Add rotation module
This commit is contained in:
parent
6d16999d29
commit
6534855673
1 changed files with 147 additions and 0 deletions
147
src/cgmath/rotation.rs
Normal file
147
src/cgmath/rotation.rs
Normal file
|
@ -0,0 +1,147 @@
|
|||
// Copyright 2013 The CGMath Developers. For a full listing of the authors,
|
||||
// refer to the AUTHORS file at the top-level directory of this distribution.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use angle::Angle;
|
||||
use array::Array;
|
||||
use matrix::{Mat2, ToMat2};
|
||||
use matrix::{Mat3, ToMat3};
|
||||
use point::{Point2, Point3};
|
||||
use quaternion::ToQuat;
|
||||
use ray::{Ray2, Ray3};
|
||||
use vector::{Vec2, Vec3};
|
||||
|
||||
/// A two-dimensional rotation
|
||||
pub trait Rotation2
|
||||
<
|
||||
S
|
||||
>
|
||||
: Eq
|
||||
+ ApproxEq<S>
|
||||
+ Neg<Self>
|
||||
+ Add<Self, Self>
|
||||
+ Sub<Self, Self>
|
||||
+ ToMat2<S>
|
||||
+ ToRot2<S>
|
||||
{
|
||||
fn rotate_point2(&self, point: Point2<S>) -> Point2<S>;
|
||||
fn rotate_vec2(&self, vec: &Vec2<S>) -> Vec2<S>;
|
||||
fn rotate_ray2(&self, ray: &Ray2<S>) -> Ray2<S>;
|
||||
}
|
||||
|
||||
/// A three-dimensional rotation
|
||||
pub trait Rotation3
|
||||
<
|
||||
S
|
||||
>
|
||||
: Eq
|
||||
+ ApproxEq<S>
|
||||
+ Neg<Self>
|
||||
+ Add<Self, Self>
|
||||
+ Sub<Self, Self>
|
||||
+ ToMat3<S>
|
||||
+ ToRot3<S>
|
||||
+ ToQuat<S>
|
||||
{
|
||||
fn rotate_point3(&self, point: &Point3<S>) -> Point3<S>;
|
||||
fn rotate_vec3(&self, vec: &Vec3<S>) -> Vec3<S>;
|
||||
fn rotate_ray3(&self, ray: &Ray3<S>) -> Ray3<S>;
|
||||
}
|
||||
|
||||
/// A two-dimensional rotation matrix.
|
||||
///
|
||||
/// The matrix is guaranteed to be orthogonal, so some operations can be
|
||||
/// implemented more efficiently than the implementations for `math::Mat2`. To
|
||||
/// enforce orthogonality at the type level the operations have been restricted
|
||||
/// to a subeset of those implemented on `Mat2`.
|
||||
#[deriving(Eq, Clone)]
|
||||
pub struct Rot2<S> {
|
||||
priv mat: Mat2<S>
|
||||
}
|
||||
|
||||
pub trait ToRot2<S: Clone + Float> {
|
||||
fn to_rot2(&self) -> Rot2<S>;
|
||||
}
|
||||
|
||||
/// A three-dimensional rotation matrix.
|
||||
///
|
||||
/// The matrix is guaranteed to be orthogonal, so some operations, specifically
|
||||
/// inversion, can be implemented more efficiently than the implementations for
|
||||
/// `math::Mat3`. To enforce orthogonality at the type level the operations have
|
||||
/// been restricted to a subeset of those implemented on `Mat3`.
|
||||
#[deriving(Eq, Clone)]
|
||||
pub struct Rot3<S> {
|
||||
priv mat: Mat3<S>
|
||||
}
|
||||
|
||||
pub trait ToRot3<S: Clone + Float> {
|
||||
fn to_rot3(&self) -> Rot3<S>;
|
||||
}
|
||||
|
||||
/// Euler angles
|
||||
///
|
||||
/// Whilst Euler angles are easier to visualise, and more intuitive to specify,
|
||||
/// they are not reccomended for general use because they are prone to gimble
|
||||
/// lock.
|
||||
///
|
||||
/// # Fields
|
||||
///
|
||||
/// - `x`: the angular rotation around the `x` axis (pitch)
|
||||
/// - `y`: the angular rotation around the `y` axis (yaw)
|
||||
/// - `z`: the angular rotation around the `z` axis (roll)
|
||||
#[deriving(Eq, Clone)]
|
||||
pub struct Euler<A> { x: A, y: A, z: A }
|
||||
|
||||
array!(impl<A> Euler<A> -> [A, ..3])
|
||||
|
||||
pub trait ToEuler<A> {
|
||||
fn to_euler(&self) -> Euler<A>;
|
||||
}
|
||||
|
||||
impl<S: Clone + Float, A: Angle<S>> Euler<A> {
|
||||
#[inline]
|
||||
pub fn new(x: A, y: A, z: A) -> Euler<A> {
|
||||
Euler { x: x, y: y, z: z }
|
||||
}
|
||||
}
|
||||
|
||||
/// A rotation about an arbitrary axis
|
||||
#[deriving(Eq, Clone)]
|
||||
pub struct AxisAngle<S, A> {
|
||||
axis: Vec3<S>,
|
||||
angle: A,
|
||||
}
|
||||
|
||||
/// An angle around the X axis (pitch).
|
||||
#[deriving(Eq, Ord, Clone)]
|
||||
pub struct AngleX<A>(A);
|
||||
|
||||
/// An angle around the X axis (yaw).
|
||||
#[deriving(Eq, Ord, Clone)]
|
||||
pub struct AngleY<A>(A);
|
||||
|
||||
/// An angle around the Z axis (roll).
|
||||
#[deriving(Eq, Ord, Clone)]
|
||||
pub struct AngleZ<A>(A);
|
||||
|
||||
impl<S: Clone + Float, A: Angle<S>> Neg<AngleX<A>> for AngleX<A> { #[inline] fn neg(&self) -> AngleX<A> { AngleX(-**self) } }
|
||||
impl<S: Clone + Float, A: Angle<S>> Neg<AngleY<A>> for AngleY<A> { #[inline] fn neg(&self) -> AngleY<A> { AngleY(-**self) } }
|
||||
impl<S: Clone + Float, A: Angle<S>> Neg<AngleZ<A>> for AngleZ<A> { #[inline] fn neg(&self) -> AngleZ<A> { AngleZ(-**self) } }
|
||||
|
||||
impl<S: Clone + Float, A: Angle<S>> Add<AngleX<A>, AngleX<A>> for AngleX<A> { #[inline] fn add(&self, other: &AngleX<A>) -> AngleX<A> { AngleX((**self).add_a(*other.clone())) } }
|
||||
impl<S: Clone + Float, A: Angle<S>> Add<AngleY<A>, AngleY<A>> for AngleY<A> { #[inline] fn add(&self, other: &AngleY<A>) -> AngleY<A> { AngleY((**self).add_a(*other.clone())) } }
|
||||
impl<S: Clone + Float, A: Angle<S>> Add<AngleZ<A>, AngleZ<A>> for AngleZ<A> { #[inline] fn add(&self, other: &AngleZ<A>) -> AngleZ<A> { AngleZ((**self).add_a(*other.clone())) } }
|
||||
impl<S: Clone + Float, A: Angle<S>> Sub<AngleX<A>, AngleX<A>> for AngleX<A> { #[inline] fn sub(&self, other: &AngleX<A>) -> AngleX<A> { AngleX((**self).sub_a(*other.clone())) } }
|
||||
impl<S: Clone + Float, A: Angle<S>> Sub<AngleY<A>, AngleY<A>> for AngleY<A> { #[inline] fn sub(&self, other: &AngleY<A>) -> AngleY<A> { AngleY((**self).sub_a(*other.clone())) } }
|
||||
impl<S: Clone + Float, A: Angle<S>> Sub<AngleZ<A>, AngleZ<A>> for AngleZ<A> { #[inline] fn sub(&self, other: &AngleZ<A>) -> AngleZ<A> { AngleZ((**self).sub_a(*other.clone())) } }
|
Loading…
Reference in a new issue