, value: &T) {
|
||||
*self.index_mut(0) /= (*value);
|
||||
*self.index_mut(1) /= (*value);
|
||||
*self.index_mut(2) /= (*value);
|
||||
*self.index_mut(3) /= (*value);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_self_v(&mut self, other: &Vec4<T>) {
|
||||
*self.index_mut(0) += other[0];
|
||||
*self.index_mut(1) += other[1];
|
||||
*self.index_mut(2) += other[2];
|
||||
*self.index_mut(3) += other[3];
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_self_v(&mut self, other: &Vec4<T>) {
|
||||
*self.index_mut(0) -= other[0];
|
||||
*self.index_mut(1) -= other[1];
|
||||
*self.index_mut(2) -= other[2];
|
||||
*self.index_mut(3) -= other[3];
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec4<T>: EuclideanVector<T> {
|
||||
#[inline(always)]
|
||||
pure fn length2(&self) -> T {
|
||||
self.dot(self)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn length(&self) -> T {
|
||||
self.length2().sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance2(&self, other: &Vec4<T>) -> T {
|
||||
other.sub_v(self).length2()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn distance(&self, other: &Vec4<T>) -> T {
|
||||
other.distance2(self).sqrt()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn angle(&self, other: &Vec4<T>) -> Radians<T> {
|
||||
acos(&(self.dot(other) / (self.length() * other.length())))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize(&self) -> Vec4<T> {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn normalize_to(&self, length: T) -> Vec4<T> {
|
||||
let mut n: T = length / self.length();
|
||||
return self.mul_t(n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn lerp(&self, other: &Vec4<T>, amount: T) -> Vec4<T> {
|
||||
self.add_v(&other.sub_v(self).mul_t(amount))
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Number Exp InvTrig> Vec4<T>: MutableEuclideanVector<&self/T> {
|
||||
#[inline(always)]
|
||||
fn normalize_self(&mut self) {
|
||||
let mut n: T = Number::from(1);
|
||||
n /= self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn normalize_self_to(&mut self, length: &T) {
|
||||
let mut n: T = length / self.length();
|
||||
self.mul_self_t(&n);
|
||||
}
|
||||
|
||||
fn lerp_self(&mut self, other: &Vec4<T>, amount: &T) {
|
||||
self.add_self_v(&other.sub_v(&*self).mul_t(*amount));
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy Eq> Vec4<T>: Eq {
|
||||
#[inline(always)]
|
||||
pure fn eq(&self, other: &Vec4<T>) -> bool {
|
||||
self[0] == other[0] &&
|
||||
self[1] == other[1] &&
|
||||
self[2] == other[2] &&
|
||||
self[3] == other[3]
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pure fn ne(&self, other: &Vec4<T>) -> bool {
|
||||
!(self == other)
|
||||
}
|
||||
}
|
||||
|
||||
pub impl<T:Copy FuzzyEq> Vec4<T>: FuzzyEq {
|
||||
#[inline(always)]
|
||||
pure fn fuzzy_eq(other: &Vec4<T>) -> bool {
|
||||
self[0].fuzzy_eq(&other[0]) &&
|
||||
self[1].fuzzy_eq(&other[1]) &&
|
||||
self[2].fuzzy_eq(&other[2]) &&
|
||||
self[3].fuzzy_eq(&other[3])
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue