Untangle mat macros

This commit is contained in:
Brendan Zabarauskas 2013-07-04 10:40:58 +10:00
parent 1819846a4c
commit c91b0747b3
2 changed files with 972 additions and 853 deletions

1281
src/mat.rs

File diff suppressed because it is too large Load diff

View file

@ -1,508 +0,0 @@
// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#[macro_escape];
macro_rules! impl_mat(
($Mat:ident, $Vec:ident) => (
impl<T> $Mat<T> {
#[inline]
pub fn col<'a>(&'a self, i: uint) -> &'a $Vec<T> {
self.index(i)
}
#[inline]
pub fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut $Vec<T> {
self.index_mut(i)
}
#[inline]
pub fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T {
self.index(i).index(j)
}
#[inline]
pub fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T {
self.index_mut(i).index_mut(j)
}
}
)
)
macro_rules! impl_mat_clonable(
($Mat:ident, $Vec:ident) => (
impl<T:Clone> $Mat<T> {
#[inline]
pub fn row(&self, i: uint) -> $Vec<T> {
$Vec::from_slice(self.map(|c| c.index(i).clone()))
}
#[inline]
pub fn swap_cols(&mut self, a: uint, b: uint) {
let tmp = self.col(a).clone();
*self.col_mut(a) = self.col(b).clone();
*self.col_mut(b) = tmp;
}
#[inline]
pub fn swap_rows(&mut self, a: uint, b: uint) {
self.map_mut(|x| x.swap(a, b))
}
#[inline]
pub fn swap_elem(&mut self, (ai, aj): (uint, uint), (bi, bj): (uint, uint)) {
let tmp = self.elem(ai, aj).clone();
*self.elem_mut(ai, aj) = self.elem(bi, bj).clone();
*self.elem_mut(bi, bj) = tmp;
}
#[inline] pub fn transpose(&self) -> $Mat<T> { mat_transpose!($Mat) }
#[inline] pub fn transpose_self(&mut self) { mat_transpose_self!($Mat) }
}
)
)
macro_rules! mat_transpose(
(Mat2) => (
Mat2::new(self.elem(0, 0).clone(), self.elem(1, 0).clone(),
self.elem(0, 1).clone(), self.elem(1, 1).clone())
);
(Mat3) => (
Mat3::new(self.elem(0, 0).clone(), self.elem(1, 0).clone(), self.elem(2, 0).clone(),
self.elem(0, 1).clone(), self.elem(1, 1).clone(), self.elem(2, 1).clone(),
self.elem(0, 2).clone(), self.elem(1, 2).clone(), self.elem(2, 2).clone())
);
(Mat4) => (
Mat4::new(self.elem(0, 0).clone(), self.elem(1, 0).clone(), self.elem(2, 0).clone(), self.elem(3, 0).clone(),
self.elem(0, 1).clone(), self.elem(1, 1).clone(), self.elem(2, 1).clone(), self.elem(3, 1).clone(),
self.elem(0, 2).clone(), self.elem(1, 2).clone(), self.elem(2, 2).clone(), self.elem(3, 2).clone(),
self.elem(0, 3).clone(), self.elem(1, 3).clone(), self.elem(2, 3).clone(), self.elem(3, 3).clone())
);
)
macro_rules! mat_transpose_self(
(Mat2) => (
self.swap_elem((0, 1), (1, 0));
self.swap_elem((1, 0), (0, 1));
);
(Mat3) => (
self.swap_elem((0, 1), (1, 0));
self.swap_elem((0, 2), (2, 0));
self.swap_elem((1, 0), (0, 1));
self.swap_elem((1, 2), (2, 1));
self.swap_elem((2, 0), (0, 2));
self.swap_elem((2, 1), (1, 2));
);
(Mat4) => (
self.swap_elem((0, 1), (1, 0));
self.swap_elem((0, 2), (2, 0));
self.swap_elem((0, 3), (3, 0));
self.swap_elem((1, 0), (0, 1));
self.swap_elem((1, 2), (2, 1));
self.swap_elem((1, 3), (3, 1));
self.swap_elem((2, 0), (0, 2));
self.swap_elem((2, 1), (1, 2));
self.swap_elem((2, 3), (3, 2));
self.swap_elem((3, 0), (0, 3));
self.swap_elem((3, 1), (1, 3));
self.swap_elem((3, 2), (2, 3));
);
)
macro_rules! impl_mat_numeric(
($Mat:ident, $Vec:ident) => (
impl<T:Clone + Num> $Mat<T> {
#[inline]
pub fn from_value(value: T) -> $Mat<T> { mat_from_value!($Mat) }
#[inline]
pub fn identity() -> $Mat<T> { $Mat::from_value(one!(T)) }
#[inline]
pub fn zero() -> $Mat<T> { $Mat::from_value(zero!(T)) }
#[inline]
pub fn mul_t(&self, value: T) -> $Mat<T> {
$Mat::from_slice(self.map(|&c| c.mul_t(value.clone())))
}
#[inline]
pub fn mul_v(&self, vec: &$Vec<T>) -> $Vec<T> {
mat_mul_v!($Mat)
}
#[inline]
pub fn mul_m(&self, other: &$Mat<T>) -> $Mat<T> {
mat_mul_m!($Mat)
}
#[inline]
pub fn add_m(&self, other: &$Mat<T>) -> $Mat<T> {
$Mat::from_slice(self.zip(other, |a, b| a.add_v(b)))
}
#[inline]
pub fn sub_m(&self, other: &$Mat<T>) -> $Mat<T> {
$Mat::from_slice(self.zip(other, |a, b| a.sub_v(b)))
}
#[inline]
pub fn mul_self_t(&mut self, value: T) {
self.map_mut(|x| x.mul_self_t(value.clone()))
}
#[inline]
pub fn add_self_m(&mut self, other: &$Mat<T>) {
self.zip_mut(other, |a, b| a.add_self_v(b))
}
#[inline]
pub fn sub_self_m(&mut self, other: &$Mat<T>) {
self.zip_mut(other, |a, b| a.sub_self_v(b))
}
pub fn dot(&self, other: &$Mat<T>) -> T {
other.transpose().mul_m(self).trace()
}
pub fn determinant(&self) -> T {
mat_determinant!($Mat)
}
pub fn trace(&self) -> T {
mat_trace!($Mat)
}
#[inline]
pub fn to_identity(&mut self) {
*self = $Mat::identity();
}
#[inline]
pub fn to_zero(&mut self) {
*self = $Mat::zero();
}
}
)
)
macro_rules! mat_from_value(
(Mat2) => (
Mat2::new(value.clone(), zero!(T),
zero!(T), value.clone())
);
(Mat3) => (
Mat3::new(value.clone(), zero!(T), zero!(T),
zero!(T), value.clone(), zero!(T),
zero!(T), zero!(T), value.clone())
);
(Mat4) => (
Mat4::new(value.clone(), zero!(T), zero!(T), zero!(T),
zero!(T), value.clone(), zero!(T), zero!(T),
zero!(T), zero!(T), value.clone(), zero!(T),
zero!(T), zero!(T), zero!(T), value.clone())
);
)
macro_rules! mat_mul_v(
(Mat2) => (
Vec2::new(self.row(0).dot(vec),
self.row(1).dot(vec))
);
(Mat3) => (
Vec3::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec))
);
(Mat4) => (
Vec4::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec),
self.row(3).dot(vec))
);
)
macro_rules! mat_mul_m(
(Mat2) => (
Mat2::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)),
self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1)))
);
(Mat3) => (
Mat3::new(self.row(0).dot(other.col(0)),
self.row(1).dot(other.col(0)),
self.row(2).dot(other.col(0)),
self.row(0).dot(other.col(1)),
self.row(1).dot(other.col(1)),
self.row(2).dot(other.col(1)),
self.row(0).dot(other.col(2)),
self.row(1).dot(other.col(2)),
self.row(2).dot(other.col(2)))
);
(Mat4) => (
Mat4::new(self.row(0).dot(other.col(0)),
self.row(1).dot(other.col(0)),
self.row(2).dot(other.col(0)),
self.row(3).dot(other.col(0)),
self.row(0).dot(other.col(1)),
self.row(1).dot(other.col(1)),
self.row(2).dot(other.col(1)),
self.row(3).dot(other.col(1)),
self.row(0).dot(other.col(2)),
self.row(1).dot(other.col(2)),
self.row(2).dot(other.col(2)),
self.row(3).dot(other.col(2)),
self.row(0).dot(other.col(3)),
self.row(1).dot(other.col(3)),
self.row(2).dot(other.col(3)),
self.row(3).dot(other.col(3)))
);
)
macro_rules! mat_determinant(
(Mat2) => (
*self.elem(0, 0) *
*self.elem(1, 1) -
*self.elem(1, 0) *
*self.elem(0, 1)
);
(Mat3) => (
self.col(0).dot(&self.col(1).cross(self.col(2)))
);
(Mat4) => ({
let m0 = Mat3::new(self.elem(1, 1).clone(), self.elem(2, 1).clone(), self.elem(3, 1).clone(),
self.elem(1, 2).clone(), self.elem(2, 2).clone(), self.elem(3, 2).clone(),
self.elem(1, 3).clone(), self.elem(2, 3).clone(), self.elem(3, 3).clone());
let m1 = Mat3::new(self.elem(0, 1).clone(), self.elem(2, 1).clone(), self.elem(3, 1).clone(),
self.elem(0, 2).clone(), self.elem(2, 2).clone(), self.elem(3, 2).clone(),
self.elem(0, 3).clone(), self.elem(2, 3).clone(), self.elem(3, 3).clone());
let m2 = Mat3::new(self.elem(0, 1).clone(), self.elem(1, 1).clone(), self.elem(3, 1).clone(),
self.elem(0, 2).clone(), self.elem(1, 2).clone(), self.elem(3, 2).clone(),
self.elem(0, 3).clone(), self.elem(1, 3).clone(), self.elem(3, 3).clone());
let m3 = Mat3::new(self.elem(0, 1).clone(), self.elem(1, 1).clone(), self.elem(2, 1).clone(),
self.elem(0, 2).clone(), self.elem(1, 2).clone(), self.elem(2, 2).clone(),
self.elem(0, 3).clone(), self.elem(1, 3).clone(), self.elem(2, 3).clone());
self.elem(0, 0) * m0.determinant() -
self.elem(1, 0) * m1.determinant() +
self.elem(2, 0) * m2.determinant() -
self.elem(3, 0) * m3.determinant()
});
)
macro_rules! mat_trace(
(Mat2) => (*self.elem(0, 0) + *self.elem(1, 1));
(Mat3) => (*self.elem(0, 0) + *self.elem(1, 1) + *self.elem(2, 2));
(Mat4) => (*self.elem(0, 0) + *self.elem(1, 1) + *self.elem(2, 2) + *self.elem(3, 3));
)
macro_rules! impl_mat_approx_numeric(
($Mat:ident) => (
impl<T:Clone + Real + ApproxEq<T>> $Mat<T> {
#[inline]
pub fn inverse(&self) -> Option<$Mat<T>> {
mat_inverse!($Mat)
}
#[inline]
pub fn invert_self(&mut self) {
*self = self.inverse().expect("Couldn't invert the matrix!");
}
#[inline]
pub fn is_identity(&self) -> bool {
self.approx_eq(&$Mat::identity())
}
#[inline]
pub fn is_diagonal(&self) -> bool {
mat_is_diagonal!($Mat)
}
#[inline]
pub fn is_rotated(&self) -> bool {
!self.approx_eq(&$Mat::identity())
}
#[inline]
pub fn is_symmetric(&self) -> bool {
mat_is_symmetric!($Mat)
}
#[inline]
pub fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&zero!(T))
}
}
)
)
macro_rules! mat_inverse(
(Mat2) => ({
let d = self.determinant();
if d.approx_eq(&zero!(T)) {
None
} else {
Some(Mat2::new(self.elem(1, 1) / d, -self.elem(0, 1) / d,
-self.elem(1, 0) / d, self.elem(0, 0) / d))
}
});
(Mat3) => ({
let d = self.determinant();
if d.approx_eq(&zero!(T)) {
None
} else {
Some(Mat3::from_cols(self.col(1).cross(self.col(2)).div_t(d.clone()),
self.col(2).cross(self.col(0)).div_t(d.clone()),
self.col(0).cross(self.col(1)).div_t(d.clone())).transpose())
}
});
(Mat4) => ({
use std::uint;
let d = self.determinant();
if d.approx_eq(&zero!(T)) {
None
} else {
// Gauss Jordan Elimination with partial pivoting
// So take this matrix, A, augmented with the identity
// and essentially reduce [A|I]
let mut A = self.clone();
let mut I = Mat4::identity::<T>();
for uint::range(0, 4) |j| {
// Find largest element in col j
let mut i1 = j;
for uint::range(j + 1, 4) |i| {
if A.elem(j, i).abs() > A.elem(j, i1).abs() {
i1 = i;
}
}
// Swap columns i1 and j in A and I to
// put pivot on diagonal
A.swap_cols(i1, j);
I.swap_cols(i1, j);
// Scale col j to have a unit diagonal
let ajj = A.elem(j, j).clone();
I.col_mut(j).div_self_t(ajj.clone());
A.col_mut(j).div_self_t(ajj.clone());
// Eliminate off-diagonal elems in col j of A,
// doing identical ops to I
for uint::range(0, 4) |i| {
if i != j {
let ij_mul_aij = I.col(j).mul_t(A.elem(i, j).clone());
let aj_mul_aij = A.col(j).mul_t(A.elem(i, j).clone());
I.col_mut(i).sub_self_v(&ij_mul_aij);
A.col_mut(i).sub_self_v(&aj_mul_aij);
}
}
}
Some(I)
}
});
)
macro_rules! mat_is_diagonal(
(Mat2) => (
self.elem(0, 1).approx_eq(&zero!(T)) &&
self.elem(1, 0).approx_eq(&zero!(T))
);
(Mat3) => (
self.elem(0, 1).approx_eq(&zero!(T)) &&
self.elem(0, 2).approx_eq(&zero!(T)) &&
self.elem(1, 0).approx_eq(&zero!(T)) &&
self.elem(1, 2).approx_eq(&zero!(T)) &&
self.elem(2, 0).approx_eq(&zero!(T)) &&
self.elem(2, 1).approx_eq(&zero!(T))
);
(Mat4) => (
self.elem(0, 1).approx_eq(&zero!(T)) &&
self.elem(0, 2).approx_eq(&zero!(T)) &&
self.elem(0, 3).approx_eq(&zero!(T)) &&
self.elem(1, 0).approx_eq(&zero!(T)) &&
self.elem(1, 2).approx_eq(&zero!(T)) &&
self.elem(1, 3).approx_eq(&zero!(T)) &&
self.elem(2, 0).approx_eq(&zero!(T)) &&
self.elem(2, 1).approx_eq(&zero!(T)) &&
self.elem(2, 3).approx_eq(&zero!(T)) &&
self.elem(3, 0).approx_eq(&zero!(T)) &&
self.elem(3, 1).approx_eq(&zero!(T)) &&
self.elem(3, 2).approx_eq(&zero!(T))
);
)
macro_rules! mat_is_symmetric(
(Mat2) => (
self.elem(0, 1).approx_eq(self.elem(1, 0)) &&
self.elem(1, 0).approx_eq(self.elem(0, 1))
);
(Mat3) => (
self.elem(0, 1).approx_eq(self.elem(1, 0)) &&
self.elem(0, 2).approx_eq(self.elem(2, 0)) &&
self.elem(1, 0).approx_eq(self.elem(0, 1)) &&
self.elem(1, 2).approx_eq(self.elem(2, 1)) &&
self.elem(2, 0).approx_eq(self.elem(0, 2)) &&
self.elem(2, 1).approx_eq(self.elem(1, 2))
);
(Mat4) => (
self.elem(0, 1).approx_eq(self.elem(1, 0)) &&
self.elem(0, 2).approx_eq(self.elem(2, 0)) &&
self.elem(0, 3).approx_eq(self.elem(3, 0)) &&
self.elem(1, 0).approx_eq(self.elem(0, 1)) &&
self.elem(1, 2).approx_eq(self.elem(2, 1)) &&
self.elem(1, 3).approx_eq(self.elem(3, 1)) &&
self.elem(2, 0).approx_eq(self.elem(0, 2)) &&
self.elem(2, 1).approx_eq(self.elem(1, 2)) &&
self.elem(2, 3).approx_eq(self.elem(3, 2)) &&
self.elem(3, 0).approx_eq(self.elem(0, 3)) &&
self.elem(3, 1).approx_eq(self.elem(1, 3)) &&
self.elem(3, 2).approx_eq(self.elem(2, 3))
);
)
macro_rules! impl_mat_neg(
($Mat:ident) => (
impl<T:Clone + Num> Neg<$Mat<T>> for $Mat<T> {
#[inline]
pub fn neg(&self) -> $Mat<T> {
$Mat::from_slice(self.map(|&x| -x))
}
}
)
)