diff --git a/src/funs/boolv.rs b/src/funs/boolv.rs index 7578199..f5a48a7 100644 --- a/src/funs/boolv.rs +++ b/src/funs/boolv.rs @@ -1,4 +1,4 @@ -use vector::{Vector, Vec2, Vec3, Vec4}; +use vec::{Vector, Vec2, Vec3, Vec4}; pub trait BooleanVector: Vector { pure fn any() -> bool; diff --git a/src/funs/common.rs b/src/funs/common.rs index bf292f9..f9fde37 100644 --- a/src/funs/common.rs +++ b/src/funs/common.rs @@ -1,7 +1,7 @@ use core::cmp::{Eq, Ord}; use num::cast::*; -use vector::{Vec2, Vec3, Vec4}; +use vec::{Vec2, Vec3, Vec4}; /** * Common Functions for all numeric types diff --git a/src/funs/exp.rs b/src/funs/exp.rs index cddb288..29c7003 100644 --- a/src/funs/exp.rs +++ b/src/funs/exp.rs @@ -2,7 +2,7 @@ * Exponential Functions */ use num::cast::*; -use vector::{Vec2, Vec3, Vec4}; +use vec::{Vec2, Vec3, Vec4}; pub trait Exp { pure fn pow(n: &N) -> self; diff --git a/src/funs/projection.rs b/src/funs/projection.rs index 6fd804d..3200987 100644 --- a/src/funs/projection.rs +++ b/src/funs/projection.rs @@ -1,8 +1,8 @@ -use core::float::consts::pi; -use core::float::tan; - -use matrix::Mat4; -use num::cast::*; +use funs::trig::*; +use mat::Mat4; +use num::cast::cast; +use num::consts::pi; +use num::ext::FloatExt; // // Create a perspective projection matrix @@ -11,8 +11,8 @@ use num::cast::*; // http://www.opengl.org/wiki/GluPerspective_code // #[inline(always)] -pure fn perspective>(fovy: float, aspectRatio: float, near: float, far: float) -> Mat4 { - let ymax = near * tan(fovy * pi / 360f); +pure fn perspective(fovy: T, aspectRatio: T, near: T, far: T) -> Mat4 { + let ymax = near * tan(&(fovy * pi() / cast(360))); let xmax = ymax * aspectRatio; return frustum(-xmax, xmax, -ymax, ymax, near, far); } @@ -25,24 +25,26 @@ pure fn perspective>(fovy: float, aspectRatio: float, near // TODO: double check algorithm // #[inline(always)] -pure fn frustum>(left: float, right: float, bottom: float, top: float, near: float, far: float) -> Mat4 { - let _0 = cast(0); +pure fn frustum(left: T, right: T, bottom: T, top: T, near: T, far: T) -> Mat4 { + let _0: T = cast(0); + let _2: T = cast(2); + let neg_1 = cast(-1); - let c0r0 = cast((2f * near) / (right - left)); + let c0r0 = (_2 * near) / (right - left); let c0r1 = _0; let c0r2 = _0; let c0r3 = _0; let c1r0 = _0; - let c1r1 = cast((2f * near) / (top - bottom)); + let c1r1 = (_2 * near) / (top - bottom); let c1r2 = _0; let c1r3 = _0; - let c2r0 = cast((right + left) / (right - left)); - let c2r1 = cast((top + bottom) / (top - bottom)); - let c2r2 = cast(-(far + near) / (far - near)); - let c2r3 = cast(-1); + let c2r0 = (right + left) / (right - left); + let c2r1 = (top + bottom) / (top - bottom); + let c2r2 = -(far + near) / (far - near); + let c2r3 = neg_1; let c3r0 = _0; let c3r1 = _0; - let c3r2 = cast(-(2f * far * near) / (far - near)); + let c3r2 = -(_2 * far * near) / (far - near); let c3r3 = _0; return Mat4::new(c0r0, c0r1, c0r2, c0r3, diff --git a/src/funs/relv.rs b/src/funs/relv.rs index 6bf3b14..0ed2587 100644 --- a/src/funs/relv.rs +++ b/src/funs/relv.rs @@ -4,7 +4,7 @@ use core::cmp::{Eq, Ord}; -use vector::{Vec2, Vec3, Vec4}; +use vec::{Vec2, Vec3, Vec4}; pub trait RelVector { pure fn less_than(y: &self) -> BVec; diff --git a/src/funs/test/test_boolv.rs b/src/funs/test/test_boolv.rs index 5497207..dce9ede 100644 --- a/src/funs/test/test_boolv.rs +++ b/src/funs/test/test_boolv.rs @@ -1,4 +1,4 @@ -use vector::*; +use vec::*; use boolv::*; #[test] diff --git a/src/funs/test/test_transform.rs b/src/funs/test/test_transform.rs index 63fdb89..c25cbfb 100644 --- a/src/funs/test/test_transform.rs +++ b/src/funs/test/test_transform.rs @@ -1,6 +1,6 @@ use funs::transform::*; -use matrix::Mat4; -use vector::{Vec3, Vec4}; +use mat::Mat4; +use vec::{Vec3, Vec4}; #[test] fn test_mat4_from_rotation() { diff --git a/src/funs/transform.rs b/src/funs/transform.rs index fca1acb..1efaa93 100644 --- a/src/funs/transform.rs +++ b/src/funs/transform.rs @@ -1,5 +1,5 @@ use funs::trig::*; -use matrix::{Mat3, Mat4}; +use mat::{Mat3, Mat4}; use num::cast::*; pub pure fn mat3_from_rotation(theta: T, axis: Vec3) -> Mat3 { diff --git a/src/funs/trig.rs b/src/funs/trig.rs index 5fc7e8b..b5619bf 100644 --- a/src/funs/trig.rs +++ b/src/funs/trig.rs @@ -1,5 +1,5 @@ use num::cast::*; -use vector::{Vec3, Vec2, Vec4}; +use vec::{Vec3, Vec2, Vec4}; pub trait AngleConv { pure fn to_degrees() -> self; diff --git a/src/lmath.rc b/src/lmath.rc index c436922..5f35a5a 100644 --- a/src/lmath.rc +++ b/src/lmath.rc @@ -10,15 +10,16 @@ extern mod std; -pub mod matrix; -pub mod quaternion; -pub mod vector; +pub mod dim; +pub mod mat; +pub mod quat; +pub mod vec; #[test] mod test { - mod test_matrix; - mod test_quaternion; - mod test_vector; + mod test_mat; + mod test_quat; + mod test_vec; } use common::*; @@ -29,7 +30,7 @@ pub mod common { pub mod num { pub mod cast; pub mod consts; - pub mod traits; + pub mod ext; } pub mod funs { diff --git a/src/mat.rs b/src/mat.rs new file mode 100644 index 0000000..b7a552a --- /dev/null +++ b/src/mat.rs @@ -0,0 +1,945 @@ +use core::cast::transmute; +use core::cmp::Eq; +use core::ptr::to_unsafe_ptr; +use core::vec::raw::buf_as_slice; + +use std::cmp::FuzzyEq; + +use dim::Dimensional; +use funs::common::*; +use funs::exp::*; +use math::*; +use num::cast::*; +use quat::{Quat, ToQuat}; +use vec::{Vec2, Vec3, Vec4}; + + +// GLSL equivalent type aliases + +pub type mat2 = Mat2; /// a 2×2 single-precision floating-point matrix +pub type mat3 = Mat3; /// a 3×3 single-precision floating-point matrix +pub type mat4 = Mat4; /// a 4×4 single-precision floating-point matrix +pub type mat2x2 = Mat2; /// same as a `mat2` +// pub type mat2x3 = /// a single-precision floating-point matrix with 2 columns and 3 rows +// pub type mat2x4 = /// a single-precision floating-point matrix with 2 columns and 4 rows +// pub type mat3x2 = /// a single-precision floating-point matrix with 3 columns and 2 rows +pub type mat3x3 = Mat3; /// same as a `mat3` +// pub type mat3x4 = /// a single-precision floating-point matrix with 3 columns and 4 rows +// pub type mat4x2 = /// a single-precision floating-point matrix with 4 columns and 2 rows +// pub type mat4x3 = /// a single-precision floating-point matrix with 4 columns and 3 rows +pub type mat4x4 = Mat4; /// same as a `mat4` + +pub type dmat2 = Mat2; /// a 2×2 double-precision floating-point matrix +pub type dmat3 = Mat3; /// a 3×3 double-precision floating-point matrix +pub type dmat4 = Mat4; /// a 4×4 double-precision floating-point matrix +pub type dmat2x2 = Mat2; /// same as a `dmat2` +// pub type dmat2x3 = /// a double-precision floating-point matrix with 2 columns and 3 rows +// pub type dmat2x4 = /// a double-precision floating-point matrix with 2 columns and 4 rows +// pub type dmat3x2 = /// a double-precision floating-point matrix with 3 columns and 2 rows +pub type dmat3x3 = Mat3; /// same as a `dmat3` +// pub type dmat3x4 = /// a double-precision floating-point matrix with 3 columns and 4 rows +// pub type dmat4x2 = /// a double-precision floating-point matrix with 4 columns and 2 rows +// pub type dmat4x3 = /// a double-precision floating-point matrix with 4 columns and 3 rows +pub type dmat4x4 = Mat4; /// same as a `dmat4` + + +pub trait Matrix: Dimensional, Eq { + pure fn rows() -> uint; + pure fn cols() -> uint; + pure fn is_col_major() -> bool; + pure fn is_square() -> bool; + + pure fn col(i: uint) -> Col; + pure fn row(i: uint) -> Row; +} + +pub trait NumericMatrix: Matrix, Neg { + pure fn mul_t(value: T) -> self; + pure fn mul_v(other: &Col) -> Col; + pure fn add_m(other: &self) -> self; + pure fn sub_m(other: &self) -> self; +} + +pub trait NumericMatrix_NxN: NumericMatrix { + pure fn mul_m(other: &self) -> self; + + pure fn det() -> T; + + pure fn invert() -> Option; + pure fn transpose() -> self; + + pure fn is_identity() -> bool; + pure fn is_symmetric() -> bool; + pure fn is_diagonal() -> bool; + pure fn is_rotated() -> bool; + pure fn is_invertible() -> bool; +} + +pub trait Matrix2: Matrix, Mat2> { + pure fn to_Mat3() -> Mat3; + pure fn to_Mat4() -> Mat4; +} + +pub trait Matrix3: Matrix, Mat3> { + pure fn to_Mat4() -> Mat4; +} + +pub trait Matrix4: Matrix, Mat4> { + +} + + + + + + +// +// Mat2: A 2x2, column major matrix +// +pub struct Mat2 { x: Vec2, y: Vec2 } + +pub mod Mat2 { + + #[inline(always)] + pub pure fn new(c0r0: T, c0r1: T, + c1r0: T, c1r1: T) -> Mat2 { + Mat2::from_cols(Vec2::new(move c0r0, move c0r1), + Vec2::new(move c1r0, move c1r1)) + } + + #[inline(always)] + pub pure fn from_cols(c0: Vec2, c1: Vec2) -> Mat2 { + Mat2 { x: move c0, + y: move c1 } + } + + #[inline(always)] + pub pure fn from_value(value: T) -> Mat2 { + let _0 = cast(0); + Mat2::new(value, _0, + _0, value) + } + + #[inline(always)] + pub pure fn zero() -> Mat2 { + let _0 = cast(0); + Mat2::new(_0, _0, + _0, _0) + } + + #[inline(always)] + pub pure fn identity() -> Mat2 { + let _0 = cast(0); + let _1 = cast(1); + Mat2::new(_1, _0, + _0, _1) + } +} + +pub impl Mat2: Matrix, Vec2> { + #[inline(always)] + static pure fn dim() -> uint { 2 } + + #[inline(always)] + pure fn rows() -> uint { 2 } + + #[inline(always)] + pure fn cols() -> uint { 2 } + + #[inline(always)] + pure fn is_col_major() -> bool { true } + + #[inline(always)] + pure fn is_square() -> bool { true } + + #[inline(always)] + pure fn col(i: uint) -> Vec2 { self[i] } + + #[inline(always)] + pure fn row(i: uint) -> Vec2 { + Vec2::new(self[0][i], + self[1][i]) + } + + #[inline(always)] + pure fn index(i: uint) -> Vec2 { + unsafe { do buf_as_slice( + transmute::<*Mat2, *Vec2>( + to_unsafe_ptr(&self)), 2) |slice| { slice[i] } + } + } + + #[inline(always)] + pure fn to_ptr() -> *T { + self[0].to_ptr() + } +} + +pub impl Mat2: NumericMatrix, Vec2> { + #[inline(always)] + pure fn neg() -> Mat2 { + Mat2::from_cols(-self[0], -self[1]) + } + + #[inline(always)] + pure fn mul_t(value: T) -> Mat2 { + Mat2::from_cols(self[0].mul_t(value), + self[1].mul_t(value)) + } + + #[inline(always)] + pure fn mul_v(other: &Vec2) -> Vec2 { + Vec2::new(self.row(0).dot(other), + self.row(1).dot(other)) + } + + #[inline(always)] + pure fn add_m(other: &Mat2) -> Mat2 { + Mat2::from_cols(self[0].add_v(&other[0]), + self[1].add_v(&other[1])) + } + + #[inline(always)] + pure fn sub_m(other: &Mat2) -> Mat2 { + Mat2::from_cols(self[0].sub_v(&other[0]), + self[1].sub_v(&other[1])) + } +} + +pub impl Mat2: NumericMatrix_NxN> { + #[inline(always)] + pure fn mul_m(other: &Mat2) -> Mat2 { + Mat2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), + self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1))) + } + + pure fn det() -> T { + self[0][0]*self[1][1] - self[1][0]*self[0][1] + } + + #[inline(always)] + pure fn invert() -> Option> { + let _0 = cast(0); + let d = self.det(); + if d.fuzzy_eq(&_0) { + None + } else { + Some(Mat2::new(self[1][1]/d, -self[0][1]/d, + -self[1][0]/d, self[0][0]/d)) + } + } + + #[inline(always)] + pure fn transpose() -> Mat2 { + Mat2::new(self[0][0], self[1][0], + self[0][1], self[1][1]) + } + + #[inline(always)] + pure fn is_identity() -> bool { + self.fuzzy_eq(&Mat2::identity()) + } + + #[inline(always)] + pure fn is_symmetric() -> bool { + self[0][1].fuzzy_eq(&self[1][0]) && + self[1][0].fuzzy_eq(&self[0][1]) + } + + #[inline(always)] + pure fn is_diagonal() -> bool { + let _0 = cast(0); + self[0][1].fuzzy_eq(&_0) && + self[1][0].fuzzy_eq(&_0) + } + + #[inline(always)] + pure fn is_rotated() -> bool { + !self.fuzzy_eq(&Mat2::identity()) + } + + #[inline(always)] + pure fn is_invertible() -> bool { + let _0 = cast(0); + !self.det().fuzzy_eq(&_0) + } +} + +pub impl Mat2: Matrix2 { + #[inline(always)] + pure fn to_Mat3() -> Mat3 { + Mat3::from_Mat2(&self) + } + + #[inline(always)] + pure fn to_Mat4() -> Mat4 { + Mat4::from_Mat2(&self) + } +} + +// TODO: make work for T:Integer +pub impl Mat2: Eq { + #[inline(always)] + pure fn eq(other: &Mat2) -> bool { + self.fuzzy_eq(other) + } + + #[inline(always)] + pure fn ne(other: &Mat2) -> bool { + !(self == *other) + } +} + +impl Mat2: ExactEq { + #[inline(always)] + pure fn exact_eq(other: &Mat2) -> bool { + self[0].exact_eq(&other[0]) && + self[1].exact_eq(&other[1]) + } +} + +pub impl Mat2: FuzzyEq { + #[inline(always)] + pure fn fuzzy_eq(other: &Mat2) -> bool { + self[0].fuzzy_eq(&other[0]) && + self[1].fuzzy_eq(&other[1]) + } +} + + + + + + +// +// Mat3: A 3x3, column major matrix +// +pub struct Mat3 { x: Vec3, y: Vec3, z: Vec3 } + +pub mod Mat3 { + + #[inline(always)] + pub pure fn new(c0r0:T, c0r1:T, c0r2:T, + c1r0:T, c1r1:T, c1r2:T, + c2r0:T, c2r1:T, c2r2:T) -> Mat3 { + Mat3::from_cols(Vec3::new(move c0r0, move c0r1, move c0r2), + Vec3::new(move c1r0, move c1r1, move c1r2), + Vec3::new(move c2r0, move c2r1, move c2r2)) + } + + #[inline(always)] + pub pure fn from_cols(c0: Vec3, c1: Vec3, c2: Vec3) -> Mat3 { + Mat3 { x: move c0, + y: move c1, + z: move c2 } + } + + #[inline(always)] + pub pure fn from_value(value: T) -> Mat3 { + let _0 = cast(0); + Mat3::new(value, _0, _0, + _0, value, _0, + _0, _0, value) + } + + #[inline(always)] + pub pure fn from_Mat2(m: &Mat2) -> Mat3 { + let _0 = cast(0); + let _1 = cast(1); + Mat3::new(m[0][0], m[0][1], _0, + m[1][0], m[1][1], _0, + _0, _0, _1) + } + + #[inline(always)] + pub pure fn zero() -> Mat3 { + let _0 = cast(0); + Mat3::new(_0, _0, _0, + _0, _0, _0, + _0, _0, _0) + } + + #[inline(always)] + pub pure fn identity() -> Mat3 { + let _0 = cast(0); + let _1 = cast(1); + Mat3::new(_1, _0, _0, + _0, _1, _0, + _0, _0, _1) + } +} + +pub impl Mat3: Matrix, Vec3> { + #[inline(always)] + static pure fn dim() -> uint { 3 } + + #[inline(always)] + pure fn rows() -> uint { 3 } + + #[inline(always)] + pure fn cols() -> uint { 3 } + + #[inline(always)] + pure fn is_col_major() -> bool { true } + + #[inline(always)] + pure fn is_square() -> bool { true } + + #[inline(always)] + pure fn col(i: uint) -> Vec3 { self[i] } + + #[inline(always)] + pure fn row(i: uint) -> Vec3 { + Vec3::new(self[0][i], + self[1][i], + self[2][i]) + } + + #[inline(always)] + pure fn index(i: uint) -> Vec3 { + unsafe { do buf_as_slice( + transmute::<*Mat3, *Vec3>( + to_unsafe_ptr(&self)), 3) |slice| { slice[i] } + } + } + + #[inline(always)] + pure fn to_ptr() -> *T { + self[0].to_ptr() + } +} + +pub impl Mat3: NumericMatrix, Vec3> { + #[inline(always)] + pure fn neg() -> Mat3 { + Mat3::from_cols(-self[0], -self[1], -self[2]) + } + + #[inline(always)] + pure fn mul_t(value: T) -> Mat3 { + Mat3::from_cols(self[0].mul_t(value), + self[1].mul_t(value), + self[2].mul_t(value)) + } + + #[inline(always)] + pure fn mul_v(other: &Vec3) -> Vec3 { + Vec3::new(self.row(0).dot(other), + self.row(1).dot(other), + self.row(2).dot(other)) + } + + #[inline(always)] + pure fn add_m(other: &Mat3) -> Mat3 { + Mat3::from_cols(self[0].add_v(&other[0]), + self[1].add_v(&other[1]), + self[2].add_v(&other[2])) + } + + #[inline(always)] + pure fn sub_m(other: &Mat3) -> Mat3 { + Mat3::from_cols(self[0].sub_v(&other[0]), + self[1].sub_v(&other[1]), + self[2].sub_v(&other[2])) + } +} + +pub impl Mat3: NumericMatrix_NxN> { + #[inline(always)] + pure fn mul_m(other: &Mat3) -> Mat3 { + Mat3::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), + self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), + self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2))) + } + + pure fn det() -> T { + self.col(0).dot(&self.col(1).cross(&self.col(2))) + } + + // #[inline(always)] + pure fn invert() -> Option> { + let d = self.det(); + let _0 = cast(0); + if d.fuzzy_eq(&_0) { + None + } else { + Some(Mat3::from_cols(self[1].cross(&self[2]).div_t(d), + self[2].cross(&self[0]).div_t(d), + self[0].cross(&self[1]).div_t(d)) + .transpose()) + } + } + + #[inline(always)] + pure fn transpose() -> Mat3 { + Mat3::new(self[0][0], self[1][0], self[2][0], + self[0][1], self[1][1], self[2][1], + self[0][2], self[1][2], self[2][2]) + } + + #[inline(always)] + pure fn is_identity() -> bool { + self.fuzzy_eq(&Mat3::identity()) + } + + #[inline(always)] + pure fn is_symmetric() -> bool { + self[0][1].fuzzy_eq(&self[1][0]) && + self[0][2].fuzzy_eq(&self[2][0]) && + + self[1][0].fuzzy_eq(&self[0][1]) && + self[1][2].fuzzy_eq(&self[2][1]) && + + self[2][0].fuzzy_eq(&self[0][2]) && + self[2][1].fuzzy_eq(&self[1][2]) + } + + #[inline(always)] + pure fn is_diagonal() -> bool { + let _0 = cast(0); + self[0][1].fuzzy_eq(&_0) && + self[0][2].fuzzy_eq(&_0) && + + self[1][0].fuzzy_eq(&_0) && + self[1][2].fuzzy_eq(&_0) && + + self[2][0].fuzzy_eq(&_0) && + self[2][1].fuzzy_eq(&_0) + } + + #[inline(always)] + pure fn is_rotated() -> bool { + !self.fuzzy_eq(&Mat3::identity()) + } + + #[inline(always)] + pure fn is_invertible() -> bool { + let _0 = cast(0); + !self.det().fuzzy_eq(&_0) + } +} + +pub impl Mat3: Matrix3 { + #[inline(always)] + pure fn to_Mat4() -> Mat4 { + Mat4::from_Mat3(&self) + } +} + +pub impl Mat3: ToQuat { + pure fn to_Quat() -> Quat { + // Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's + // paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf + + let mut s: float; + let w: float, x: float, y: float, z: float; + let trace: float = cast(self[0][0] + self[1][1] + self[2][2]); + + if trace >= cast(0) { + s = (trace + 1f).sqrt(); + w = 0.5 * s; + s = 0.5 / s; + x = (self[1][2] - self[2][1]).cast::() * s; + y = (self[2][0] - self[0][2]).cast::() * s; + z = (self[0][1] - self[1][0]).cast::() * s; + } else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) { + s = (1f + (self[0][0] - self[1][1] - self[2][2]).cast::()).sqrt(); + w = 0.5 * s; + s = 0.5 / s; + x = (self[0][1] - self[1][0]).cast::() * s; + y = (self[2][0] - self[0][2]).cast::() * s; + z = (self[1][2] - self[2][1]).cast::() * s; + } else if self[1][1] > self[2][2] { + s = (1f + (self[1][1] - self[0][0] - self[2][2]).cast::()).sqrt(); + w = 0.5 * s; + s = 0.5 / s; + x = (self[0][1] - self[1][0]).cast::() * s; + y = (self[1][2] - self[2][1]).cast::() * s; + z = (self[2][0] - self[0][2]).cast::() * s; + } else { + s = (1f + (self[2][2] - self[0][0] - self[1][1]).cast::()).sqrt(); + w = 0.5 * s; + s = 0.5 / s; + x = (self[2][0] - self[0][2]).cast::() * s; + y = (self[1][2] - self[2][1]).cast::() * s; + z = (self[0][1] - self[1][0]).cast::() * s; + } + + Quat::new(cast(w), cast(x), cast(y), cast(z)) + } +} + +// TODO: make work for T:Integer +pub impl Mat3: Eq { + #[inline(always)] + pure fn eq(other: &Mat3) -> bool { + self.fuzzy_eq(other) + } + + #[inline(always)] + pure fn ne(other: &Mat3) -> bool { + !(self == *other) + } +} + +pub impl Mat3: ExactEq { + #[inline(always)] + pure fn exact_eq(other: &Mat3) -> bool { + self[0].exact_eq(&other[0]) && + self[1].exact_eq(&other[1]) && + self[2].exact_eq(&other[2]) + } +} + +pub impl Mat3: FuzzyEq { + #[inline(always)] + pure fn fuzzy_eq(other: &Mat3) -> bool { + self[0].fuzzy_eq(&other[0]) && + self[1].fuzzy_eq(&other[1]) && + self[2].fuzzy_eq(&other[2]) + } +} + + + + + + +// +// Mat4: A 4x4, column major matrix +// +pub struct Mat4 { x: Vec4, y: Vec4, z: Vec4, w: Vec4 } + +pub mod Mat4 { + + #[inline(always)] + pub pure fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T, + c1r0: T, c1r1: T, c1r2: T, c1r3: T, + c2r0: T, c2r1: T, c2r2: T, c2r3: T, + c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4 { + Mat4::from_cols(Vec4::new(move c0r0, move c0r1, move c0r2, move c0r3), + Vec4::new(move c1r0, move c1r1, move c1r2, move c1r3), + Vec4::new(move c2r0, move c2r1, move c2r2, move c2r3), + Vec4::new(move c3r0, move c3r1, move c3r2, move c3r3)) + } + + #[inline(always)] + pub pure fn from_cols(c0: Vec4, c1: Vec4, c2: Vec4, c3: Vec4) -> Mat4 { + Mat4 { x: move c0, + y: move c1, + z: move c2, + w: move c3 } + } + + #[inline(always)] + pub pure fn from_value(value: T) -> Mat4 { + let _0 = cast(0); + Mat4::new(value, _0, _0, _0, + _0, value, _0, _0, + _0, _0, value, _0, + _0, _0, _0, value) + } + + #[inline(always)] + pub pure fn from_Mat2(m: &Mat2) -> Mat4 { + let _0 = cast(0); + let _1 = cast(1); + Mat4::new(m[0][0], m[0][1], _0, _0, + m[1][0], m[1][1], _0, _0, + _0, _0, _1, _0, + _0, _0, _0, _1) + } + + #[inline(always)] + pub pure fn from_Mat3(m: &Mat3) -> Mat4 { + let _0 = cast(0); + let _1 = cast(1); + Mat4::new(m[0][0], m[0][1], m[0][2], _0, + m[1][0], m[1][1], m[1][2], _0, + m[2][0], m[2][1], m[2][2], _0, + _0, _0, _0, _1) + } + + #[inline(always)] + pub pure fn zero() -> Mat4 { + let _0 = cast(0); + Mat4::new(_0, _0, _0, _0, + _0, _0, _0, _0, + _0, _0, _0, _0, + _0, _0, _0, _0) + } + + #[inline(always)] + pub pure fn identity() -> Mat4 { + let _0 = cast(0); + let _1 = cast(1); + Mat4::new(_1, _0, _0, _0, + _0, _1, _0, _0, + _0, _0, _1, _0, + _0, _0, _0, _1) + } +} + +pub impl Mat4: Matrix, Vec4> { + #[inline(always)] + static pure fn dim() -> uint { 4 } + + #[inline(always)] + pure fn rows() -> uint { 4 } + + #[inline(always)] + pure fn cols() -> uint { 4 } + + #[inline(always)] + pure fn is_col_major() -> bool { true } + + #[inline(always)] + pure fn is_square() -> bool { true } + + #[inline(always)] + pure fn col(i: uint) -> Vec4 { self[i] } + + #[inline(always)] + pure fn row(i: uint) -> Vec4 { + Vec4::new(self[0][i], + self[1][i], + self[2][i], + self[3][i]) + } + + #[inline(always)] + pure fn index(i: uint) -> Vec4 { + unsafe { do buf_as_slice( + transmute::<*Mat4, *Vec4>( + to_unsafe_ptr(&self)), 4) |slice| { slice[i] } + } + } + + #[inline(always)] + pure fn to_ptr() -> *T { + self[0].to_ptr() + } +} + +pub impl Mat4: NumericMatrix, Vec4> { + #[inline(always)] + pure fn neg() -> Mat4 { + Mat4::from_cols(-self[0], -self[1], -self[2], -self[3]) + } + + #[inline(always)] + pure fn mul_t(value: T) -> Mat4 { + Mat4::from_cols(self[0].mul_t(value), + self[1].mul_t(value), + self[2].mul_t(value), + self[3].mul_t(value)) + } + + #[inline(always)] + pure fn mul_v(other: &Vec4) -> Vec4 { + Vec4::new(self.row(0).dot(other), + self.row(1).dot(other), + self.row(2).dot(other), + self.row(3).dot(other)) + } + + #[inline(always)] + pure fn add_m(other: &Mat4) -> Mat4 { + Mat4::from_cols(self[0].add_v(&other[0]), + self[1].add_v(&other[1]), + self[2].add_v(&other[2]), + self[3].add_v(&other[3])) + } + + #[inline(always)] + pure fn sub_m(other: &Mat4) -> Mat4 { + Mat4::from_cols(self[0].sub_v(&other[0]), + self[1].sub_v(&other[1]), + self[2].sub_v(&other[2]), + self[3].sub_v(&other[3])) + } +} + +pub impl Mat4: NumericMatrix_NxN> { + #[inline(always)] + pure fn mul_m(other: &Mat4) -> Mat4 { + // Surprisingly when building with optimisation turned on this is actually + // faster than writing out the matrix multiplication in expanded form. + // If you don't believe me, see ./test/performance/matrix_mul.rs + Mat4::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), self.row(3).dot(&other.col(0)), + self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), self.row(3).dot(&other.col(1)), + self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)), self.row(3).dot(&other.col(2)), + self.row(0).dot(&other.col(3)), self.row(1).dot(&other.col(3)), self.row(2).dot(&other.col(3)), self.row(3).dot(&other.col(3))) + } + + pure fn det() -> T { + self[0][0]*Mat3::new(self[1][1], self[2][1], self[3][1], + self[1][2], self[2][2], self[3][2], + self[1][3], self[2][3], self[3][3]).det() - + self[1][0]*Mat3::new(self[0][1], self[2][1], self[3][1], + self[0][2], self[2][2], self[3][2], + self[0][3], self[2][3], self[3][3]).det() + + self[2][0]*Mat3::new(self[0][1], self[1][1], self[3][1], + self[0][2], self[1][2], self[3][2], + self[0][3], self[1][3], self[3][3]).det() - + self[3][0]*Mat3::new(self[0][1], self[1][1], self[2][1], + self[0][2], self[1][2], self[2][2], + self[0][3], self[1][3], self[2][3]).det() + } + + pure fn invert() -> Option> { + let d = self.det(); + let _0 = cast(0); + if d.fuzzy_eq(&_0) { + None + } else { + + // Gauss Jordan Elimination with partial pivoting + + let mut a = self.transpose(); + let mut inv = Mat4::identity::(); + + // Find largest pivot column j among rows j..3 + for uint::range(0, 4) |j| { + let mut i1 = j; + for uint::range(j + 1, 4) |i| { + if abs(&a[i][j]) > abs(&a[i1][j]) { + i1 = i; + } + } + + // Swap rows i1 and j in a and inv to + // put pivot on diagonal + let c = [mut a.x, a.y, a.z, a.w]; + c[i1] <-> c[j]; + a = Mat4::from_cols(c[0], c[1], c[2], c[3]); + let c = [mut inv.x, inv.y, inv.z, inv.w]; + c[i1] <-> c[j]; + inv = Mat4::from_cols(c[0], c[1], c[2], c[3]); + + // Scale row j to have a unit diagonal + let c = [mut inv.x, inv.y, inv.z, inv.w]; + c[j] = c[j].div_t(a[j][j]); + inv = Mat4::from_cols(c[0], c[1], c[2], c[3]); + let c = [mut a.x, a.y, a.z, a.w]; + c[j] = c[j].div_t(a[j][j]); + a = Mat4::from_cols(c[0], c[1], c[2], c[3]); + + // Eliminate off-diagonal elems in col j of a, + // doing identical ops to inv + for uint::range(0, 4) |i| { + if i != j { + let c = [mut inv.x, inv.y, inv.z, inv.w]; + c[i] = c[i].sub_v(&c[j].mul_t(a[i][j])); + inv = Mat4::from_cols(c[0], c[1], c[2], c[3]); + + let c = [mut a.x, a.y, a.z, a.w]; + c[i] = c[i].sub_v(&c[j].mul_t(a[i][j])); + a = Mat4::from_cols(c[0], c[1], c[2], c[3]); + } + } + } + Some(inv.transpose()) + } + } + + #[inline(always)] + pure fn transpose() -> Mat4 { + Mat4::new(self[0][0], self[1][0], self[2][0], self[3][0], + self[0][1], self[1][1], self[2][1], self[3][1], + self[0][2], self[1][2], self[2][2], self[3][2], + self[0][3], self[1][3], self[2][3], self[3][3]) + } + + #[inline(always)] + pure fn is_identity() -> bool { + self.fuzzy_eq(&Mat4::identity()) + } + + #[inline(always)] + pure fn is_symmetric() -> bool { + self[0][1].fuzzy_eq(&self[1][0]) && + self[0][2].fuzzy_eq(&self[2][0]) && + self[0][3].fuzzy_eq(&self[3][0]) && + + self[1][0].fuzzy_eq(&self[0][1]) && + self[1][2].fuzzy_eq(&self[2][1]) && + self[1][3].fuzzy_eq(&self[3][1]) && + + self[2][0].fuzzy_eq(&self[0][2]) && + self[2][1].fuzzy_eq(&self[1][2]) && + self[2][3].fuzzy_eq(&self[3][2]) && + + self[3][0].fuzzy_eq(&self[0][3]) && + self[3][1].fuzzy_eq(&self[1][3]) && + self[3][2].fuzzy_eq(&self[2][3]) + } + + #[inline(always)] + pure fn is_diagonal() -> bool { + let _0 = cast(0); + self[0][1].fuzzy_eq(&_0) && + self[0][2].fuzzy_eq(&_0) && + self[0][3].fuzzy_eq(&_0) && + + self[1][0].fuzzy_eq(&_0) && + self[1][2].fuzzy_eq(&_0) && + self[1][3].fuzzy_eq(&_0) && + + self[2][0].fuzzy_eq(&_0) && + self[2][1].fuzzy_eq(&_0) && + self[2][3].fuzzy_eq(&_0) && + + self[3][0].fuzzy_eq(&_0) && + self[3][1].fuzzy_eq(&_0) && + self[3][2].fuzzy_eq(&_0) + } + + #[inline(always)] + pure fn is_rotated() -> bool { + !self.fuzzy_eq(&Mat4::identity()) + } + + #[inline(always)] + pure fn is_invertible() -> bool { + let _0 = cast(0); + !self.det().fuzzy_eq(&_0) + } +} + +pub impl Mat4: Matrix4 { + +} + +// TODO: make work for T:Integer +pub impl Mat4: Eq { + #[inline(always)] + pure fn eq(other: &Mat4) -> bool { + self.fuzzy_eq(other) + } + + #[inline(always)] + pure fn ne(other: &Mat4) -> bool { + !(self == *other) + } +} + +pub impl Mat4: ExactEq { + #[inline(always)] + pure fn exact_eq(other: &Mat4) -> bool { + self[0].exact_eq(&other[0]) && + self[1].exact_eq(&other[1]) && + self[2].exact_eq(&other[2]) && + self[3].exact_eq(&other[3]) + } +} + +pub impl Mat4: FuzzyEq { + #[inline(always)] + pure fn fuzzy_eq(other: &Mat4) -> bool { + self[0].fuzzy_eq(&other[0]) && + self[1].fuzzy_eq(&other[1]) && + self[2].fuzzy_eq(&other[2]) && + self[3].fuzzy_eq(&other[3]) + } +} diff --git a/src/num/ext.rs b/src/num/ext.rs new file mode 100644 index 0000000..8232ba8 --- /dev/null +++ b/src/num/ext.rs @@ -0,0 +1,59 @@ +/** + * Various traits intended to be used with the built in numeric types. These + * allow one to be more specific with trait bounds when using generics. + * + * Note: These traits won't be able to be used to their full potential until + * trait inheritence is implemented. + */ + +use core::cmp::{Eq, Ord}; + +use std::cmp::FuzzyEq; + +use num::cast::*; +use num::consts::*; + +trait NumExt: Copy, Eq, Num, NumCast, Ord {} + +trait UnSignedExt: NumExt {} + +pub impl u8: UnSignedExt {} +pub impl u16: UnSignedExt {} +pub impl u32: UnSignedExt {} +pub impl u64: UnSignedExt {} +pub impl uint: UnSignedExt {} + + +trait SignedExt: NumExt {} + +pub impl i8: SignedExt {} +pub impl i16: SignedExt {} +pub impl i32: SignedExt {} +pub impl i64: SignedExt {} +pub impl int: SignedExt {} + +pub impl f32: SignedExt {} +pub impl f64: SignedExt {} +pub impl float: SignedExt {} + + +trait IntegerExt: NumExt, IntConsts {} + +pub impl u8: IntegerExt {} +pub impl u16: IntegerExt {} +pub impl u32: IntegerExt {} +pub impl u64: IntegerExt {} +pub impl uint: IntegerExt {} + +pub impl i8: IntegerExt {} +pub impl i16: IntegerExt {} +pub impl i32: IntegerExt {} +pub impl i64: IntegerExt {} +pub impl int: IntegerExt {} + + +trait FloatExt: NumExt, FloatConsts, FuzzyEq {} + +pub impl f32: FloatExt {} +pub impl f64: FloatExt {} +pub impl float: FloatExt {} \ No newline at end of file diff --git a/src/num/traits.rs b/src/num/traits.rs deleted file mode 100644 index 6aabfcd..0000000 --- a/src/num/traits.rs +++ /dev/null @@ -1,59 +0,0 @@ -/** - * Various traits intended to be used with the built in numeric types. These - * allow one to be more specific with trait bounds when using generics. - * - * Note: These traits won't be able to be used to their full potential until - * trait inheritence is implemented. - */ - -use core::cmp::{Eq, Ord}; - -use std::cmp::FuzzyEq; - -use num::cast::*; -use num::consts::*; - -trait NumExt: Copy, Eq, Num, NumCast, Ord {} - -trait UnSignedNum: NumExt {} - -pub impl u8: UnSignedNum {} -pub impl u16: UnSignedNum {} -pub impl u32: UnSignedNum {} -pub impl u64: UnSignedNum {} -pub impl uint: UnSignedNum {} - - -trait SignedNum: NumExt {} - -pub impl i8: SignedNum {} -pub impl i16: SignedNum {} -pub impl i32: SignedNum {} -pub impl i64: SignedNum {} -pub impl int: SignedNum {} - -pub impl f32: SignedNum {} -pub impl f64: SignedNum {} -pub impl float: SignedNum {} - - -trait IntegerNum: NumExt, IntConsts {} - -pub impl u8: IntegerNum {} -pub impl u16: IntegerNum {} -pub impl u32: IntegerNum {} -pub impl u64: IntegerNum {} -pub impl uint: IntegerNum {} - -pub impl i8: IntegerNum {} -pub impl i16: IntegerNum {} -pub impl i32: IntegerNum {} -pub impl i64: IntegerNum {} -pub impl int: IntegerNum {} - - -trait FloatNum: NumExt, FloatConsts, FuzzyEq {} - -pub impl f32: FloatNum {} -pub impl f64: FloatNum {} -pub impl float: FloatNum {} \ No newline at end of file diff --git a/src/quat.rs b/src/quat.rs new file mode 100644 index 0000000..e8ecfae --- /dev/null +++ b/src/quat.rs @@ -0,0 +1,306 @@ +use core::cast::transmute; +use core::cmp::Eq; +use core::ptr::{addr_of, to_unsafe_ptr}; +use core::vec::raw::buf_as_slice; + +use std::cmp::FuzzyEq; + +use dim::Dimensional; +use funs::exp::*; +use funs::trig::*; +use funs::common::*; +use math::*; +use mat::{Mat3, Mat4}; +use num::cast::*; +use vec::Vec3; + + +// These quaternion type aliases are not actually specified in the GLSL spec +// but they follow the same nomenclature + +pub type quat4 = Quat; /// a single-precision floating-point quaternion +pub type dquat4 = Quat; /// a double-precision floating-point quaternion + +// +// Quaternion +// +pub trait Quaternion: Dimensional, Eq, Neg { + pure fn mul_t(value: T) -> self; + pure fn div_t(value: T) -> self; + + pure fn mul_v(vec: &Vec3) -> Vec3; + + pure fn add_q(other: &self) -> self; + pure fn sub_q(other: &self) -> self; + pure fn mul_q(other: &self) -> self; + + pure fn dot(other: &self) -> T; + + pure fn conjugate() -> self; + pure fn inverse() -> self; + pure fn length2() -> T; + pure fn length() -> T; + pure fn normalize() -> self; + + pure fn nlerp(other: &self, amount: T) -> self; + pure fn slerp(other: &self, amount: T) -> self; + + pure fn to_Mat3() -> Mat3; + pure fn to_Mat4() -> Mat4; +} + +pub trait ToQuat { + pure fn to_Quat() -> Quat; +} + + + + + + +pub struct Quat { w: T, x: T, y: T, z: T } + +pub mod Quat { + #[inline(always)] + pub pure fn new(w: T, x: T, y: T, z: T) -> Quat { + Quat { w: move w, x: move x, y: move y, z: move z } + } + + #[inline(always)] + pub pure fn from_sv(s: T, v: Vec3) -> Quat { + Quat::new(s, v.x, v.y, v.z) + } + + #[inline(always)] + pub pure fn from_axis_angle(axis: Vec3, theta: T) -> Quat { + let half = radians(&theta) / cast(2); + from_sv(cos(&half), axis.mul_t(sin(&half))) + } + + #[inline(always)] + pub pure fn zero() -> Quat { + let _0 = cast(0); + Quat::new(_0, _0, _0, _0) + } + + #[inline(always)] + pub pure fn identity() -> Quat { + let _0 = cast(0); + Quat::new(cast(1), _0, _0, _0) + } +} + +pub impl Quat: Quaternion { + #[inline(always)] + static pure fn dim() -> uint { 4 } + + #[inline(always)] + pure fn to_ptr() -> *T { + addr_of(&self[0]) + } + + #[inline(always)] + pure fn neg() -> Quat { + Quat::new(-self[0], -self[1], -self[2], -self[3]) + } + + #[inline(always)] + pure fn mul_t(value: T) -> Quat { + Quat::new(self[0] * value, + self[1] * value, + self[2] * value, + self[3] * value) + } + + #[inline(always)] + pure fn div_t(value: T) -> Quat { + Quat::new(self[0] / value, + self[1] / value, + self[2] / value, + self[3] / value) + } + + #[inline(always)] + pure fn mul_v(vec: &Vec3) -> Vec3 { + let base = Vec3{ x:self.x, y:self.y, z:self.z }; + let tmp = base.cross(vec).add_v(&vec.mul_t(self.w)); + base.cross(&tmp).mul_t(cast(2)).add_v(vec) + } + + #[inline(always)] + pure fn add_q(other: &Quat) -> Quat { + Quat::new(self[0] + other[0], + self[1] + other[1], + self[2] + other[2], + self[3] + other[3]) + } + + #[inline(always)] + pure fn sub_q(other: &Quat) -> Quat { + Quat::new(self[0] - other[0], + self[1] - other[1], + self[2] - other[2], + self[3] - other[3]) + } + + #[inline(always)] + pure fn mul_q(other: &Quat) -> Quat { + Quat::new(self.w * other.w - self.x * other.x - self.y * other.y - self.z * other.z, + self.w * other.x + self.x * other.w + self.y * other.z - self.z * other.y, + self.w * other.y + self.y * other.w + self.z * other.x - self.x * other.z, + self.w * other.z + self.z * other.w + self.x * other.y - self.y * other.x) + } + + #[inline(always)] + pure fn dot(other: &Quat) -> T { + self.w * other.w + + self.x * other.x + + self.y * other.y + + self.z * other.z + } + + #[inline(always)] + pure fn conjugate() -> Quat { + Quat::new(self.w, -self.x, -self.y, -self.z) + } + + #[inline(always)] + pure fn inverse() -> Quat { + let mut n: T = cast(1); + n /= self.length2(); + self.conjugate().mul_t(n) + } + + #[inline(always)] + pure fn length2() -> T { + self.w * self.w + + self.x * self.x + + self.y * self.y + + self.z * self.z + } + + #[inline(always)] + pure fn length() -> T { + self.length2().sqrt() + } + + #[inline(always)] + pure fn normalize() -> Quat { + let mut n: T = cast(1); + n /= self.length(); + return self.mul_t(n); + } + + #[inline(always)] + pure fn nlerp(other: &Quat, amount: T) -> Quat { + let _1: T = cast(1); + self.mul_t(_1 - amount).add_q(&other.mul_t(amount)).normalize() + } + + /** + * Spherical Linear Intoperlation + * + * Both quaternions should be normalized first, or else strange things will + * will happen... + * + * Note: The `acos` used in `slerp` is an expensive operation, so unless your + * quarternions a far away from each other it's generally more advisable to + * use nlerp when you know your rotations are going to be small. + * + * See *[Understanding Slerp, Then Not Using It] + * (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)* + * for more information. The [Arcsynthesis OpenGL tutorial] + * (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html) + * also provides a good explanation. + */ + #[inline(always)] + pure fn slerp(other: &Quat, amount: T) -> Quat { + let dot: T = cast(self.dot(other)); + + // if quaternions are close together use `nlerp` + let dot_threshold = cast(0.9995); + if dot > dot_threshold { return self.nlerp(other, amount) } + + let robust_dot = dot.clamp(&-cast(1), &cast(1)); // stay within the domain of acos() + let theta_0 = acos(&robust_dot); // the angle between the quaternions + let theta = theta_0 * amount; // the fraction of theta specified by `amount` + + let q = other.sub_q(&self.mul_t(robust_dot)) + .normalize(); + + self.mul_t(cos(&theta)).add_q(&q.mul_t(sin(&theta))) + } + + #[inline(always)] + pure fn to_Mat3() -> Mat3 { + let x2 = self.x + self.x; + let y2 = self.y + self.y; + let z2 = self.z + self.z; + + let xx2 = x2 * self.x; + let xy2 = x2 * self.y; + let xz2 = x2 * self.z; + + let yy2 = y2 * self.y; + let yz2 = y2 * self.z; + let zz2 = z2 * self.z; + + let wy2 = y2 * self.w; + let wz2 = z2 * self.w; + let wx2 = x2 * self.w; + + let _1: T = cast(1); + + Mat3::new(_1 - yy2 - zz2, xy2 - wz2, xz2 + wy2, + xy2 + wz2, _1 - xx2 - zz2, yz2 - wx2, + xz2 - wy2, yz2 + wx2, _1 - xx2 - yy2) + } + + #[inline(always)] + pure fn to_Mat4() -> Mat4 { + self.to_Mat3().to_Mat4() + } +} + +pub impl Quat: Index { + #[inline(always)] + pure fn index(i: uint) -> T { + unsafe { do buf_as_slice( + transmute::<*Quat, *T>( + to_unsafe_ptr(&self)), 4) |slice| { slice[i] } + } + } +} + +// TODO: make work for T:Integer +pub impl Quat: Eq { + #[inline(always)] + pure fn eq(other: &Quat) -> bool { + self.fuzzy_eq(other) + } + + #[inline(always)] + pure fn ne(other: &Quat) -> bool { + !(self == *other) + } +} + +pub impl Quat: ExactEq { + #[inline(always)] + pure fn exact_eq(other: &Quat) -> bool { + self[0] == other[0] && + self[1] == other[1] && + self[2] == other[2] && + self[3] == other[3] + } +} + +pub impl Quat: FuzzyEq { + #[inline(always)] + pure fn fuzzy_eq(other: &Quat) -> bool { + self[0].fuzzy_eq(&other[0]) && + self[1].fuzzy_eq(&other[1]) && + self[2].fuzzy_eq(&other[2]) && + self[3].fuzzy_eq(&other[3]) + } +} \ No newline at end of file diff --git a/src/test/test_mat.rs b/src/test/test_mat.rs new file mode 100644 index 0000000..8f08fec --- /dev/null +++ b/src/test/test_mat.rs @@ -0,0 +1,335 @@ +use mat::*; +use vec::*; + +// TODO + +#[test] +fn test_Mat2() { + let a = Mat2 { x: Vec2 { x: 1f, y: 3f }, + y: Vec2 { x: 2f, y: 4f } }; + let b = Mat2 { x: Vec2 { x: 2f, y: 4f }, + y: Vec2 { x: 3f, y: 5f } }; + let v1 = Vec2::new(1f, 2f); + let f1 = 0.5f; + + assert a == Mat2::new(1f, 3f, + 2f, 4f); + + assert a == Mat2::from_cols(Vec2::new(1f, 3f), + Vec2::new(2f, 4f)); + + assert Mat2::from_value(4f64) == Mat2::new(4f64, 0f64, + 0f64, 4f64); + + assert a[0] == Vec2::new(1f, 3f); + assert a[1] == Vec2::new(2f, 4f); + + assert a.row(0) == Vec2::new(1f, 2f); + assert a.row(1) == Vec2::new(3f, 4f); + + assert a.col(0) == Vec2::new(1f, 3f); + assert a.col(1) == Vec2::new(2f, 4f); + + assert a.det() == -2f; + + assert a.neg() == Mat2::new(-1f, -3f, + -2f, -4f); + assert -a == a.neg(); + + assert a.mul_t(f1) == Mat2::new(0.5f, 1.5f, + 1.0f, 2.0f); + assert a.mul_v(&v1) == Vec2::new(5f, 11f); + + assert a.add_m(&b) == Mat2::new(3f, 7f, + 5f, 9f); + assert a.sub_m(&b) == Mat2::new(-1f, -1f, + -1f, -1f); + assert a.mul_m(&b) == Mat2::new(10.0, 22.0, + 13.0, 29.0); + + assert a.transpose() == Mat2::new(1f, 2f, + 3f, 4f); + + assert option::unwrap(a.invert()) == Mat2::new(-2f, 1.5f, + 1f, -0.5f); + + assert Mat2::new(0f, 2f, + 0f, 5f).invert().is_none(); + + // exact_eq + // fuzzy_eq + // eq + + assert Mat2::identity::().is_identity(); + assert Mat2::identity::().is_symmetric(); + assert Mat2::identity::().is_diagonal(); + assert !Mat2::identity::().is_rotated(); + assert Mat2::identity::().is_invertible(); + + assert !a.is_identity(); + assert !a.is_symmetric(); + assert !a.is_diagonal(); + assert a.is_rotated(); + assert a.is_invertible(); + + let c = Mat2::new(2f, 1f, + 1f, 2f); + assert !c.is_identity(); + assert c.is_symmetric(); + assert !c.is_diagonal(); + assert c.is_rotated(); + assert c.is_invertible(); + + assert Mat2::from_value(6f).is_diagonal(); + + assert a.to_Mat3() == Mat3::new(1f, 3f, 0f, + 2f, 4f, 0f, + 0f, 0f, 1f); + + assert a.to_Mat4() == Mat4::new(1f, 3f, 0f, 0f, + 2f, 4f, 0f, 0f, + 0f, 0f, 1f, 0f, + 0f, 0f, 0f, 1f); +} + +#[test] +fn test_Mat3() { + let a = Mat3 { x: Vec3 { x: 1f, y: 4f, z: 7f }, + y: Vec3 { x: 2f, y: 5f, z: 8f }, + z: Vec3 { x: 3f, y: 6f, z: 9f } }; + let b = Mat3 { x: Vec3 { x: 2f, y: 5f, z: 8f }, + y: Vec3 { x: 3f, y: 6f, z: 9f }, + z: Vec3 { x: 4f, y: 7f, z: 10f } }; + let v1 = Vec3::new(1f, 2f, 3f); + let f1 = 0.5f; + + assert a == Mat3::new(1f, 4f, 7f, + 2f, 5f, 8f, + 3f, 6f, 9f); + + assert a == Mat3::from_cols(Vec3::new(1f, 4f, 7f), + Vec3::new(2f, 5f, 8f), + Vec3::new(3f, 6f, 9f)); + + assert Mat3::from_value(4f64) == Mat3::new(4f64, 0f64, 0f64, + 0f64, 4f64, 0f64, + 0f64, 0f64, 4f64); + + assert Mat3::from_Mat2(&Mat2::new(1f32, 3f32, + 2f32, 4f32)) == Mat3::new(1f32, 3f32, 0f32, + 2f32, 4f32, 0f32, + 0f32, 0f32, 1f32); + + assert a[0] == Vec3::new(1f, 4f, 7f); + assert a[1] == Vec3::new(2f, 5f, 8f); + assert a[2] == Vec3::new(3f, 6f, 9f); + + assert a.row(0) == Vec3::new(1f, 2f, 3f); + assert a.row(1) == Vec3::new(4f, 5f, 6f); + assert a.row(2) == Vec3::new(7f, 8f, 9f); + + assert a.col(0) == Vec3::new(1f, 4f, 7f); + assert a.col(1) == Vec3::new(2f, 5f, 8f); + assert a.col(2) == Vec3::new(3f, 6f, 9f); + + assert a.det() == 0f; + + assert a.neg() == Mat3::new(-1f, -4f, -7f, + -2f, -5f, -8f, + -3f, -6f, -9f); + assert -a == a.neg(); + + assert a.mul_t(f1) == Mat3::new(0.5f, 2.0f, 3.5f, + 1.0f, 2.5f, 4.0f, + 1.5f, 3.0f, 4.5f); + assert a.mul_v(&v1) == Vec3::new(14f, 32f, 50f); + + assert a.add_m(&b) == Mat3::new(3f, 9f, 15f, + 5f, 11f, 17f, + 7f, 13f, 19f); + assert a.sub_m(&b) == Mat3::new(-1f, -1f, -1f, + -1f, -1f, -1f, + -1f, -1f, -1f); + assert a.mul_m(&b) == Mat3::new(36f, 81f, 126f, + 42f, 96f, 150f, + 48f, 111f, 174f); + + assert a.transpose() == Mat3::new(1f, 2f, 3f, + 4f, 5f, 6f, + 7f, 8f, 9f); + + assert a.invert().is_none(); + + assert option::unwrap(Mat3::identity::().invert()) + == Mat3::identity::(); + + assert option::unwrap(Mat3::new(2f, 4f, 6f, + 0f, 2f, 4f, + 0f, 0f, 1f).invert()) + == Mat3::new(0.5f, -1f, 1f, + 0f, 0.5f, -2f, + 0f, 0f, 1f); + // exact_eq + // fuzzy_eq + // eq + + assert Mat3::identity::().is_identity(); + assert Mat3::identity::().is_symmetric(); + assert Mat3::identity::().is_diagonal(); + assert !Mat3::identity::().is_rotated(); + assert Mat3::identity::().is_invertible(); + + assert !a.is_identity(); + assert !a.is_symmetric(); + assert !a.is_diagonal(); + assert a.is_rotated(); + assert !a.is_invertible(); + + let c = Mat3::new(3f, 2f, 1f, + 2f, 3f, 2f, + 1f, 2f, 3f); + assert !c.is_identity(); + assert c.is_symmetric(); + assert !c.is_diagonal(); + assert c.is_rotated(); + assert c.is_invertible(); + + assert Mat3::from_value(6f).is_diagonal(); + + assert a.to_Mat4() == Mat4::new(1f, 4f, 7f, 0f, + 2f, 5f, 8f, 0f, + 3f, 6f, 9f, 0f, + 0f, 0f, 0f, 1f); + + // to_Quaternion +} + +#[test] +fn test_Mat4() { + let a = Mat4 { x: Vec4 { x: 1f, y: 5f, z: 9f, w: 13f }, + y: Vec4 { x: 2f, y: 6f, z: 10f, w: 14f }, + z: Vec4 { x: 3f, y: 7f, z: 11f, w: 15f }, + w: Vec4 { x: 4f, y: 8f, z: 12f, w: 16f } }; + let b = Mat4 { x: Vec4 { x: 2f, y: 6f, z: 10f, w: 14f }, + y: Vec4 { x: 3f, y: 7f, z: 11f, w: 15f }, + z: Vec4 { x: 4f, y: 8f, z: 12f, w: 16f }, + w: Vec4 { x: 5f, y: 9f, z: 13f, w: 17f } }; + let c = Mat4 { x: Vec4 { x: 3f, y: 2f, z: 1f, w: 1f }, + y: Vec4 { x: 2f, y: 3f, z: 2f, w: 2f }, + z: Vec4 { x: 1f, y: 2f, z: 3f, w: 3f }, + w: Vec4 { x: 0f, y: 1f, z: 1f, w: 0f } }; + let v1 = Vec4::new(1f, 2f, 3f, 4f); + let f1 = 0.5f; + + assert a == Mat4::new(1f, 5f, 9f, 13f, + 2f, 6f, 10f, 14f, + 3f, 7f, 11f, 15f, + 4f, 8f, 12f, 16f); + + assert a == Mat4::from_cols(Vec4::new(1f, 5f, 9f, 13f), + Vec4::new(2f, 6f, 10f, 14f), + Vec4::new(3f, 7f, 11f, 15f), + Vec4::new(4f, 8f, 12f, 16f)); + + assert Mat4::from_value(4f64) == Mat4::new(4f64, 0f64, 0f64, 0f64, + 0f64, 4f64, 0f64, 0f64, + 0f64, 0f64, 4f64, 0f64, + 0f64, 0f64, 0f64, 4f64); + + assert Mat4::from_Mat2(&Mat2::new(1f, 3f, + 2f, 4f)) == Mat4::new(1f, 3f, 0f, 0f, + 2f, 4f, 0f, 0f, + 0f, 0f, 1f, 0f, + 0f, 0f, 0f, 1f); + + assert Mat4::from_Mat3(&Mat3::new(1f32, 4f32, 7f32, + 2f32, 5f32, 8f32, + 3f32, 6f32, 9f32)) == Mat4::new(1f32, 4f32, 7f32, 0f32, + 2f32, 5f32, 8f32, 0f32, + 3f32, 6f32, 9f32, 0f32, + 0f32, 0f32, 0f32, 1f32); + + assert a[0] == Vec4::new(1f, 5f, 9f, 13f); + assert a[1] == Vec4::new(2f, 6f, 10f, 14f); + assert a[2] == Vec4::new(3f, 7f, 11f, 15f); + assert a[3] == Vec4::new(4f, 8f, 12f, 16f); + + assert a.row(0) == Vec4::new( 1f, 2f, 3f, 4f); + assert a.row(1) == Vec4::new( 5f, 6f, 7f, 8f); + assert a.row(2) == Vec4::new( 9f, 10f, 11f, 12f); + assert a.row(3) == Vec4::new(13f, 14f, 15f, 16f); + + assert a.col(0) == Vec4::new(1f, 5f, 9f, 13f); + assert a.col(1) == Vec4::new(2f, 6f, 10f, 14f); + assert a.col(2) == Vec4::new(3f, 7f, 11f, 15f); + assert a.col(3) == Vec4::new(4f, 8f, 12f, 16f); + + assert a.det() == 0f; + + assert a.neg() == Mat4::new(-1f, -5f, -9f, -13f, + -2f, -6f, -10f, -14f, + -3f, -7f, -11f, -15f, + -4f, -8f, -12f, -16f); + assert -a == a.neg(); + + assert a.mul_t(f1) == Mat4::new(0.5f, 2.5f, 4.5f, 6.5f, + 1.0f, 3.0f, 5.0f, 7.0f, + 1.5f, 3.5f, 5.5f, 7.5f, + 2.0f, 4.0f, 6.0f, 8.0f); + assert a.mul_v(&v1) == Vec4::new(30.0, 70.0, 110.0, 150.0); + + assert a.add_m(&b) == Mat4::new(3f, 11f, 19f, 27f, + 5f, 13f, 21f, 29f, + 7f, 15f, 23f, 31f, + 9f, 17f, 25f, 33f); + assert a.sub_m(&b) == Mat4::new(-1f, -1f, -1f, -1f, + -1f, -1f, -1f, -1f, + -1f, -1f, -1f, -1f, + -1f, -1f, -1f, -1f); + assert a.mul_m(&b) == Mat4::new(100f, 228f, 356f, 484f, + 110f, 254f, 398f, 542f, + 120f, 280f, 440f, 600f, + 130f, 306f, 482f, 658f); + + assert a.transpose() == Mat4::new( 1f, 2f, 3f, 4f, + 5f, 6f, 7f, 8f, + 9f, 10f, 11f, 12f, + 13f, 14f, 15f, 16f); + + assert option::unwrap(c.invert()) + == Mat4::new( 5f, -4f, 1f, 0f, + -4f, 8f, -4f, 0f, + 4f, -8f, 4f, 8f, + -3f, 4f, 1f, -8f).mul_t(0.125f); + + assert option::unwrap(Mat4::identity::().invert()) + == Mat4::identity::(); + + // exact_eq + // fuzzy_eq + // eq + + assert Mat4::identity::().is_identity(); + assert Mat4::identity::().is_symmetric(); + assert Mat4::identity::().is_diagonal(); + assert !Mat4::identity::().is_rotated(); + assert Mat4::identity::().is_invertible(); + + assert !a.is_identity(); + assert !a.is_symmetric(); + assert !a.is_diagonal(); + assert a.is_rotated(); + assert !a.is_invertible(); + + let c = Mat4::new(4f, 3f, 2f, 1f, + 3f, 4f, 3f, 2f, + 2f, 3f, 4f, 3f, + 1f, 2f, 3f, 4f); + assert !c.is_identity(); + assert c.is_symmetric(); + assert !c.is_diagonal(); + assert c.is_rotated(); + assert c.is_invertible(); + + assert Mat4::from_value(6f).is_diagonal(); +} diff --git a/src/test/test_quat.rs b/src/test/test_quat.rs new file mode 100644 index 0000000..f859d68 --- /dev/null +++ b/src/test/test_quat.rs @@ -0,0 +1,29 @@ +use mat::*; +use quat::*; +use vec::*; + +// TODO + +#[test] +fn test_Quat() { + let a = Quat { w: 1f, x: 2f, y: 3f, z: 4f }; + // let b = Quat { data: [ 5f, 6f, 7f, 8f ] }; + // let f1 = 1.5f; + // let f2 = 0.5f; + + assert a == Quat::new(1f, 2f, 3f, 4f); + + assert Quat::zero() == Quat::new(0f, 0f, 0f, 0f); + assert Quat::identity() == Quat::new(1f, 0f, 0f, 0f); + + assert a.w == 1f; + assert a.x == 2f; + assert a.y == 3f; + assert a.z == 4f; + assert a[0] == 1f; + assert a[1] == 2f; + assert a[2] == 3f; + assert a[3] == 4f; + + // TODO +} \ No newline at end of file diff --git a/src/test/test_vec.rs b/src/test/test_vec.rs new file mode 100644 index 0000000..db7950f --- /dev/null +++ b/src/test/test_vec.rs @@ -0,0 +1,200 @@ +use std::cmp::FuzzyEq; +use vec::*; + +// TODO + +#[test] +fn test_Vec2() { + // assert Vec2::dim == 2; + + let a = Vec2 { x: 1f, y: 2f }; + let b = Vec2 { x: 3f, y: 4f }; + let f1 = 1.5f; + let f2 = 0.5f; + + assert Vec2::new(1f, 2f) == a; + assert Vec2::from_value(1f32) == Vec2::new(1f32, 1f32); + + assert Vec2::zero() == Vec2::new(0f, 0f); + assert Vec2::unit_x() == Vec2::new(1f, 0f); + assert Vec2::unit_y() == Vec2::new(0f, 1f); + assert Vec2::identity() == Vec2::new(1f, 1f); + + assert a.x == 1f; + assert a.y == 2f; + assert a[0] == 1f; + assert a[1] == 2f; + + assert -a == Vec2::new(-1f, -2f); + assert a.neg() == Vec2::new(-1f, -2f); + + assert a.mul_t(f1) == Vec2::new( 1.5f, 3.0f); + assert a.div_t(f2) == Vec2::new( 2.0f, 4.0f); + + assert a.add_v(&b) == Vec2::new( 4f, 6f); + assert a.sub_v(&b) == Vec2::new(-2f, -2f); + + // exact_eq + // fuzzy_eq + // eq + + // assert c.abs() == Vec2::new( 2.0f, 1.0f); + // assert c.min(&d) == Vec2::new(-2.0f, -1.0f); + // assert c.max(&d) == Vec2::new( 1.0f, 0.0f); +} + +#[test] +fn test_Vec2_geometric() { + let a = Vec2::new(5f, 12f); // (5, 12, 13) Pythagorean triple + let b0 = Vec2::new(3f, 4f); // (3, 4, 5) Pythagorean triple + let b = a.add_v(&b0); + + assert a.length() == 13f; + assert a.length2() == 13f * 13f; + + assert b0.length() == 5f; + assert b0.length2() == 5f * 5f; + + assert a.distance(&b) == 5f; + assert a.distance2(&b) == 5f * 5f; + + let c = Vec2::new(-2.0f, -1.0f); + let d = Vec2::new( 1.0f, 0.0f); + + assert c.lerp(&d, 0.75f) == Vec2::new(0.250f, -0.250f); +} + +#[test] +fn test_Vec3() { + // assert Vec3::dim == 3; + + let a = Vec3 { x: 1f, y: 2f, z: 3f }; + let b = Vec3 { x: 4f, y: 5f, z: 6f }; + let f1 = 1.5f; + let f2 = 0.5f; + + assert Vec3::new(1f, 2f, 3f) == a; + assert Vec3::from_value(1f32) == Vec3::new(1f32, 1f32, 1f32); + + assert Vec3::zero() == Vec3::new(0f, 0f, 0f); + assert Vec3::unit_x() == Vec3::new(1f, 0f, 0f); + assert Vec3::unit_y() == Vec3::new(0f, 1f, 0f); + assert Vec3::unit_z() == Vec3::new(0f, 0f, 1f); + assert Vec3::identity() == Vec3::new(1f, 1f, 1f); + + assert a.x == 1f; + assert a.y == 2f; + assert a.z == 3f; + assert a[0] == 1f; + assert a[1] == 2f; + assert a[2] == 3f; + + assert a.cross(&b) == Vec3::new(-3f, 6f, -3f); + + assert -a == Vec3::new(-1f, -2f, -3f); + assert a.neg() == Vec3::new(-1f, -2f, -3f); + + assert a.mul_t(f1) == Vec3::new( 1.5f, 3.0f, 4.5f); + assert a.div_t(f2) == Vec3::new( 2.0f, 4.0f, 6.0f); + + assert a.add_v(&b) == Vec3::new( 5f, 7f, 9f); + assert a.sub_v(&b) == Vec3::new(-3f, -3f, -3f); + + // exact_eq + // fuzzy_eq + // eq + + // assert c.abs() == Vec3::new( 2.0f, 1.0f, 1.0f); + // assert c.min(&d) == Vec3::new(-2.0f, -1.0f, 0.5f); + // assert c.max(&d) == Vec3::new( 1.0f, 0.0f, 1.0f); +} + +#[test] +fn test_Vec3_geometric() { + let a = Vec3::new(2f, 3f, 6f); // (2, 3, 6, 7) Pythagorean quadruple + let b0 = Vec3::new(1f, 4f, 8f); // (1, 4, 8, 9) Pythagorean quadruple + let b = a.add_v(&b0); + + assert a.length() == 7f; + assert a.length2() == 7f * 7f; + + assert b0.length() == 9f; + assert b0.length2() == 9f * 9f; + + assert a.distance(&b) == 9f; + assert a.distance2(&b) == 9f * 9f; + + let c = Vec3::new(-2.0f, -1.0f, 1.0f); + let d = Vec3::new( 1.0f, 0.0f, 0.5f); + + assert c.lerp(&d, 0.75f) == Vec3::new(0.250f, -0.250f, 0.625f); +} + +#[test] +fn test_Vec4() { + // assert Vec4::dim == 4; + + let a = Vec4 { x: 1f, y: 2f, z: 3f, w: 4f }; + let b = Vec4 { x: 5f, y: 6f, z: 7f, w: 8f }; + let f1 = 1.5f; + let f2 = 0.5f; + + assert Vec4::new(1f, 2f, 3f, 4f) == a; + assert Vec4::from_value(1f32) == Vec4::new(1f32, 1f32, 1f32, 1f32); + + assert Vec4::zero() == Vec4::new(0f, 0f, 0f, 0f); + assert Vec4::unit_x() == Vec4::new(1f, 0f, 0f, 0f); + assert Vec4::unit_y() == Vec4::new(0f, 1f, 0f, 0f); + assert Vec4::unit_z() == Vec4::new(0f, 0f, 1f, 0f); + assert Vec4::unit_w() == Vec4::new(0f, 0f, 0f, 1f); + assert Vec4::identity() == Vec4::new(1f, 1f, 1f, 1f); + + assert a.x == 1f; + assert a.y == 2f; + assert a.z == 3f; + assert a.w == 4f; + assert a[0] == 1f; + assert a[1] == 2f; + assert a[2] == 3f; + assert a[3] == 4f; + + assert -a == Vec4::new(-1f, -2f, -3f, -4f); + assert a.neg() == Vec4::new(-1f, -2f, -3f, -4f); + + assert a.mul_t(f1) == Vec4::new( 1.5f, 3.0f, 4.5f, 6.0f); + assert a.div_t(f2) == Vec4::new( 2.0f, 4.0f, 6.0f, 8.0f); + + assert a.add_v(&b) == Vec4::new( 6f, 8f, 10f, 12f); + assert a.sub_v(&b) == Vec4::new(-4f, -4f, -4f, -4f); + + assert a.dot(&b) == 70f; + + // exact_eq + // fuzzy_eq + // eq + + // assert c.abs() == Vec4::new( 2.0f, 1.0f, 1.0f, 2.0f); + // assert c.min(&d) == Vec4::new(-2.0f, -1.0f, 0.5f, 1.0f); + // assert c.max(&d) == Vec4::new( 1.0f, 0.0f, 1.0f, 2.0f); +} + +#[test] +fn test_Vec4_geometric() { + let a = Vec4::new(1f, 2f, 4f, 10f); // (1, 2, 4, 10, 11) Pythagorean quintuple + let b0 = Vec4::new(1f, 2f, 8f, 10f); // (1, 2, 8, 10, 13) Pythagorean quintuple + let b = a.add_v(&b0); + + assert a.length() == 11f; + assert a.length2() == 11f * 11f; + + assert b0.length() == 13f; + assert b0.length2() == 13f * 13f; + + assert a.distance(&b) == 13f; + assert a.distance2(&b) == 13f * 13f; + + let c = Vec4::new(-2.0f, -1.0f, 1.0f, 2.0f); + let d = Vec4::new( 1.0f, 0.0f, 0.5f, 1.0f); + + assert c.lerp(&d, 0.75f) == Vec4::new(0.250f, -0.250f, 0.625f, 1.250f); +} \ No newline at end of file diff --git a/src/vec.rs b/src/vec.rs new file mode 100644 index 0000000..8e640f2 --- /dev/null +++ b/src/vec.rs @@ -0,0 +1,622 @@ +use core::cast::transmute; +use core::cmp::Eq; +use core::ptr::{addr_of, to_unsafe_ptr}; +use core::vec::raw::buf_as_slice; + +use std::cmp::FuzzyEq; + +use dim::Dimensional; +use funs::exp::Exp; +use math::*; +use num::cast::*; + +// GLSL equivalent type aliases + +pub type vec2 = Vec2; /// a two-component single-precision floating-point vector +pub type vec3 = Vec3; /// a three-component single-precision floating-point vector +pub type vec4 = Vec4; /// a four-component single-precision floating-point vector + +pub type dvec2 = Vec2; /// a two-component double-precision floating-point vector +pub type dvec3 = Vec3; /// a three-component double-precision floating-point vector +pub type dvec4 = Vec4; /// a four-component double-precision floating-point vector + +pub type bvec2 = Vec2; /// a two-component Boolean vector +pub type bvec3 = Vec3; /// a three-component Boolean vector +pub type bvec4 = Vec4; /// a four-component Boolean vector + +pub type ivec2 = Vec2; /// a two-component signed integer vector +pub type ivec3 = Vec3; /// a three-component signed integer vector +pub type ivec4 = Vec4; /// a four-component signed integer vector + +pub type uvec2 = Vec2; /// a two-component unsigned integer vector +pub type uvec3 = Vec3; /// a three-component unsigned integer vector +pub type uvec4 = Vec4; /// a four-component unsigned integer vector + + +pub trait Vector: Dimensional, Eq {} + +pub trait NumericVector: Vector, Neg{ + pure fn mul_t(value: T) -> self; + pure fn div_t(value: T) -> self; + + pure fn add_v(other: &self) -> self; + pure fn sub_v(other: &self) -> self; + + pure fn dot(other: &self) -> T; +} + +pub trait GeometricVector: NumericVector { + pure fn length2() -> T; + pure fn length() -> T; + pure fn distance2(other: &self) -> T; + pure fn distance(other: &self) -> T; + pure fn normalize() -> self; + pure fn lerp(other: &self, amount: T) -> self; +} + +pub trait Vector2: Vector { + // static pure fn new(x: T, y: T) -> self; + // static pure fn from_value(value: T) -> self; +} + +pub trait Vector3: Vector { + // static pure fn new(x: T, y: T, z: T) -> self; + // static pure fn from_value(value: T) -> self; + + pure fn cross(other: &self) -> self; +} + +pub trait Vector4: Vector { + // pub static pure fn new(x: T, y: T, z: T, w: T) -> self; + // pub static pure fn from_value(value: T) -> self; +} + + + + + +// +// Vec2 +// +pub struct Vec2 { x: T, y: T } + +pub mod Vec2 { + + #[inline(always)] + pub pure fn new(x: T, y: T) -> Vec2 { + Vec2 { x: move x, y: move y } + } + + #[inline(always)] + pub pure fn from_value(value: T) -> Vec2 { + Vec2::new(value, value) + } + + #[inline(always)] + pub pure fn zero() -> Vec2 { + let _0 = cast(0); + Vec2::new(_0, _0) + } + + #[inline(always)] + pub pure fn unit_x() -> Vec2 { + let _0 = cast(0); + let _1 = cast(1); + Vec2::new(_1, _0) + } + + #[inline(always)] + pub pure fn unit_y() -> Vec2 { + let _0 = cast(0); + let _1 = cast(1); + Vec2::new(_0, _1) + } + + #[inline(always)] + pub pure fn identity() -> Vec2 { + let _1 = cast(1); + Vec2::new(_1, _1) + } +} + +pub impl Vec2: Vector { + #[inline(always)] + static pure fn dim() -> uint { 2 } + + #[inline(always)] + pure fn index(i: uint) -> T { + unsafe { do buf_as_slice( + transmute::<*Vec2, *T>( + to_unsafe_ptr(&self)), 2) |slice| { slice[i] } + } + } + + #[inline(always)] + pure fn to_ptr() -> *T { + ptr::addr_of(&self[0]) + } +} + +pub impl Vec2: NumericVector { + #[inline(always)] + pure fn neg() -> Vec2 { + Vec2::new(-self[0], -self[1]) + } + + #[inline(always)] + pure fn mul_t(value: T) -> Vec2 { + Vec2::new(self[0] * value, + self[1] * value) + } + + #[inline(always)] + pure fn div_t(value: T) -> Vec2 { + Vec2::new(self[0] / value, + self[1] / value) + } + + #[inline(always)] + pure fn add_v(other: &Vec2) -> Vec2 { + Vec2::new(self[0] + other[0], + self[1] + other[1]) + } + + #[inline(always)] + pure fn sub_v(other: &Vec2) -> Vec2 { + Vec2::new(self[0] - other[0], + self[1] - other[1]) + } + + #[inline(always)] + pure fn dot(other: &Vec2) -> T { + self[0] * other[0] + + self[1] * other[1] + } +} + +pub impl Vec2: GeometricVector { + #[inline(always)] + pure fn length2() -> T { + self.dot(&self) + } + + #[inline(always)] + pure fn length() -> T { + self.length2().sqrt() + } + + #[inline(always)] + pure fn distance2(other: &Vec2) -> T { + other.sub_v(&self).length2() + } + + #[inline(always)] + pure fn distance(other: &Vec2) -> T { + other.distance2(&self).sqrt() + } + + #[inline(always)] + pure fn normalize() -> Vec2 { + let mut n: T = cast(1); + n /= self.length(); + return self.mul_t(n); + } + + #[inline(always)] + pure fn lerp(other: &Vec2, amount: T) -> Vec2 { + self.add_v(&other.sub_v(&self).mul_t(amount)) + } +} + +// TODO: make work for T:Integer +pub impl Vec2: Eq { + #[inline(always)] + pure fn eq(other: &Vec2) -> bool { + self.fuzzy_eq(other) + } + + #[inline(always)] + pure fn ne(other: &Vec2) -> bool { + !(self == *other) + } +} + +impl Vec2: ExactEq { + #[inline(always)] + pure fn exact_eq(other: &Vec2) -> bool { + self[0] == other[0] && + self[1] == other[1] + } +} + +pub impl Vec2: FuzzyEq { + #[inline(always)] + pure fn fuzzy_eq(other: &Vec2) -> bool { + self[0].fuzzy_eq(&other[0]) && + self[1].fuzzy_eq(&other[1]) + } +} + + + + + + +// +// Vec3 +// +pub struct Vec3 { x: T, y: T, z: T } + +pub mod Vec3 { + + #[inline(always)] + pub pure fn new(x: T, y: T, z: T) -> Vec3 { + Vec3 { x: move x, y: move y, z: move z } + } + + #[inline(always)] + pub pure fn from_value(value: T) -> Vec3 { + Vec3::new(value, value, value) + } + + #[inline(always)] + pub pure fn zero() -> Vec3 { + let _0 = cast(0); + Vec3::new(_0, _0, _0) + } + + #[inline(always)] + pub pure fn unit_x() -> Vec3 { + let _0 = cast(0); + let _1 = cast(1); + Vec3::new(_1, _0, _0) + } + + #[inline(always)] + pub pure fn unit_y() -> Vec3 { + let _0 = cast(0); + let _1 = cast(1); + Vec3::new(_0, _1, _0) + } + + #[inline(always)] + pub pure fn unit_z() -> Vec3 { + let _0 = cast(0); + let _1 = cast(1); + Vec3::new(_0, _0, _1) + } + + #[inline(always)] + pub pure fn identity() -> Vec3 { + let _1 = cast(1); + Vec3::new(_1, _1, _1) + } +} + +pub impl Vec3: Vector3 { + #[inline(always)] + pure fn cross(other: &Vec3) -> Vec3 { + Vec3::new((self[1] * other[2]) - (self[2] * other[1]), + (self[2] * other[0]) - (self[0] * other[2]), + (self[0] * other[1]) - (self[1] * other[0])) + } +} + +pub impl Vec3: Vector { + #[inline(always)] + static pure fn dim() -> uint { 3 } + + #[inline(always)] + pure fn index(i: uint) -> T { + unsafe { do buf_as_slice( + transmute::<*Vec3, *T>( + to_unsafe_ptr(&self)), 3) |slice| { slice[i] } + } + } + + #[inline(always)] + pure fn to_ptr() -> *T { + addr_of(&self[0]) + } +} + +pub impl Vec3: NumericVector { + #[inline(always)] + pure fn neg() -> Vec3 { + Vec3::new(-self[0], -self[1], -self[2]) + } + + #[inline(always)] + pure fn mul_t(value: T) -> Vec3 { + Vec3::new(self[0] * value, + self[1] * value, + self[2] * value) + } + + #[inline(always)] + pure fn div_t(value: T) -> Vec3 { + Vec3::new(self[0] / value, + self[1] / value, + self[2] / value) + } + + #[inline(always)] + pure fn add_v(other: &Vec3) -> Vec3{ + Vec3::new(self[0] + other[0], + self[1] + other[1], + self[2] + other[2]) + } + + #[inline(always)] + pure fn sub_v(other: &Vec3) -> Vec3{ + Vec3::new(self[0] - other[0], + self[1] - other[1], + self[2] - other[2]) + } + + #[inline(always)] + pure fn dot(other: &Vec3) -> T { + self[0] * other[0] + + self[1] * other[1] + + self[2] * other[2] + } +} + +pub impl Vec3: GeometricVector { + #[inline(always)] + pure fn length2() -> T { + self.dot(&self) + } + + #[inline(always)] + pure fn length() -> T { + self.length2().sqrt() + } + + #[inline(always)] + pure fn distance2(other: &Vec3) -> T { + other.sub_v(&self).length2() + } + + #[inline(always)] + pure fn distance(other: &Vec3) -> T { + other.distance2(&self).sqrt() + } + + #[inline(always)] + pure fn normalize() -> Vec3 { + let mut n: T = cast(1); + n /= self.length(); + return self.mul_t(n); + } + + #[inline(always)] + pure fn lerp(other: &Vec3, amount: T) -> Vec3 { + self.add_v(&other.sub_v(&self).mul_t(amount)) + } +} + +// TODO: make work for T:Integer +pub impl Vec3: Eq { + #[inline(always)] + pure fn eq(other: &Vec3) -> bool { + self.fuzzy_eq(other) + } + + #[inline(always)] + pure fn ne(other: &Vec3) -> bool { + !(self == *other) + } +} + +pub impl Vec3: ExactEq { + #[inline(always)] + pure fn exact_eq(other: &Vec3) -> bool { + self[0] == other[0] && + self[1] == other[1] && + self[2] == other[2] + } +} + +pub impl Vec3: FuzzyEq { + #[inline(always)] + pure fn fuzzy_eq(other: &Vec3) -> bool { + self[0].fuzzy_eq(&other[0]) && + self[1].fuzzy_eq(&other[1]) && + self[2].fuzzy_eq(&other[2]) + } +} + + + + + + +// +// Vec4 +// +pub struct Vec4 { x: T, y: T, z: T, w: T } + +pub mod Vec4 { + #[inline(always)] + pub pure fn new(x: T, y: T, z: T, w: T) -> Vec4 { + Vec4 { x: move x, y: move y, z: move z, w: move w } + } + + #[inline(always)] + pub pure fn from_value(value: T) -> Vec4 { + Vec4::new(value, value, value, value) + } + + #[inline(always)] + pub pure fn zero() -> Vec4 { + let _0 = cast(0); + Vec4::new(_0, _0, _0, _0) + } + + #[inline(always)] + pub pure fn unit_x() -> Vec4 { + let _0 = cast(0); + let _1 = cast(1); + Vec4::new(_1, _0, _0, _0) + } + + #[inline(always)] + pub pure fn unit_y() -> Vec4 { + let _0 = cast(0); + let _1 = cast(1); + Vec4::new(_0, _1, _0, _0) + } + + #[inline(always)] + pub pure fn unit_z() -> Vec4 { + let _0 = cast(0); + let _1 = cast(1); + Vec4::new(_0, _0, _1, _0) + } + + #[inline(always)] + pub pure fn unit_w() -> Vec4 { + let _0 = cast(0); + let _1 = cast(1); + Vec4::new(_0, _0, _0, _1) + } + + #[inline(always)] + pub pure fn identity() -> Vec4 { + let _1 = cast(1); + Vec4::new(_1, _1, _1, _1) + } +} + +pub impl Vec4: Vector { + #[inline(always)] + static pure fn dim() -> uint { 4 } + + #[inline(always)] + pure fn index(i: uint) -> T { + unsafe { do buf_as_slice( + transmute::<*Vec4, *T>( + to_unsafe_ptr(&self)), 4) |slice| { slice[i] } + } + } + + #[inline(always)] + pure fn to_ptr() -> *T { + addr_of(&self[0]) + } +} + +pub impl Vec4: NumericVector { + #[inline(always)] + pure fn neg() -> Vec4 { + Vec4::new(-self[0], -self[1], -self[2], -self[3]) + } + + #[inline(always)] + pure fn mul_t(value: T) -> Vec4 { + Vec4::new(self[0] * value, + self[1] * value, + self[2] * value, + self[3] * value) + } + + #[inline(always)] + pure fn div_t(value: T) -> Vec4 { + Vec4::new(self[0] / value, + self[1] / value, + self[2] / value, + self[3] / value) + } + + #[inline(always)] + pure fn add_v(other: &Vec4) -> Vec4 { + Vec4::new(self[0] + other[0], + self[1] + other[1], + self[2] + other[2], + self[3] + other[3]) + } + + #[inline(always)] + pure fn sub_v(other: &Vec4) -> Vec4 { + Vec4::new(self[0] - other[0], + self[1] - other[1], + self[2] - other[2], + self[3] - other[3]) + } + + #[inline(always)] + pure fn dot(other: &Vec4) -> T { + self[0] * other[0] + + self[1] * other[1] + + self[2] * other[2] + + self[3] * other[3] + } +} + +pub impl Vec4: GeometricVector { + #[inline(always)] + pure fn length2() -> T { + self.dot(&self) + } + + #[inline(always)] + pure fn length() -> T { + self.length2().sqrt() + } + + #[inline(always)] + pure fn distance2(other: &Vec4) -> T { + other.sub_v(&self).length2() + } + + #[inline(always)] + pure fn distance(other: &Vec4) -> T { + other.distance2(&self).sqrt() + } + + #[inline(always)] + pure fn normalize() -> Vec4 { + let mut n: T = cast(1); + n /= self.length(); + return self.mul_t(n); + } + + #[inline(always)] + pure fn lerp(other: &Vec4, amount: T) -> Vec4 { + self.add_v(&other.sub_v(&self).mul_t(amount)) + } +} + +pub impl Vec4: Eq { + #[inline(always)] + pure fn eq(other: &Vec4) -> bool { + self.fuzzy_eq(other) + } + + #[inline(always)] + pure fn ne(other: &Vec4) -> bool { + !(self == *other) + } +} + +// TODO: make work for T:Integer +pub impl Vec4: ExactEq { + #[inline(always)] + pure fn exact_eq(other: &Vec4) -> bool { + self[0] == other[0] && + self[1] == other[1] && + self[2] == other[2] && + self[3] == other[3] + } +} + +pub impl Vec4: FuzzyEq { + #[inline(always)] + pure fn fuzzy_eq(other: &Vec4) -> bool { + self[0].fuzzy_eq(&other[0]) && + self[1].fuzzy_eq(&other[1]) && + self[2].fuzzy_eq(&other[2]) && + self[3].fuzzy_eq(&other[3]) + } +} \ No newline at end of file