Merge pull request #147 from jameson-ernst/master
Add deriving Copy; Fix warnings
This commit is contained in:
commit
9cdb27b099
17 changed files with 30 additions and 44 deletions
|
@ -84,7 +84,7 @@ pub trait Aabb<S: BaseNum, V: Vector<S>, P: Point<S, V>> {
|
|||
}
|
||||
|
||||
/// A two-dimensional AABB, aka a rectangle.
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Aabb2<S> {
|
||||
pub min: Point2<S>,
|
||||
pub max: Point2<S>,
|
||||
|
@ -129,7 +129,7 @@ impl<S: BaseNum> fmt::Show for Aabb2<S> {
|
|||
}
|
||||
|
||||
/// A three-dimensional AABB, aka a rectangular prism.
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Aabb3<S> {
|
||||
pub min: Point3<S>,
|
||||
pub max: Point3<S>,
|
||||
|
|
22
src/angle.rs
22
src/angle.rs
|
@ -23,10 +23,10 @@ use approx::ApproxEq;
|
|||
use num::{BaseFloat, One, one, Zero, zero};
|
||||
|
||||
/// An angle, in radians
|
||||
#[deriving(Clone, PartialEq, PartialOrd, Hash, Encodable, Decodable, Rand)]
|
||||
#[deriving(Copy, Clone, PartialEq, PartialOrd, Hash, Encodable, Decodable, Rand)]
|
||||
pub struct Rad<S> { pub s: S }
|
||||
/// An angle, in degrees
|
||||
#[deriving(Clone, PartialEq, PartialOrd, Hash, Encodable, Decodable, Rand)]
|
||||
#[deriving(Copy, Clone, PartialEq, PartialOrd, Hash, Encodable, Decodable, Rand)]
|
||||
pub struct Deg<S> { pub s: S }
|
||||
|
||||
/// Create a new angle, in radians
|
||||
|
@ -77,7 +77,7 @@ pub trait Angle
|
|||
S: BaseFloat
|
||||
>
|
||||
: Clone + Zero
|
||||
+ PartialEq + Equiv<Self> + PartialOrd
|
||||
+ PartialEq + PartialOrd
|
||||
+ ApproxEq<S>
|
||||
+ Neg<Self>
|
||||
+ ToRad<S>
|
||||
|
@ -153,6 +153,8 @@ pub trait Angle
|
|||
#[inline] fn turn_div_3() -> Self { let full_turn: Self = Angle::full_turn(); full_turn.div_s(cast(3i).unwrap()) }
|
||||
#[inline] fn turn_div_4() -> Self { let full_turn: Self = Angle::full_turn(); full_turn.div_s(cast(4i).unwrap()) }
|
||||
#[inline] fn turn_div_6() -> Self { let full_turn: Self = Angle::full_turn(); full_turn.div_s(cast(6i).unwrap()) }
|
||||
|
||||
#[inline] fn equiv(&self, other: &Self) -> bool { self.normalize() == other.normalize() }
|
||||
}
|
||||
|
||||
#[inline] pub fn bisect<S: BaseFloat, A: Angle<S>>(a: A, b: A) -> A { a.bisect(b) }
|
||||
|
@ -196,20 +198,6 @@ impl<S: BaseFloat> Mul<Deg<S>, Deg<S>> for Deg<S> { #[inline] fn mul(&self, othe
|
|||
impl<S: BaseFloat> One for Rad<S> { #[inline] fn one() -> Rad<S> { rad(one()) } }
|
||||
impl<S: BaseFloat> One for Deg<S> { #[inline] fn one() -> Deg<S> { deg(one()) } }
|
||||
|
||||
impl<S: BaseFloat>
|
||||
Equiv<Rad<S>> for Rad<S> {
|
||||
fn equiv(&self, other: &Rad<S>) -> bool {
|
||||
self.normalize() == other.normalize()
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: BaseFloat>
|
||||
Equiv<Deg<S>> for Deg<S> {
|
||||
fn equiv(&self, other: &Deg<S>) -> bool {
|
||||
self.normalize() == other.normalize()
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: BaseFloat>
|
||||
Angle<S> for Rad<S> {
|
||||
#[inline] fn from<A: Angle<S>>(theta: A) -> Rad<S> { theta.to_rad() }
|
||||
|
|
|
@ -15,8 +15,6 @@
|
|||
|
||||
#![crate_type = "rlib"]
|
||||
#![crate_type = "dylib"]
|
||||
#![comment = "A mathematics library for computer graphics."]
|
||||
#![license = "ASL2"]
|
||||
|
||||
#![feature(globs)]
|
||||
#![feature(macro_rules)]
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
use point::Point3;
|
||||
use vector::Vector3;
|
||||
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Cylinder<S> {
|
||||
pub center: Point3<S>,
|
||||
pub axis: Vector3<S>,
|
||||
|
|
|
@ -22,7 +22,7 @@ use plane::Plane;
|
|||
use point::Point3;
|
||||
use vector::{Vector, EuclideanVector};
|
||||
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Frustum<S> {
|
||||
pub left: Plane<S>,
|
||||
pub right: Plane<S>,
|
||||
|
@ -59,7 +59,7 @@ Frustum<S> {
|
|||
}
|
||||
}
|
||||
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct FrustumPoints<S> {
|
||||
pub near_top_left: Point3<S>,
|
||||
pub near_top_right: Point3<S>,
|
||||
|
|
|
@ -22,7 +22,7 @@ use ray::{Ray2};
|
|||
use intersect::Intersect;
|
||||
|
||||
/// A generic directed line segment from `origin` to `dest`.
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Line<P> {
|
||||
pub origin: P,
|
||||
pub dest: P,
|
||||
|
|
|
@ -29,15 +29,15 @@ use vector::{Vector, EuclideanVector};
|
|||
use vector::{Vector2, Vector3, Vector4};
|
||||
|
||||
/// A 2 x 2, column major matrix
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable, Rand)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable, Rand)]
|
||||
pub struct Matrix2<S> { pub x: Vector2<S>, pub y: Vector2<S> }
|
||||
|
||||
/// A 3 x 3, column major matrix
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable, Rand)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable, Rand)]
|
||||
pub struct Matrix3<S> { pub x: Vector3<S>, pub y: Vector3<S>, pub z: Vector3<S> }
|
||||
|
||||
/// A 4 x 4, column major matrix
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable, Rand)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable, Rand)]
|
||||
pub struct Matrix4<S> { pub x: Vector4<S>, pub y: Vector4<S>, pub z: Vector4<S>, pub w: Vector4<S> }
|
||||
|
||||
|
||||
|
|
|
@ -18,14 +18,14 @@
|
|||
use point::{Point2, Point3};
|
||||
use vector::{Vector2, Vector3};
|
||||
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Obb2<S> {
|
||||
pub center: Point2<S>,
|
||||
pub axis: Vector2<S>,
|
||||
pub extents: Vector2<S>,
|
||||
}
|
||||
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Obb3<S> {
|
||||
pub center: Point3<S>,
|
||||
pub axis: Vector3<S>,
|
||||
|
|
|
@ -39,7 +39,7 @@ use vector::{Vector, EuclideanVector};
|
|||
/// The `A*x + B*y + C*z - D = 0` form is preferred over the other common
|
||||
/// alternative, `A*x + B*y + C*z + D = 0`, because it tends to avoid
|
||||
/// superfluous negations (see _Real Time Collision Detection_, p. 55).
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Plane<S> {
|
||||
pub n: Vector3<S>,
|
||||
pub d: S,
|
||||
|
|
|
@ -26,11 +26,11 @@ use num::{BaseNum, BaseFloat, one, zero};
|
|||
use vector::*;
|
||||
|
||||
/// A point in 2-dimensional space.
|
||||
#[deriving(PartialEq, Clone, Hash, Encodable, Decodable)]
|
||||
#[deriving(PartialEq, Copy, Clone, Hash, Encodable, Decodable)]
|
||||
pub struct Point2<S> { pub x: S, pub y: S }
|
||||
|
||||
/// A point in 3-dimensional space.
|
||||
#[deriving(PartialEq, Clone, Hash, Encodable, Decodable)]
|
||||
#[deriving(PartialEq, Copy, Clone, Hash, Encodable, Decodable)]
|
||||
pub struct Point3<S> { pub x: S, pub y: S, pub z: S }
|
||||
|
||||
|
||||
|
|
|
@ -69,7 +69,7 @@ pub trait Projection<S>: ToMatrix4<S> {
|
|||
}
|
||||
|
||||
/// A perspective projection based on a vertical field-of-view angle.
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct PerspectiveFov<S, A> {
|
||||
pub fovy: A,
|
||||
pub aspect: S,
|
||||
|
@ -143,7 +143,7 @@ impl<S: BaseFloat, A: Angle<S>> ToMatrix4<S> for PerspectiveFov<S, A> {
|
|||
}
|
||||
|
||||
/// A perspective projection with arbitrary left/right/bottom/top distances
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Perspective<S> {
|
||||
pub left: S, right: S,
|
||||
pub bottom: S, top: S,
|
||||
|
@ -193,7 +193,7 @@ impl<S: BaseFloat + 'static> ToMatrix4<S> for Perspective<S> {
|
|||
}
|
||||
|
||||
/// An orthographic projection with arbitrary left/right/bottom/top distances
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Ortho<S> {
|
||||
pub left: S, right: S,
|
||||
pub bottom: S, top: S,
|
||||
|
|
|
@ -29,7 +29,7 @@ use vector::{Vector3, Vector, EuclideanVector};
|
|||
|
||||
/// A [quaternion](https://en.wikipedia.org/wiki/Quaternion) in scalar/vector
|
||||
/// form.
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable, Rand)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable, Rand)]
|
||||
pub struct Quaternion<S> { pub s: S, pub v: Vector3<S> }
|
||||
|
||||
/// Represents types which can be expressed as a quaternion.
|
||||
|
|
|
@ -19,7 +19,7 @@ use vector::{Vector, Vector2, Vector3};
|
|||
|
||||
/// A generic ray starting at `origin` and extending infinitely in
|
||||
/// `direction`.
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Ray<P,V> {
|
||||
pub origin: P,
|
||||
pub direction: V,
|
||||
|
|
|
@ -161,7 +161,7 @@ pub trait Rotation3<S: BaseNum>: Rotation<S, Vector3<S>, Point3<S>>
|
|||
/// let unit_y3 = rot_half.concat(&rot_half).rotate_vector(&unit_x);
|
||||
/// assert!(unit_y3.approx_eq(&unit_y2));
|
||||
/// ```
|
||||
#[deriving(PartialEq, Clone, Encodable, Decodable)]
|
||||
#[deriving(PartialEq, Copy, Clone, Encodable, Decodable)]
|
||||
pub struct Basis2<S> {
|
||||
mat: Matrix2<S>
|
||||
}
|
||||
|
@ -239,7 +239,7 @@ impl<S: BaseFloat + 'static> Rotation2<S> for Basis2<S> {
|
|||
/// inversion, can be implemented more efficiently than the implementations for
|
||||
/// `math::Matrix3`. To ensure orthogonality is maintained, the operations have
|
||||
/// been restricted to a subeset of those implemented on `Matrix3`.
|
||||
#[deriving(PartialEq, Clone, Encodable, Decodable)]
|
||||
#[deriving(PartialEq, Copy, Clone, Encodable, Decodable)]
|
||||
pub struct Basis3<S> {
|
||||
mat: Matrix3<S>
|
||||
}
|
||||
|
|
|
@ -21,7 +21,7 @@ use point::{Point, Point3};
|
|||
use ray::Ray3;
|
||||
use vector::Vector;
|
||||
|
||||
#[deriving(Clone, PartialEq, Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, PartialEq, Encodable, Decodable)]
|
||||
pub struct Sphere<S> {
|
||||
pub center: Point3<S>,
|
||||
pub radius: S,
|
||||
|
|
|
@ -76,7 +76,7 @@ pub trait Transform<S: BaseNum, V: Vector<S>, P: Point<S,V>> {
|
|||
|
||||
/// A generic transformation consisting of a rotation,
|
||||
/// displacement vector and scale amount.
|
||||
#[deriving(Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, Encodable, Decodable)]
|
||||
pub struct Decomposed<S, V, R> {
|
||||
pub scale: S,
|
||||
pub rot: R,
|
||||
|
@ -159,7 +159,7 @@ impl<S: BaseFloat, R: fmt::Show + Rotation3<S>> fmt::Show for Decomposed<S,Vecto
|
|||
}
|
||||
|
||||
/// A homogeneous transformation matrix.
|
||||
#[deriving(Encodable, Decodable)]
|
||||
#[deriving(Copy, Clone, Encodable, Decodable)]
|
||||
pub struct AffineMatrix3<S> {
|
||||
pub mat: Matrix4<S>,
|
||||
}
|
||||
|
|
|
@ -177,7 +177,7 @@ pub trait Vector<S: BaseNum>: Array1<S> + Zero + One + Neg<Self> {
|
|||
// Utility macro for generating associated functions for the vectors
|
||||
macro_rules! vec(
|
||||
($Self:ident <$S:ident> { $($field:ident),+ }, $n:expr) => (
|
||||
#[deriving(PartialEq, Eq, Clone, Hash, Encodable, Decodable, Rand)]
|
||||
#[deriving(PartialEq, Eq, Copy, Clone, Hash, Encodable, Decodable, Rand)]
|
||||
pub struct $Self<S> { $(pub $field: S),+ }
|
||||
|
||||
impl<$S> $Self<$S> {
|
||||
|
|
Loading…
Reference in a new issue