Update line intersection
*Change line<>line intersection to be ray<>line. *Update tests accordingly *Clean up and simplify intersection logic
This commit is contained in:
parent
4a45bf3b53
commit
814b845de7
2 changed files with 71 additions and 101 deletions
87
src/line.rs
87
src/line.rs
|
@ -17,9 +17,10 @@
|
|||
|
||||
use std::num::{Zero, zero, One, one};
|
||||
|
||||
use num::{BaseFloat, BaseNum};
|
||||
use num::{BaseNum, BaseFloat};
|
||||
use point::{Point, Point2, Point3};
|
||||
use vector::{Vector, Vector2};
|
||||
use ray::{Ray2};
|
||||
use intersect::Intersect;
|
||||
|
||||
/// A generic directed line segment from `origin` to `dest`.
|
||||
|
@ -38,71 +39,51 @@ impl<S: BaseNum, V: Vector<S>, P: Point<S, V>> Line<P> {
|
|||
pub type Line2<S> = Line<Point2<S>>;
|
||||
pub type Line3<S> = Line<Point3<S>>;
|
||||
|
||||
/// Determines if an intersection between two line segments is found. If the segments are
|
||||
/// collinear and overlapping, the intersection point that will be returned will be the first
|
||||
/// intersection point found by traversing the first line segment, starting at its origin.
|
||||
impl<S: BaseFloat> Intersect<Option<Point2<S>>> for (Line2<S>, Line2<S>) {
|
||||
/// Determines if an intersection between a ray and a line segments is found.
|
||||
impl<S: BaseFloat> Intersect<Option<Point2<S>>> for (Ray2<S>, Line2<S>) {
|
||||
fn intersection(&self) -> Option<Point2<S>> {
|
||||
match *self {
|
||||
(ref l1, ref l2) => {
|
||||
let p = l1.origin;
|
||||
let mut q = l2.origin;
|
||||
let r = Vector2::new(l1.dest.x - l1.origin.x, l1.dest.y - l1.origin.y);
|
||||
let mut s = Vector2::new(l2.dest.x - l2.origin.x, l2.dest.y - l2.origin.y);
|
||||
(ref ray, ref line) => {
|
||||
let p = ray.origin;
|
||||
let q = line.origin;
|
||||
let r = ray.direction;
|
||||
let s = Vector2::new(line.dest.x - line.origin.x, line.dest.y - line.origin.y);
|
||||
let zero: S = Zero::zero();
|
||||
|
||||
let cross = r.perp_dot(&s);
|
||||
let mut q_minus_p = Vector2::new(q.x - p.x, q.y - p.y);
|
||||
let mut p_minus_q = Vector2::new(p.x - q.x, p.y - q.y);
|
||||
let cross_r = q_minus_p.perp_dot(&r);
|
||||
let cross_s = q_minus_p.perp_dot(&s);
|
||||
let cross_1 = r.perp_dot(&s);
|
||||
let qmp = Vector2::new(q.x - p.x, q.y - p.y);
|
||||
let cross_2 = qmp.perp_dot(&r);
|
||||
|
||||
if cross.is_zero() {
|
||||
if cross_r.is_zero() {
|
||||
// line segments are collinear
|
||||
if cross_1 == zero {
|
||||
if cross_2 != zero {
|
||||
// parallel
|
||||
return None;
|
||||
}
|
||||
|
||||
// special case of both lines being the same single point
|
||||
if r.x == zero && r.y == zero && s.x == zero && s.y == zero && p == q {
|
||||
return Some(p);
|
||||
// collinear
|
||||
let q2mp = Vector2::new(line.dest.x - p.x, line.dest.y - p.y);
|
||||
let dot_1 = qmp.dot(&r);
|
||||
let dot_2 = q2mp.dot(&r);
|
||||
if (dot_1 <= zero && dot_2 >= zero) || (dot_1 >= zero && dot_2 <= zero) {
|
||||
return Some(p);
|
||||
}
|
||||
else if dot_1 >= zero && dot_2 >= zero {
|
||||
if dot_1 <= dot_2 {
|
||||
return Some(q);
|
||||
}
|
||||
|
||||
// ensure l2 (q,q+s) is pointing the same direction as l1 (p,p+r)
|
||||
// if it is not, then swap the two endpoints of the second segment.
|
||||
// If this is not done, the algorithm below will not find an
|
||||
// intersection if the two directed line segments point towards the
|
||||
// opposite segment's origin.
|
||||
if (r.x != zero && s.x != zero && r.x.signum() != s.x.signum()) ||
|
||||
(r.y != zero && s.y != zero && r.y.signum() != s.y.signum()) {
|
||||
q = Point2::new(q.x + s.x, q.y + s.y);
|
||||
s = Vector2::new(-s.x, -s.y);
|
||||
q_minus_p = Vector2::new(q.x - p.x, q.y - p.y);
|
||||
p_minus_q = Vector2::new(p.x - q.x, p.y - q.y);
|
||||
}
|
||||
let d1 = q_minus_p.dot(&r);
|
||||
let d2 = p_minus_q.dot(&s);
|
||||
let rdotr = r.dot(&r);
|
||||
let sdots = s.dot(&s);
|
||||
|
||||
// make sure to take into account that one or both of the segments could
|
||||
// be a single point (r.r or s.s = 0) and ignore that case
|
||||
if (rdotr > zero && zero <= d1 && d1 <= rdotr) ||
|
||||
(sdots > zero && zero <= d2 && d2 <= sdots) {
|
||||
// overlapping
|
||||
if (q_minus_p.x != zero && q_minus_p.x.signum() == r.x.signum()) ||
|
||||
(q_minus_p.y != zero && q_minus_p.y.signum() == r.y.signum()) {
|
||||
return Some(q);
|
||||
}
|
||||
return Some(p);
|
||||
else {
|
||||
return Some(line.dest);
|
||||
}
|
||||
}
|
||||
|
||||
// no overlap exists
|
||||
return None;
|
||||
}
|
||||
|
||||
let t = cross_s / cross;
|
||||
let u = cross_r / cross;
|
||||
let t = qmp.perp_dot(&s) / cross_1;
|
||||
let u = cross_2 / cross_1;
|
||||
|
||||
if zero <= t && t <= One::one() &&
|
||||
zero <= One::one() && u <= One::one() {
|
||||
if zero <= t && u >= zero && u <= One::one() {
|
||||
return Some(Point2::new(p.x + t*r.x, p.y + t*r.y));
|
||||
}
|
||||
|
||||
|
|
|
@ -19,65 +19,54 @@ extern crate cgmath;
|
|||
|
||||
use cgmath::line::*;
|
||||
use cgmath::point::*;
|
||||
use cgmath::ray::*;
|
||||
use cgmath::vector::*;
|
||||
use cgmath::intersect::Intersect;
|
||||
|
||||
#[test]
|
||||
fn test_line_intersection() {
|
||||
// collinear, origins pointing towards each other, first intersection
|
||||
// from l1.origin is in an endpoint in l2
|
||||
let l1 = Line::new(Point2::new(0.0f64, 0.0f64), Point2::new(10.0f64, 0.0f64));
|
||||
let l2 = Line::new(Point2::new(1.5f64, 0.0f64), Point2::new(0.5f64, 0.0f64));
|
||||
assert_eq!((l1, l2).intersection(), Some(Point2::new(0.5f64, 0.0f64)));
|
||||
// collinear, intersection is line dest
|
||||
let r1 = Ray::new(Point2::new(0.0f32, 0.0), Vector2::new(0.25, 0.0));
|
||||
let l1 = Line::new(Point2::new(1.5f32, 0.0), Point2::new(0.5, 0.0));
|
||||
assert_eq!((r1, l1).intersection(), Some(Point2::new(0.5, 0.0)));
|
||||
|
||||
// collinear, first intersection from p1.origin is at p1.origin itself
|
||||
let l3 = Line::new(Point2::new(0.0f64, 0.0f64), Point2::new(10.0f64, 0.0f64));
|
||||
let l4 = Line::new(Point2::new(-11.0f64, 0.0f64), Point2::new(1.0f64, 0.0f64));
|
||||
assert_eq!((l3, l4).intersection(), Some(Point2::new(0.0f64, 0.0f64)));
|
||||
// collinear, intersection is at ray origin
|
||||
let r2 = Ray::new(Point2::new(0.0f32, 0.0), Vector2::new(5.0, 0.0));
|
||||
let l2 = Line::new(Point2::new(-11.0f32, 0.0), Point2::new(1.0, 0.0));
|
||||
assert_eq!((r2, l2).intersection(), Some(Point2::new(0.0, 0.0)));
|
||||
|
||||
// no intersection
|
||||
let l5 = Line::new(Point2::new(5.0f64, 5.0f64), Point2::new(10.0f64, 6.0f64));
|
||||
let l6 = Line::new(Point2::new(5.0f64, 4.8f64), Point2::new(10.0f64, 4.1f64));
|
||||
assert_eq!((l5, l6).intersection(), None); // no intersection
|
||||
|
||||
// collinear, origins pointing same direction
|
||||
let l7 = Line::new(Point2::new(0.0f64, 1.0f64), Point2::new(0.0f64, 0.0f64));
|
||||
let l8 = Line::new(Point2::new(0.0f64, 0.5f64), Point2::new(0.0f64, -0.5f64));
|
||||
assert_eq!((l7, l8).intersection(), Some(Point2::new(0.0f64, 0.5f64)));
|
||||
// collinear, intersection is line origin
|
||||
let r3 = Ray::new(Point2::new(0.0f32, 1.0), Vector2::new(0.0, -0.25));
|
||||
let l3 = Line::new(Point2::new(0.0f32, 0.5), Point2::new(0.0, -0.5));
|
||||
assert_eq!((r3, l3).intersection(), Some(Point2::new(0.0, 0.5)));
|
||||
|
||||
// collinear, no overlap
|
||||
let l9 = Line::new(Point2::new(0.0f64, 0.0f64), Point2::new(3.0f64, 0.0f64));
|
||||
let l10 = Line::new(Point2::new(10.0f64, 0.0f64), Point2::new(5.0f64, 0.0f64));
|
||||
assert_eq!((l9, l10).intersection(), None);
|
||||
let r4 = Ray::new(Point2::new(0.0f32, 0.0), Vector2::new(3.0, 0.0));
|
||||
let l4 = Line::new(Point2::new(-10.0f32, 0.0), Point2::new(-5.0, 0.0));
|
||||
assert_eq!((r4, l4).intersection(), None);
|
||||
|
||||
// intersection found
|
||||
let l11 = Line::new(Point2::new(0.0f64, 0.0f64), Point2::new(10.0f64, 10.0f64));
|
||||
let l12 = Line::new(Point2::new(0.0f64, 10.0f64), Point2::new(10.0f64, 0.0f64));
|
||||
assert_eq!((l11, l12).intersection(), Some(Point2::new(5.0f64, 5.0f64)));
|
||||
// no intersection
|
||||
let r5 = Ray::new(Point2::new(5.0f32, 5.0), Vector2::new(40.0, 8.0));
|
||||
let l5 = Line::new(Point2::new(5.0f32, 4.8), Point2::new(10.0, 4.1));
|
||||
assert_eq!((r5, l5).intersection(), None); // no intersection
|
||||
|
||||
// special case of both lines being the same point
|
||||
let l13 = Line::new(Point2::new(0.0f64, 0.0f64), Point2::new(0.0f64, 0.0f64));
|
||||
let l14 = Line::new(Point2::new(0.0f64, 0.0f64), Point2::new(0.0f64, 0.0f64));
|
||||
assert_eq!((l13, l14).intersection(), Some(Point2::new(0.0f64, 0.0f64)));
|
||||
// non-collinear intersection
|
||||
let r6 = Ray::new(Point2::new(0.0f32, 0.0), Vector2::new(10.0, 10.0));
|
||||
let l6 = Line::new(Point2::new(0.0f32, 10.0), Point2::new(10.0, 0.0));
|
||||
assert_eq!((r6, l6).intersection(), Some(Point2::new(5.0, 5.0)));
|
||||
|
||||
// both lines are points that are distinct
|
||||
let l15 = Line::new(Point2::new(0.0f64, 0.0f64), Point2::new(0.0f64, 0.0f64));
|
||||
let l16 = Line::new(Point2::new(1.0f64, 0.0f64), Point2::new(1.0f64, 0.0f64));
|
||||
assert_eq!((l15, l16).intersection(), None);
|
||||
// line is a point that does not intersect
|
||||
let r7 = Ray::new(Point2::new(0.0f32, 0.0), Vector2::new(1.0, 1.0));
|
||||
let l7 = Line::new(Point2::new(1.0f32, 0.0), Point2::new(1.0, 0.0));
|
||||
assert_eq!((r7, l7).intersection(), None);
|
||||
|
||||
// one line is a point that intersects the other segment
|
||||
let l15 = Line::new(Point2::new(0.0f64, 0.0f64), Point2::new(10.0f64, 0.0f64));
|
||||
let l16 = Line::new(Point2::new(3.0f64, 0.0f64), Point2::new(3.0f64, 0.0f64));
|
||||
assert_eq!((l15, l16).intersection(), Some(Point2::new(3.0f64, 0.0f64)));
|
||||
// line is a point that does intersect
|
||||
let r8 = Ray::new(Point2::new(0.0f32, 0.0), Vector2::new(1.0, 0.0));
|
||||
let l8 = Line::new(Point2::new(3.0f32, 0.0), Point2::new(3.0, 0.0));
|
||||
assert_eq!((r8, l8).intersection(), Some(Point2::new(3.0, 0.0)));
|
||||
|
||||
// one line is a point that is collinear but does not intersect with
|
||||
// the other line
|
||||
let l17 = Line::new(Point2::new(0.0f64, 0.0f64), Point2::new(0.0f64, 0.0f64));
|
||||
let l18 = Line::new(Point2::new(1.0f64, 0.0f64), Point2::new(3.0f64, 0.0f64));
|
||||
assert_eq!((l17, l18).intersection(), None);
|
||||
|
||||
// one line is a point that is not collinear but does not intersect
|
||||
// with the other line
|
||||
let l19 = Line::new(Point2::new(0.0f64, 0.0f64), Point2::new(0.0f64, 0.0f64));
|
||||
let l20 = Line::new(Point2::new(1.0f64, 0.0f64), Point2::new(2.0f64, 10.0f64));
|
||||
assert_eq!((l19, l20).intersection(), None);
|
||||
// line is a collinear point but no intersection
|
||||
let r9 = Ray::new(Point2::new(0.0f32, 0.0), Vector2::new(1.0, 0.0));
|
||||
let l9 = Line::new(Point2::new(-1.0f32, 0.0), Point2::new(-1.0, 0.0));
|
||||
assert_eq!((r9, l9).intersection(), None);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue