Merge pull request #455 from derekdreery/is_finite

Add is_finite method to vectors and matrices.
This commit is contained in:
Brendan Zabarauskas 2018-04-30 19:12:06 +10:00 committed by GitHub
commit f052bf0c9c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 67 additions and 0 deletions

View file

@ -106,6 +106,11 @@ impl<S: BaseFloat> Matrix2<S> {
Matrix2::new(c, s, -s, c)
}
/// Are all entries in the matrix finite.
pub fn is_finite(&self) -> bool {
self.x.is_finite() && self.y.is_finite()
}
}
impl<S: BaseFloat> Matrix3<S> {
@ -205,6 +210,11 @@ impl<S: BaseFloat> Matrix3<S> {
_1subc * axis.z * axis.z + c,
)
}
/// Are all entries in the matrix finite.
pub fn is_finite(&self) -> bool {
self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
}
}
impl<S: BaseFloat> Matrix4<S> {
@ -357,6 +367,11 @@ impl<S: BaseFloat> Matrix4<S> {
S::zero(), S::zero(), S::zero(), S::one(),
)
}
/// Are all entries in the matrix finite.
pub fn is_finite(&self) -> bool {
self.w.is_finite() && self.x.is_finite() && self.y.is_finite() && self.z.is_finite()
}
}
impl<S: BaseFloat> Zero for Matrix2<S> {

View file

@ -118,6 +118,10 @@ macro_rules! impl_point {
fn product(self) -> S where S: Mul<Output = S> {
fold_array!(mul, { $(self.$field),+ })
}
fn is_finite(&self) -> bool where S: BaseFloat {
$(self.$field.is_finite())&&+
}
}
impl<S: NumCast + Copy> $PointN<S> {

View file

@ -173,6 +173,10 @@ impl<S: BaseFloat> Quaternion<S> {
(self * scale1 + other * scale2) * Rad::sin(theta).recip()
}
}
pub fn is_finite(&self) -> bool {
self.s.is_finite() && self.v.is_finite()
}
}
impl<S: BaseFloat> Zero for Quaternion<S> {

View file

@ -87,6 +87,11 @@ where
fn product(self) -> Self::Element
where
Self::Element: Mul<Output = <Self as Array>::Element>;
/// Whether all elements of the array are finite
fn is_finite(&self) -> bool
where
Self::Element: BaseFloat;
}
/// Element-wise arithmetic operations. These are supplied for pragmatic

View file

@ -163,6 +163,10 @@ macro_rules! impl_vector {
fn product(self) -> S where S: Mul<Output = S> {
fold_array!(mul, { $(self.$field),+ })
}
fn is_finite(&self) -> bool where S: BaseFloat {
$(self.$field.is_finite())&&+
}
}
impl<S: BaseNum> Zero for $VectorN<S> {
@ -353,6 +357,13 @@ macro_rules! impl_vector_default {
$VectorN::new($($field),+)
}
impl<S: BaseFloat> $VectorN<S> {
/// True if all entries in the vector are finite
pub fn is_finite(&self) -> bool {
$(self.$field.is_finite())&&+
}
}
impl<S: NumCast + Copy> $VectorN<S> {
/// Component-wise casting to another type.
#[inline]
@ -398,6 +409,10 @@ macro_rules! impl_vector_default {
fn product(self) -> S where S: Mul<Output = S> {
fold_array!(mul, { $(self.$field),+ })
}
fn is_finite(&self) -> bool where S: BaseFloat {
$(self.$field.is_finite())&&+
}
}
impl<S: BaseNum> Zero for $VectorN<S> {
@ -1323,6 +1338,14 @@ mod tests {
assert_eq!(v, &VECTOR2);
}
}
#[test]
fn test_is_finite() {
use num_traits::Float;
assert!(!Vector2::from([Float::nan(), 1.0]).is_finite());
assert!(!Vector2::from([1.0, Float::infinity()]).is_finite());
assert!(Vector2::from([-1.0, 1.0]).is_finite());
}
}
mod vector3 {
@ -1428,6 +1451,14 @@ mod tests {
assert_eq!(v, &VECTOR3);
}
}
#[test]
fn test_is_finite() {
use num_traits::Float;
assert!(!Vector3::from([Float::nan(), 1.0, 1.0]).is_finite());
assert!(!Vector3::from([1.0, 1.0, Float::infinity()]).is_finite());
assert!(Vector3::from([-1.0, 1.0, 1.0]).is_finite());
}
}
mod vector4 {
@ -1539,5 +1570,13 @@ mod tests {
assert_eq!(v, &VECTOR4);
}
}
#[test]
fn test_is_finite() {
use num_traits::Float;
assert!(!Vector4::from([0.0, Float::nan(), 1.0, 1.0]).is_finite());
assert!(!Vector4::from([1.0, 1.0, Float::neg_infinity(), 0.0]).is_finite());
assert!(Vector4::from([-1.0, 0.0, 1.0, 1.0]).is_finite());
}
}
}