Merge pull request #269 from bjz/quaternion-ops
Add missing by-ref and by-val permutations of quaternion operators
This commit is contained in:
commit
80a89581ef
2 changed files with 98 additions and 69 deletions
|
@ -6,6 +6,9 @@ This project adheres to [Semantic Versioning](http://semver.org/).
|
|||
|
||||
## [Unreleased]
|
||||
|
||||
### Added
|
||||
- Add missing by-ref and by-val permutations of `Quaternion` operators.
|
||||
|
||||
## [v0.6.0] - 2015-12-12
|
||||
|
||||
### Added
|
||||
|
|
|
@ -67,8 +67,8 @@ impl<S: BaseFloat> Quaternion<S> {
|
|||
|
||||
/// The dot product of the quaternion and `q`.
|
||||
#[inline]
|
||||
pub fn dot(self, q: Quaternion<S>) -> S {
|
||||
self.s * q.s + self.v.dot(q.v)
|
||||
pub fn dot(self, other: Quaternion<S>) -> S {
|
||||
self.s * other.s + self.v.dot(other.v)
|
||||
}
|
||||
|
||||
/// The conjugate of the quaternion.
|
||||
|
@ -105,86 +105,121 @@ impl<S: BaseFloat> Quaternion<S> {
|
|||
|
||||
/// Do a normalized linear interpolation with `other`, by `amount`.
|
||||
pub fn nlerp(self, other: Quaternion<S>, amount: S) -> Quaternion<S> {
|
||||
(&(self * (S::one() - amount)) + &(other * amount)).normalize()
|
||||
(self * (S::one() - amount) + other * amount).normalize()
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: BaseFloat> Mul<S> for Quaternion<S> {
|
||||
impl<S: BaseFloat> Neg for Quaternion<S> {
|
||||
type Output = Quaternion<S>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, value: S) -> Quaternion<S> {
|
||||
Quaternion::from_sv(self.s * value, self.v * value)
|
||||
}
|
||||
fn neg(self) -> Quaternion<S> { Quaternion::from_sv(-self.s, -self.v) }
|
||||
}
|
||||
|
||||
impl<'a, S: BaseFloat> Mul<S> for &'a Quaternion<S> {
|
||||
impl<'a, S: BaseFloat> Neg for &'a Quaternion<S> {
|
||||
type Output = Quaternion<S>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, value: S) -> Quaternion<S> {
|
||||
Quaternion::from_sv(self.s * value, self.v * value)
|
||||
}
|
||||
fn neg(self) -> Quaternion<S> { Quaternion::from_sv(-self.s, -self.v) }
|
||||
}
|
||||
|
||||
impl<S: BaseFloat> Div<S> for Quaternion<S> {
|
||||
type Output = Quaternion<S>;
|
||||
|
||||
/// Generates a binary operator implementation for the permutations of by-ref and by-val
|
||||
macro_rules! impl_binary_operator {
|
||||
// When the right operand is a scalar
|
||||
(<$S:ident> $Binop:ident<$Rhs:ident> for $Lhs:ty { fn $binop:ident($lhs:ident, $rhs:ident) -> $Output:ty { $body:expr } }) => {
|
||||
impl<$S: BaseFloat> $Binop<$Rhs> for $Lhs {
|
||||
type Output = $Output;
|
||||
#[inline]
|
||||
fn div(self, value: S) -> Quaternion<S> {
|
||||
Quaternion::from_sv(self.s / value, self.v / value)
|
||||
fn $binop(self, other: $Rhs) -> $Output {
|
||||
let ($lhs, $rhs) = (self, other); $body
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, $S: BaseFloat> $Binop<$Rhs> for &'a $Lhs {
|
||||
type Output = $Output;
|
||||
#[inline]
|
||||
fn $binop(self, other: $Rhs) -> $Output {
|
||||
let ($lhs, $rhs) = (self, other); $body
|
||||
}
|
||||
}
|
||||
};
|
||||
// When the right operand is a compound type
|
||||
(<$S:ident> $Binop:ident<$Rhs:ty> for $Lhs:ty { fn $binop:ident($lhs:ident, $rhs:ident) -> $Output:ty { $body:expr } }) => {
|
||||
impl<$S: BaseFloat> $Binop<$Rhs> for $Lhs {
|
||||
type Output = $Output;
|
||||
#[inline]
|
||||
fn $binop(self, other: $Rhs) -> $Output {
|
||||
let ($lhs, $rhs) = (self, other); $body
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, $S: BaseFloat> $Binop<&'a $Rhs> for $Lhs {
|
||||
type Output = $Output;
|
||||
#[inline]
|
||||
fn $binop(self, other: &'a $Rhs) -> $Output {
|
||||
let ($lhs, $rhs) = (self, other); $body
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, $S: BaseFloat> $Binop<$Rhs> for &'a $Lhs {
|
||||
type Output = $Output;
|
||||
#[inline]
|
||||
fn $binop(self, other: $Rhs) -> $Output {
|
||||
let ($lhs, $rhs) = (self, other); $body
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, 'b, $S: BaseFloat> $Binop<&'a $Rhs> for &'b $Lhs {
|
||||
type Output = $Output;
|
||||
#[inline]
|
||||
fn $binop(self, other: &'a $Rhs) -> $Output {
|
||||
let ($lhs, $rhs) = (self, other); $body
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl<'a, S: BaseFloat> Div<S> for &'a Quaternion<S> {
|
||||
type Output = Quaternion<S>;
|
||||
|
||||
#[inline]
|
||||
fn div(self, value: S) -> Quaternion<S> {
|
||||
Quaternion::from_sv(self.s / value, self.v / value)
|
||||
impl_binary_operator!(<S> Mul<S> for Quaternion<S> {
|
||||
fn mul(lhs, rhs) -> Quaternion<S> {
|
||||
Quaternion::from_sv(lhs.s * rhs, lhs.v * rhs)
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
impl<'a, 'b, S: BaseFloat> Mul<&'b Vector3<S>> for &'a Quaternion<S> {
|
||||
type Output = Vector3<S>;
|
||||
impl_binary_operator!(<S> Div<S> for Quaternion<S> {
|
||||
fn div(lhs, rhs) -> Quaternion<S> {
|
||||
Quaternion::from_sv(lhs.s / rhs, lhs.v / rhs)
|
||||
}
|
||||
});
|
||||
|
||||
#[inline]
|
||||
fn mul(self, vec: &'b Vector3<S>) -> Vector3<S> {
|
||||
impl_binary_operator!(<S> Mul<Vector3<S> > for Quaternion<S> {
|
||||
fn mul(lhs, rhs) -> Vector3<S> {{
|
||||
let rhs = rhs.clone();
|
||||
let two: S = cast(2i8).unwrap();
|
||||
let tmp = self.v.cross(*vec) + (vec * self.s);
|
||||
(self.v.cross(tmp) * two) + vec
|
||||
let tmp = lhs.v.cross(rhs) + (rhs * lhs.s);
|
||||
(lhs.v.cross(tmp) * two) + rhs
|
||||
}}
|
||||
});
|
||||
|
||||
impl_binary_operator!(<S> Add<Quaternion<S> > for Quaternion<S> {
|
||||
fn add(lhs, rhs) -> Quaternion<S> {
|
||||
Quaternion::from_sv(lhs.s + rhs.s, lhs.v + rhs.v)
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
impl<'a, 'b, S: BaseFloat> Add<&'b Quaternion<S>> for &'a Quaternion<S> {
|
||||
type Output = Quaternion<S>;
|
||||
|
||||
#[inline]
|
||||
fn add(self, other: &'b Quaternion<S>) -> Quaternion<S> {
|
||||
Quaternion::from_sv(self.s + other.s, self.v + &other.v)
|
||||
impl_binary_operator!(<S> Sub<Quaternion<S> > for Quaternion<S> {
|
||||
fn sub(lhs, rhs) -> Quaternion<S> {
|
||||
Quaternion::from_sv(lhs.s - rhs.s, lhs.v - rhs.v)
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
impl<'a, 'b, S: BaseFloat> Sub<&'b Quaternion<S>> for &'a Quaternion<S> {
|
||||
type Output = Quaternion<S>;
|
||||
|
||||
#[inline]
|
||||
fn sub(self, other: &'b Quaternion<S>) -> Quaternion<S> {
|
||||
Quaternion::from_sv(self.s - other.s, self.v - &other.v)
|
||||
impl_binary_operator!(<S> Mul<Quaternion<S> > for Quaternion<S> {
|
||||
fn mul(lhs, rhs) -> Quaternion<S> {
|
||||
Quaternion::new(lhs.s * rhs.s - lhs.v.x * rhs.v.x - lhs.v.y * rhs.v.y - lhs.v.z * rhs.v.z,
|
||||
lhs.s * rhs.v.x + lhs.v.x * rhs.s + lhs.v.y * rhs.v.z - lhs.v.z * rhs.v.y,
|
||||
lhs.s * rhs.v.y + lhs.v.y * rhs.s + lhs.v.z * rhs.v.x - lhs.v.x * rhs.v.z,
|
||||
lhs.s * rhs.v.z + lhs.v.z * rhs.s + lhs.v.x * rhs.v.y - lhs.v.y * rhs.v.x)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, 'b, S: BaseFloat> Mul<&'b Quaternion<S>> for &'a Quaternion<S> {
|
||||
type Output = Quaternion<S>;
|
||||
|
||||
#[inline]
|
||||
fn mul(self, other: &'b Quaternion<S>) -> Quaternion<S> {
|
||||
Quaternion::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z,
|
||||
self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y,
|
||||
self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z,
|
||||
self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x)
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
impl<S: BaseFloat> ApproxEq for Quaternion<S> {
|
||||
type Epsilon = S;
|
||||
|
@ -236,7 +271,7 @@ impl<S: BaseFloat> Quaternion<S> {
|
|||
let scale1 = sin(theta.mul_s(S::one() - amount));
|
||||
let scale2 = sin(theta.mul_s(amount));
|
||||
|
||||
&(&(self * scale1) + &(other * scale2)) * sin(theta).recip()
|
||||
(self * scale1 + other * scale2) * sin(theta).recip()
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -331,15 +366,6 @@ impl<S: BaseFloat> From<Quaternion<S>> for Matrix4<S> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<S: BaseFloat> Neg for Quaternion<S> {
|
||||
type Output = Quaternion<S>;
|
||||
|
||||
#[inline]
|
||||
fn neg(self) -> Quaternion<S> {
|
||||
Quaternion::from_sv(-self.s, -self.v)
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: BaseFloat> fmt::Debug for Quaternion<S> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
write!(f, "{:?} + {:?}i + {:?}j + {:?}k",
|
||||
|
@ -374,7 +400,7 @@ impl<S: BaseFloat> Rotation<Point3<S>> for Quaternion<S> {
|
|||
}
|
||||
|
||||
#[inline]
|
||||
fn rotate_vector(&self, vec: Vector3<S>) -> Vector3<S> { self * &vec }
|
||||
fn rotate_vector(&self, vec: Vector3<S>) -> Vector3<S> { self * vec }
|
||||
|
||||
#[inline]
|
||||
fn concat(&self, other: &Quaternion<S>) -> Quaternion<S> { self * other }
|
||||
|
@ -383,7 +409,7 @@ impl<S: BaseFloat> Rotation<Point3<S>> for Quaternion<S> {
|
|||
fn concat_self(&mut self, other: &Quaternion<S>) { *self = &*self * other; }
|
||||
|
||||
#[inline]
|
||||
fn invert(&self) -> Quaternion<S> { &self.conjugate() / self.magnitude2() }
|
||||
fn invert(&self) -> Quaternion<S> { self.conjugate() / self.magnitude2() }
|
||||
|
||||
#[inline]
|
||||
fn invert_self(&mut self) { *self = self.invert() }
|
||||
|
|
Loading…
Reference in a new issue