Merge pull request #314 from bjz/angles

Angle updates
This commit is contained in:
Brendan Zabarauskas 2016-04-04 07:49:17 +10:00
commit 84c2c0ff8a
3 changed files with 161 additions and 33 deletions

View file

@ -21,11 +21,13 @@ This project adheres to [Semantic Versioning](http://semver.org/).
formatting.
- Marks vectors, points, matrices, and angles as `#[repr(C, packed)]`.
- Renames the `Vector::{length, length2}` functions to `Vector::{magnitude, magnitude2}`.
- Moved `Angle::new` to be directly implemented on the `Rad` and `Deg` types.
### Removed
- The non-mathematical operator trait implementations have been removed from
the `Vector` trait, in favor of the `ElementWise` trait.
- `Angle::equiv`.
## [v0.7.0] - 2015-12-23

View file

@ -34,6 +34,7 @@ use num::BaseFloat;
#[repr(C, packed)]
#[derive(Copy, Clone, PartialEq, PartialOrd, RustcEncodable, RustcDecodable)]
pub struct Rad<S> { pub s: S }
/// An angle, in degrees.
///
/// This type is marked as `#[repr(C, packed)]`.
@ -60,7 +61,12 @@ impl<S> From<Deg<S>> for Rad<S> where S: BaseFloat {
}
}
/// Operations on angles.
/// Angles and their associated trigonometric functions.
///
/// Typed angles allow for the writing of self-documenting code that makes it
/// clear when semantic violations have occured - for example, adding degrees to
/// radians, or adding a number to an angle.
///
pub trait Angle where
Self: Copy + Clone,
Self: PartialEq + PartialOrd,
@ -77,9 +83,6 @@ pub trait Angle where
{
type Unitless: BaseFloat;
/// Create an angle from a unitless value.
fn new(value: Self::Unitless) -> Self;
/// Return the angle, normalized to the range `[0, full_turn)`.
#[inline]
fn normalize(self) -> Self {
@ -87,55 +90,189 @@ pub trait Angle where
if rem < Self::zero() { rem + Self::full_turn() } else { rem }
}
/// Return the angle rotated by half a turn
/// Return the angle rotated by half a turn.
#[inline]
fn opposite(self) -> Self {
Self::normalize(self + Self::turn_div_2())
}
/// Returns the interior bisector of the two angles
/// Returns the interior bisector of the two angles.
#[inline]
fn bisect(self, other: Self) -> Self {
let half = cast(0.5f64).unwrap();
Self::normalize((self - other) * half + self)
}
/// The additive identity.
///
/// Adding this to another angle has no affect.
///
/// For example:
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Deg;
///
/// let v = Deg::new(180.0);
/// assert_eq!(v + Deg::zero(), v);
/// ```
fn zero() -> Self;
/// A full rotation.
fn full_turn() -> Self;
/// Half of a full rotation.
fn turn_div_2() -> Self;
/// A third of a full rotation.
fn turn_div_3() -> Self;
/// A quarter of a full rotation.
fn turn_div_4() -> Self;
/// A sixth of a full rotation.
fn turn_div_6() -> Self;
#[inline]
fn equiv(&self, other: &Self) -> bool {
self.normalize() == other.normalize()
}
/// Compute the sine of the angle, returning a unitless ratio.
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Rad;
///
/// let angle = Rad::new(35.0);
/// let ratio: f32 = Rad::sin(angle);
/// ```
fn sin(self) -> Self::Unitless;
/// Compute the cosine of the angle, returning a unitless ratio.
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Rad;
///
/// let angle = Rad::new(35.0);
/// let ratio: f32 = Rad::cos(angle);
/// ```
fn cos(self) -> Self::Unitless;
/// Compute the tangent of the angle, returning a unitless ratio.
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Rad;
///
/// let angle = Rad::new(35.0);
/// let ratio: f32 = Rad::tan(angle);
/// ```
fn tan(self) -> Self::Unitless;
/// Compute the sine and cosine of the angle, returning the result as a
/// pair.
///
/// This does not have any performance benefits, but calculating both the
/// sine and cosine of a single angle is a common operation.
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Rad;
///
/// let angle = Rad::new(35.0);
/// let (s, c) = Rad::sin_cos(angle);
/// ```
fn sin_cos(self) -> (Self::Unitless, Self::Unitless);
#[inline] fn cot(self) -> Self::Unitless { Self::tan(self).recip() }
#[inline] fn sec(self) -> Self::Unitless { Self::cos(self).recip() }
#[inline] fn csc(self) -> Self::Unitless { Self::sin(self).recip() }
/// Compute the cosecant of the angle.
///
/// This is the same as computing the reciprocal of `Self::sin`.
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Rad;
///
/// let angle = Rad::new(35.0);
/// let ratio: f32 = Rad::csc(angle);
/// ```
#[inline]
fn csc(self) -> Self::Unitless {
Self::sin(self).recip()
}
/// Compute the secant of the angle.
///
/// This is the same as computing the reciprocal of `Self::tan`.
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Rad;
///
/// let angle = Rad::new(35.0);
/// let ratio: f32 = Rad::cot(angle);
/// ```
#[inline]
fn cot(self) -> Self::Unitless {
Self::tan(self).recip()
}
/// Compute the cotatangent of the angle.
///
/// This is the same as computing the reciprocal of `Self::cos`.
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Rad;
///
/// let angle = Rad::new(35.0);
/// let ratio: f32 = Rad::sec(angle);
/// ```
#[inline]
fn sec(self) -> Self::Unitless {
Self::cos(self).recip()
}
/// Compute the arcsine of the ratio, returning the resulting angle.
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Rad;
///
/// let angle: Rad<f32> = Rad::asin(0.5);
/// ```
fn asin(ratio: Self::Unitless) -> Self;
/// Compute the arccosine of the ratio, returning the resulting angle.
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Rad;
///
/// let angle: Rad<f32> = Rad::acos(0.5);
/// ```
fn acos(ratio: Self::Unitless) -> Self;
/// Compute the arctangent of the ratio, returning the resulting angle.
///
/// ```rust
/// use cgmath::prelude::*;
/// use cgmath::Rad;
///
/// let angle: Rad<f32> = Rad::atan(0.5);
/// ```
fn atan(ratio: Self::Unitless) -> Self;
fn asin(a: Self::Unitless) -> Self;
fn acos(a: Self::Unitless) -> Self;
fn atan(a: Self::Unitless) -> Self;
fn atan2(a: Self::Unitless, b: Self::Unitless) -> Self;
}
macro_rules! impl_angle {
($Angle:ident, $fmt:expr, $full_turn:expr, $hi:expr) => {
impl<S: BaseFloat> Angle for $Angle<S> {
type Unitless = S;
impl<S: BaseFloat> $Angle<S> {
#[inline]
fn new(value: S) -> $Angle<S> {
pub fn new(value: S) -> $Angle<S> {
$Angle { s: value }
}
}
impl<S: BaseFloat> Angle for $Angle<S> {
type Unitless = S;
#[inline]
fn zero() -> $Angle<S> {

View file

@ -15,7 +15,7 @@
extern crate cgmath;
use cgmath::{Angle, Rad, Deg, rad, deg};
use cgmath::{Rad, Deg, rad, deg};
use cgmath::ApproxEq;
#[test]
@ -36,14 +36,3 @@ fn conv() {
let angle: Rad<_> = angle.into();
assert!(angle.approx_eq(&rad(30.0f64)));
}
#[test]
fn equiv() {
assert!(Deg::<f32>::full_turn().equiv(&-Deg::<f32>::full_turn()));
assert!(Deg::<f32>::turn_div_2().equiv(&-Deg::<f32>::turn_div_2()));
assert!((Deg::<f32>::turn_div_3() - Deg::<f32>::full_turn()).equiv(&Deg::<f32>::turn_div_3()));
assert!(Rad::<f32>::full_turn().equiv(&-Rad::<f32>::full_turn()));
assert!(Rad::<f32>::turn_div_2().equiv(&-Rad::<f32>::turn_div_2()));
assert!((Rad::<f32>::turn_div_3() - Rad::<f32>::full_turn()).equiv(&Rad::<f32>::turn_div_3()));
}