Merge pull request #347 from mhintz/matrixtransform
implement Transform for Matrix3 and Matrix4
This commit is contained in:
commit
d08d00659c
3 changed files with 126 additions and 39 deletions
151
src/matrix.rs
151
src/matrix.rs
|
@ -26,8 +26,9 @@ use angle::Rad;
|
|||
use approx::ApproxEq;
|
||||
use euler::Euler;
|
||||
use num::BaseFloat;
|
||||
use point::Point3;
|
||||
use point::{Point2, Point3};
|
||||
use quaternion::Quaternion;
|
||||
use transform::{Transform, Transform2, Transform3};
|
||||
use vector::{Vector2, Vector3, Vector4};
|
||||
|
||||
/// A 2 x 2, column major matrix
|
||||
|
@ -178,37 +179,6 @@ impl<S: BaseFloat> Matrix3<S> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<A> From<Euler<A>> for Matrix3<<A as Angle>::Unitless> where
|
||||
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
|
||||
{
|
||||
fn from(src: Euler<A>) -> Matrix3<A::Unitless> {
|
||||
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
|
||||
let (sx, cx) = Rad::sin_cos(src.x.into());
|
||||
let (sy, cy) = Rad::sin_cos(src.y.into());
|
||||
let (sz, cz) = Rad::sin_cos(src.z.into());
|
||||
|
||||
Matrix3::new(cy * cz, cy * sz, -sy,
|
||||
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy,
|
||||
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy)
|
||||
}
|
||||
}
|
||||
|
||||
impl<A> From<Euler<A>> for Matrix4<<A as Angle>::Unitless> where
|
||||
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
|
||||
{
|
||||
fn from(src: Euler<A>) -> Matrix4<A::Unitless> {
|
||||
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
|
||||
let (sx, cx) = Rad::sin_cos(src.x.into());
|
||||
let (sy, cy) = Rad::sin_cos(src.y.into());
|
||||
let (sz, cz) = Rad::sin_cos(src.z.into());
|
||||
|
||||
Matrix4::new(cy * cz, cy * sz, -sy, A::Unitless::zero(),
|
||||
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy, A::Unitless::zero(),
|
||||
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy, A::Unitless::zero(),
|
||||
A::Unitless::zero(), A::Unitless::zero(), A::Unitless::zero(), A::Unitless::one())
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: BaseFloat> Matrix4<S> {
|
||||
/// Create a new matrix, providing values for each index.
|
||||
#[inline]
|
||||
|
@ -786,6 +756,92 @@ impl<S: BaseFloat> ApproxEq for Matrix4<S> {
|
|||
}
|
||||
}
|
||||
|
||||
impl<S: BaseFloat> Transform<Point2<S>> for Matrix3<S> {
|
||||
fn one() -> Matrix3<S> {
|
||||
One::one()
|
||||
}
|
||||
|
||||
fn look_at(eye: Point2<S>, center: Point2<S>, up: Vector2<S>) -> Matrix3<S> {
|
||||
let dir = center - eye;
|
||||
Matrix3::from(Matrix2::look_at(dir, up))
|
||||
}
|
||||
|
||||
fn transform_vector(&self, vec: Vector2<S>) -> Vector2<S> {
|
||||
(self * vec.extend(S::zero())).truncate()
|
||||
}
|
||||
|
||||
fn transform_point(&self, point: Point2<S>) -> Point2<S> {
|
||||
Point2::from_vec((self * Point3::new(point.x, point.y, S::one()).to_vec()).truncate())
|
||||
}
|
||||
|
||||
fn concat(&self, other: &Matrix3<S>) -> Matrix3<S> {
|
||||
self * other
|
||||
}
|
||||
|
||||
fn inverse_transform(&self) -> Option<Matrix3<S>> {
|
||||
SquareMatrix::invert(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: BaseFloat> Transform<Point3<S>> for Matrix3<S> {
|
||||
fn one() -> Matrix3<S> {
|
||||
One::one()
|
||||
}
|
||||
|
||||
fn look_at(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix3<S> {
|
||||
let dir = center - eye;
|
||||
Matrix3::look_at(dir, up)
|
||||
}
|
||||
|
||||
fn transform_vector(&self, vec: Vector3<S>) -> Vector3<S> {
|
||||
self * vec
|
||||
}
|
||||
|
||||
fn transform_point(&self, point: Point3<S>) -> Point3<S> {
|
||||
Point3::from_vec(self * point.to_vec())
|
||||
}
|
||||
|
||||
fn concat(&self, other: &Matrix3<S>) -> Matrix3<S> {
|
||||
self * other
|
||||
}
|
||||
|
||||
fn inverse_transform(&self) -> Option<Matrix3<S>> {
|
||||
SquareMatrix::invert(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: BaseFloat> Transform<Point3<S>> for Matrix4<S> {
|
||||
fn one() -> Matrix4<S> {
|
||||
One::one()
|
||||
}
|
||||
|
||||
fn look_at(eye: Point3<S>, center: Point3<S>, up: Vector3<S>) -> Matrix4<S> {
|
||||
Matrix4::look_at(eye, center, up)
|
||||
}
|
||||
|
||||
fn transform_vector(&self, vec: Vector3<S>) -> Vector3<S> {
|
||||
(self * vec.extend(S::zero())).truncate()
|
||||
}
|
||||
|
||||
fn transform_point(&self, point: Point3<S>) -> Point3<S> {
|
||||
Point3::from_homogeneous(self * point.to_homogeneous())
|
||||
}
|
||||
|
||||
fn concat(&self, other: &Matrix4<S>) -> Matrix4<S> {
|
||||
self * other
|
||||
}
|
||||
|
||||
fn inverse_transform(&self) -> Option<Matrix4<S>> {
|
||||
SquareMatrix::invert(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: BaseFloat> Transform2<S> for Matrix3<S> {}
|
||||
|
||||
impl<S: BaseFloat> Transform3<S> for Matrix3<S> {}
|
||||
|
||||
impl<S: BaseFloat> Transform3<S> for Matrix4<S> {}
|
||||
|
||||
macro_rules! impl_operators {
|
||||
($MatrixN:ident, $VectorN:ident { $($field:ident : $row_index:expr),+ }) => {
|
||||
impl_operator!(<S: BaseFloat> Neg for $MatrixN<S> {
|
||||
|
@ -936,6 +992,37 @@ index_operators!(Matrix4<S>, 4, Vector4<S>, usize);
|
|||
// index_operators!(Matrix3<S>, 3, [Vector3<S>], RangeFull);
|
||||
// index_operators!(Matrix4<S>, 4, [Vector4<S>], RangeFull);
|
||||
|
||||
impl<A> From<Euler<A>> for Matrix3<<A as Angle>::Unitless> where
|
||||
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
|
||||
{
|
||||
fn from(src: Euler<A>) -> Matrix3<A::Unitless> {
|
||||
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
|
||||
let (sx, cx) = Rad::sin_cos(src.x.into());
|
||||
let (sy, cy) = Rad::sin_cos(src.y.into());
|
||||
let (sz, cz) = Rad::sin_cos(src.z.into());
|
||||
|
||||
Matrix3::new(cy * cz, cy * sz, -sy,
|
||||
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy,
|
||||
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy)
|
||||
}
|
||||
}
|
||||
|
||||
impl<A> From<Euler<A>> for Matrix4<<A as Angle>::Unitless> where
|
||||
A: Angle + Into<Rad<<A as Angle>::Unitless>>,
|
||||
{
|
||||
fn from(src: Euler<A>) -> Matrix4<A::Unitless> {
|
||||
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
|
||||
let (sx, cx) = Rad::sin_cos(src.x.into());
|
||||
let (sy, cy) = Rad::sin_cos(src.y.into());
|
||||
let (sz, cz) = Rad::sin_cos(src.z.into());
|
||||
|
||||
Matrix4::new(cy * cz, cy * sz, -sy, A::Unitless::zero(),
|
||||
-cx * sz + sx * sy * cz, cx * cz + sx * sy * sz, sx * cy, A::Unitless::zero(),
|
||||
sx * sz + cx * sy * cz, -sx * cz + cx * sy * sz, cx * cy, A::Unitless::zero(),
|
||||
A::Unitless::zero(), A::Unitless::zero(), A::Unitless::zero(), A::Unitless::one())
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! fixed_array_conversions {
|
||||
($MatrixN:ident <$S:ident> { $($field:ident : $index:expr),+ }, $n:expr) => {
|
||||
impl<$S> Into<[[$S; $n]; $n]> for $MatrixN<$S> {
|
||||
|
|
|
@ -53,7 +53,7 @@ pub trait Transform<P: EuclideanSpace>: Sized {
|
|||
fn concat(&self, other: &Self) -> Self;
|
||||
|
||||
/// Create a transform that "un-does" this one.
|
||||
fn invert(&self) -> Option<Self>;
|
||||
fn inverse_transform(&self) -> Option<Self>;
|
||||
|
||||
/// Combine this transform with another, in-place.
|
||||
#[inline]
|
||||
|
@ -64,8 +64,8 @@ pub trait Transform<P: EuclideanSpace>: Sized {
|
|||
/// Invert this transform in-place, failing if the transformation is not
|
||||
/// invertible.
|
||||
#[inline]
|
||||
fn invert_self(&mut self) {
|
||||
*self = self.invert().unwrap()
|
||||
fn to_inverse(&mut self) {
|
||||
*self = self.inverse_transform().unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -122,7 +122,7 @@ impl<P: EuclideanSpace, R: Rotation<P>> Transform<P> for Decomposed<P::Diff, R>
|
|||
}
|
||||
}
|
||||
|
||||
fn invert(&self) -> Option<Decomposed<P::Diff, R>> {
|
||||
fn inverse_transform(&self) -> Option<Decomposed<P::Diff, R>> {
|
||||
if self.scale.approx_eq(&P::Scalar::zero()) {
|
||||
None
|
||||
} else {
|
||||
|
@ -196,8 +196,8 @@ impl<S: BaseFloat> Transform<Point3<S>> for AffineMatrix3<S> {
|
|||
}
|
||||
|
||||
#[inline]
|
||||
fn invert(&self) -> Option<AffineMatrix3<S>> {
|
||||
self.mat.invert().map(|m| AffineMatrix3{ mat: m })
|
||||
fn inverse_transform(&self) -> Option<AffineMatrix3<S>> {
|
||||
SquareMatrix::invert(& self.mat).map(|m| AffineMatrix3{ mat: m })
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -26,7 +26,7 @@ fn test_invert() {
|
|||
rot: Quaternion::new(0.5f64,0.5,0.5,0.5),
|
||||
disp: Vector3::new(6.0f64,-7.0,8.0)
|
||||
};
|
||||
let ti = t.invert().expect("Expected successful inversion");
|
||||
let ti = t.inverse_transform().expect("Expected successful inversion");
|
||||
let vt = t.transform_vector(v);
|
||||
assert!(v.approx_eq(&ti.transform_vector(vt)));
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue