Clean up Sum and Product impls

This is for consistency with other impls
This commit is contained in:
Brendan Zabarauskas 2017-04-26 21:02:05 +10:00
parent 89c0da2a9e
commit 77260934a1
9 changed files with 69 additions and 67 deletions

View file

@ -657,7 +657,7 @@ impl<S: BaseFloat> SquareMatrix for Matrix4<S> {
self[3][3]) self[3][3])
} }
// The new implementation results in negative optimization when used // The new implementation results in negative optimization when used
// without SIMD. so we opt them in with configuration. // without SIMD. so we opt them in with configuration.
// A better option would be using specialization. But currently somewhat // A better option would be using specialization. But currently somewhat
// specialization is too buggy, and it won't apply here. I'm getting // specialization is too buggy, and it won't apply here. I'm getting
@ -968,31 +968,31 @@ macro_rules! impl_matrix {
fn sub_assign(&mut self, other: $MatrixN<S>) { $(self.$field -= other.$field);+ } fn sub_assign(&mut self, other: $MatrixN<S>) { $(self.$field -= other.$field);+ }
} }
impl<S: BaseFloat> iter::Sum for $MatrixN<S> { impl<S: BaseFloat> iter::Sum<$MatrixN<S>> for $MatrixN<S> {
#[inline] #[inline]
fn sum<I: Iterator<Item=Self>>(iter: I) -> Self { fn sum<I: Iterator<Item=$MatrixN<S>>>(iter: I) -> $MatrixN<S> {
iter.fold(Self::zero(), Add::add) iter.fold($MatrixN::zero(), Add::add)
} }
} }
impl<'a, S: 'a + BaseFloat> iter::Sum<&'a Self> for $MatrixN<S> { impl<'a, S: 'a + BaseFloat> iter::Sum<&'a $MatrixN<S>> for $MatrixN<S> {
#[inline] #[inline]
fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self { fn sum<I: Iterator<Item=&'a $MatrixN<S>>>(iter: I) -> $MatrixN<S> {
iter.fold(Self::zero(), Add::add) iter.fold($MatrixN::zero(), Add::add)
} }
} }
impl<S: BaseFloat> iter::Product for $MatrixN<S> { impl<S: BaseFloat> iter::Product for $MatrixN<S> {
#[inline] #[inline]
fn product<I: Iterator<Item=Self>>(iter: I) -> Self { fn product<I: Iterator<Item=$MatrixN<S>>>(iter: I) -> $MatrixN<S> {
iter.fold(Self::identity(), Mul::mul) iter.fold($MatrixN::identity(), Mul::mul)
} }
} }
impl<'a, S: 'a + BaseFloat> iter::Product<&'a Self> for $MatrixN<S> { impl<'a, S: 'a + BaseFloat> iter::Product<&'a $MatrixN<S>> for $MatrixN<S> {
#[inline] #[inline]
fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self { fn product<I: Iterator<Item=&'a $MatrixN<S>>>(iter: I) -> $MatrixN<S> {
iter.fold(Self::identity(), Mul::mul) iter.fold($MatrixN::identity(), Mul::mul)
} }
} }

View file

@ -188,31 +188,31 @@ impl<S: BaseFloat> One for Quaternion<S> {
} }
} }
impl<S: BaseFloat> iter::Sum for Quaternion<S> { impl<S: BaseFloat> iter::Sum<Quaternion<S>> for Quaternion<S> {
#[inline] #[inline]
fn sum<I: Iterator<Item=Self>>(iter: I) -> Self { fn sum<I: Iterator<Item=Quaternion<S>>>(iter: I) -> Quaternion<S> {
iter.fold(Self::zero(), Add::add) iter.fold(Quaternion::<S>::zero(), Add::add)
} }
} }
impl<'a, S: 'a + BaseFloat> iter::Sum<&'a Self> for Quaternion<S> { impl<'a, S: 'a + BaseFloat> iter::Sum<&'a Quaternion<S>> for Quaternion<S> {
#[inline] #[inline]
fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self { fn sum<I: Iterator<Item=&'a Quaternion<S>>>(iter: I) -> Quaternion<S> {
iter.fold(Self::zero(), Add::add) iter.fold(Quaternion::<S>::zero(), Add::add)
} }
} }
impl<S: BaseFloat> iter::Product for Quaternion<S> { impl<S: BaseFloat> iter::Product<Quaternion<S>> for Quaternion<S> {
#[inline] #[inline]
fn product<I: Iterator<Item=Self>>(iter: I) -> Self { fn product<I: Iterator<Item=Quaternion<S>>>(iter: I) -> Quaternion<S> {
iter.fold(Self::one(), Mul::mul) iter.fold(Quaternion::<S>::one(), Mul::mul)
} }
} }
impl<'a, S: 'a + BaseFloat> iter::Product<&'a Self> for Quaternion<S> { impl<'a, S: 'a + BaseFloat> iter::Product<&'a Quaternion<S>> for Quaternion<S> {
#[inline] #[inline]
fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self { fn product<I: Iterator<Item=&'a Quaternion<S>>>(iter: I) -> Quaternion<S> {
iter.fold(Self::one(), Mul::mul) iter.fold(Quaternion::<S>::one(), Mul::mul)
} }
} }

View file

@ -159,17 +159,17 @@ impl<S: BaseFloat> From<Basis2<S>> for Matrix2<S> {
fn from(b: Basis2<S>) -> Matrix2<S> { b.mat } fn from(b: Basis2<S>) -> Matrix2<S> { b.mat }
} }
impl<S: BaseFloat> iter::Product for Basis2<S> { impl<S: BaseFloat> iter::Product<Basis2<S>> for Basis2<S> {
#[inline] #[inline]
fn product<I: Iterator<Item=Self>>(iter: I) -> Self { fn product<I: Iterator<Item=Basis2<S>>>(iter: I) -> Basis2<S> {
iter.fold(Basis2 { mat: Matrix2::identity() }, Mul::mul) iter.fold(Basis2::one(), Mul::mul)
} }
} }
impl<'a, S: 'a + BaseFloat> iter::Product<&'a Self> for Basis2<S> { impl<'a, S: 'a + BaseFloat> iter::Product<&'a Basis2<S>> for Basis2<S> {
#[inline] #[inline]
fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self { fn product<I: Iterator<Item=&'a Basis2<S>>>(iter: I) -> Basis2<S> {
iter.fold(Basis2 { mat: Matrix2::identity() }, Mul::mul) iter.fold(Basis2::one(), Mul::mul)
} }
} }
@ -279,17 +279,17 @@ impl<S: BaseFloat> From<Basis3<S>> for Quaternion<S> {
fn from(b: Basis3<S>) -> Quaternion<S> { b.mat.into() } fn from(b: Basis3<S>) -> Quaternion<S> { b.mat.into() }
} }
impl<S: BaseFloat> iter::Product for Basis3<S> { impl<S: BaseFloat> iter::Product<Basis3<S>> for Basis3<S> {
#[inline] #[inline]
fn product<I: Iterator<Item=Self>>(iter: I) -> Self { fn product<I: Iterator<Item=Basis3<S>>>(iter: I) -> Basis3<S> {
iter.fold(Basis3 { mat: Matrix3::identity() }, Mul::mul) iter.fold(Basis3::one(), Mul::mul)
} }
} }
impl<'a, S: 'a + BaseFloat> iter::Product<&'a Self> for Basis3<S> { impl<'a, S: 'a + BaseFloat> iter::Product<&'a Basis3<S>> for Basis3<S> {
#[inline] #[inline]
fn product<I: Iterator<Item=&'a Self>>(iter: I) -> Self { fn product<I: Iterator<Item=&'a Basis3<S>>>(iter: I) -> Basis3<S> {
iter.fold(Basis3 { mat: Matrix3::identity() }, Mul::mul) iter.fold(Basis3::one(), Mul::mul)
} }
} }

View file

@ -154,10 +154,10 @@ pub trait ElementWise<Rhs = Self> {
/// ``` /// ```
pub trait VectorSpace: Copy + Clone where pub trait VectorSpace: Copy + Clone where
Self: Zero, Self: Zero,
Self: iter::Sum<Self>,
Self: Add<Self, Output = Self>, Self: Add<Self, Output = Self>,
Self: Sub<Self, Output = Self>, Self: Sub<Self, Output = Self>,
Self: iter::Sum<Self>,
// FIXME: Ugly type signatures - blocked by rust-lang/rust#24092 // FIXME: Ugly type signatures - blocked by rust-lang/rust#24092
Self: Mul<<Self as VectorSpace>::Scalar, Output = Self>, Self: Mul<<Self as VectorSpace>::Scalar, Output = Self>,
@ -457,7 +457,7 @@ pub trait SquareMatrix where
Self::Scalar: BaseFloat, Self::Scalar: BaseFloat,
Self: One, Self: One,
Self: iter::Product, Self: iter::Product<Self>,
Self: Matrix< Self: Matrix<
// FIXME: Can be cleaned up once equality constraints in where clauses are implemented // FIXME: Can be cleaned up once equality constraints in where clauses are implemented

View file

@ -164,17 +164,17 @@ macro_rules! impl_vector {
} }
} }
impl<S: BaseNum> iter::Sum for $VectorN<S> { impl<S: BaseNum> iter::Sum<$VectorN<S>> for $VectorN<S> {
#[inline] #[inline]
fn sum<I: Iterator<Item=Self>>(iter: I) -> Self { fn sum<I: Iterator<Item=$VectorN<S>>>(iter: I) -> $VectorN<S> {
iter.fold(Self::zero(), Add::add) iter.fold($VectorN::zero(), Add::add)
} }
} }
impl<'a, S: 'a + BaseNum> iter::Sum<&'a Self> for $VectorN<S> { impl<'a, S: 'a + BaseNum> iter::Sum<&'a $VectorN<S>> for $VectorN<S> {
#[inline] #[inline]
fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self { fn sum<I: Iterator<Item=&'a $VectorN<S>>>(iter: I) -> $VectorN<S> {
iter.fold(Self::zero(), Add::add) iter.fold($VectorN::zero(), Add::add)
} }
} }

View file

@ -15,7 +15,6 @@
#[macro_use] #[macro_use]
extern crate approx; extern crate approx;
#[macro_use]
extern crate cgmath; extern crate cgmath;
pub mod matrix2 { pub mod matrix2 {
@ -98,14 +97,14 @@ pub mod matrix2 {
#[test] #[test]
fn test_sum_matrix() { fn test_sum_matrix() {
let res: Matrix2<f64> = [A, B, C].iter().sum(); assert_eq!(A + B + C, [A, B, C].iter().sum());
assert_eq!(res, A + B + C); assert_eq!(A + B + C, [A, B, C].iter().cloned().sum());
} }
#[test] #[test]
fn test_product_matrix() { fn test_product_matrix() {
let res: Matrix2<f64> = [A, B, C].iter().product(); assert_eq!(A * B * C, [A, B, C].iter().product());
assert_eq!(res, A * B * C); assert_eq!(A * B * C, [A, B, C].iter().cloned().product());
} }
#[test] #[test]
@ -272,14 +271,14 @@ pub mod matrix3 {
#[test] #[test]
fn test_sum_matrix() { fn test_sum_matrix() {
let res: Matrix3<f64> = [A, B, C, D].iter().sum(); assert_eq!(A + B + C + D, [A, B, C, D].iter().sum());
assert_eq!(res, A + B + C + D); assert_eq!(A + B + C + D, [A, B, C, D].iter().cloned().sum());
} }
#[test] #[test]
fn test_product_matrix() { fn test_product_matrix() {
let res: Matrix3<f64> = [A, B, C, D].iter().product(); assert_eq!(A * B * C * D, [A, B, C, D].iter().product());
assert_eq!(res, A * B * C * D); assert_eq!(A * B * C * D, [A, B, C, D].iter().cloned().product());
} }
#[test] #[test]
@ -641,14 +640,14 @@ pub mod matrix4 {
#[test] #[test]
fn test_sum_matrix() { fn test_sum_matrix() {
let res: Matrix4<f64> = [A, B, C, D].iter().sum(); assert_eq!(A + B + C + D, [A, B, C, D].iter().sum());
assert_eq!(res, A + B + C + D); assert_eq!(A + B + C + D, [A, B, C, D].iter().cloned().sum());
} }
#[test] #[test]
fn test_product_matrix() { fn test_product_matrix() {
let res: Matrix4<f64> = [A, B, C, D].iter().product(); assert_eq!(A * B * C * D, [A, B, C, D].iter().product());
assert_eq!(res, A * B * C * D); assert_eq!(A * B * C * D, [A, B, C, D].iter().cloned().product());
} }
#[test] #[test]

View file

@ -15,7 +15,6 @@
#[macro_use] #[macro_use]
extern crate approx; extern crate approx;
#[macro_use]
extern crate cgmath; extern crate cgmath;
macro_rules! impl_test_mul { macro_rules! impl_test_mul {
@ -53,14 +52,22 @@ mod operators {
impl_test_div!(2.0f32, Quaternion::from(Euler { x: Rad(1f32), y: Rad(1f32), z: Rad(1f32) })); impl_test_div!(2.0f32, Quaternion::from(Euler { x: Rad(1f32), y: Rad(1f32), z: Rad(1f32) }));
} }
#[test]
fn test_iter_sum() {
let q1 = Quaternion::from(Euler { x: Rad(2f32), y: Rad(1f32), z: Rad(1f32) });
let q2 = Quaternion::from(Euler { x: Rad(1f32), y: Rad(2f32), z: Rad(1f32) });
let q3 = Quaternion::from(Euler { x: Rad(1f32), y: Rad(1f32), z: Rad(2f32) });
assert_eq!(q1 + q2 + q3, [q1, q2, q3].iter().sum());
}
#[test] #[test]
fn test_iter_product() { fn test_iter_product() {
let q1 = Quaternion::from(Euler { x: Rad(2f32), y: Rad(1f32), z: Rad(1f32) }); let q1 = Quaternion::from(Euler { x: Rad(2f32), y: Rad(1f32), z: Rad(1f32) });
let q2 = Quaternion::from(Euler { x: Rad(1f32), y: Rad(2f32), z: Rad(1f32) }); let q2 = Quaternion::from(Euler { x: Rad(1f32), y: Rad(2f32), z: Rad(1f32) });
let q3 = Quaternion::from(Euler { x: Rad(1f32), y: Rad(1f32), z: Rad(2f32) }); let q3 = Quaternion::from(Euler { x: Rad(1f32), y: Rad(1f32), z: Rad(2f32) });
let res: Quaternion<f32> = [q1, q2, q3].iter().product(); assert_eq!(q1 * q2 * q3, [q1, q2, q3].iter().product());
assert_eq!(res, q1 * q2 * q3);
} }
} }
@ -321,4 +328,4 @@ mod rotate_between_vectors {
assert_ulps_eq!(Quaternion::between_vectors(a, b), expected); assert_ulps_eq!(Quaternion::between_vectors(a, b), expected);
} }
} }

View file

@ -15,7 +15,6 @@
#[macro_use] #[macro_use]
extern crate approx; extern crate approx;
#[macro_use]
extern crate cgmath; extern crate cgmath;
use cgmath::*; use cgmath::*;
@ -90,9 +89,8 @@ macro_rules! impl_test_rem {
macro_rules! impl_test_iter_sum { macro_rules! impl_test_iter_sum {
($VectorN:ident { $($field:ident),+ }, $ty:ty, $s:expr, $v:expr) => ( ($VectorN:ident { $($field:ident),+ }, $ty:ty, $s:expr, $v:expr) => (
let res: $VectorN<$ty> = iter::repeat($v).take($s as usize).sum(); assert_eq!($VectorN::new($($v.$field * $s),+),
assert_eq!(res, iter::repeat($v).take($s as usize).sum());
$VectorN::new($($v.$field * $s),+));
) )
} }

View file

@ -15,7 +15,6 @@
#[macro_use] #[macro_use]
extern crate approx; extern crate approx;
#[macro_use]
extern crate cgmath; extern crate cgmath;
use cgmath::*; use cgmath::*;
@ -168,7 +167,6 @@ mod test_magnitude {
assert_relative_eq!(a.sqrt_element_wide().recip_element_wide(), Vector4::new(1f32, 1f32/2f32, 1f32/3f32, 1f32/4f32), max_relative = 0.005f32); assert_relative_eq!(a.sqrt_element_wide().recip_element_wide(), Vector4::new(1f32, 1f32/2f32, 1f32/3f32, 1f32/4f32), max_relative = 0.005f32);
assert_relative_eq!(a.rsqrt_element_wide(), Vector4::new(1f32, 1f32/2f32, 1f32/3f32, 1f32/4f32), max_relative= 0.005f32); assert_relative_eq!(a.rsqrt_element_wide(), Vector4::new(1f32, 1f32/2f32, 1f32/3f32, 1f32/4f32), max_relative= 0.005f32);
} }
} }
} }