Re-organise modules

This commit is contained in:
Brendan Zabarauskas 2013-06-12 10:02:39 +10:00
parent 21ae345adc
commit f226ab2262
10 changed files with 2885 additions and 2764 deletions

1426
src/mat.rs

File diff suppressed because it is too large Load diff

379
src/mat2.rs Normal file
View file

@ -0,0 +1,379 @@
// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cast::transmute;
use std::cmp::ApproxEq;
use std::num::{Zero, One};
use vec::*;
use super::{Mat3, Mat4};
#[deriving(Eq)]
pub struct Mat2<T> { x: Vec2<T>, y: Vec2<T> }
impl<T> Mat2<T> {
#[inline]
pub fn col<'a>(&'a self, i: uint) -> &'a Vec2<T> {
&'a self.as_slice()[i]
}
#[inline]
pub fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec2<T> {
&'a mut self.as_mut_slice()[i]
}
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [Vec2<T>,..2] {
unsafe { transmute(self) }
}
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [Vec2<T>,..2] {
unsafe { transmute(self) }
}
#[inline]
pub fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T {
self.col(i).index(j)
}
#[inline]
pub fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T {
self.col_mut(i).index_mut(j)
}
}
impl<T:Copy> Mat2<T> {
/// Construct a 2 x 2 matrix
///
/// # Arguments
///
/// - `c0r0`, `c0r1`: the first column of the matrix
/// - `c1r0`, `c1r1`: the second column of the matrix
///
/// ~~~
/// c0 c1
/// +------+------+
/// r0 | c0r0 | c1r0 |
/// +------+------+
/// r1 | c0r1 | c1r1 |
/// +------+------+
/// ~~~
#[inline]
pub fn new(c0r0: T, c0r1: T,
c1r0: T, c1r1: T) -> Mat2<T> {
Mat2::from_cols(Vec2::new(c0r0, c0r1),
Vec2::new(c1r0, c1r1))
}
/// Construct a 2 x 2 matrix from column vectors
///
/// # Arguments
///
/// - `c0`: the first column vector of the matrix
/// - `c1`: the second column vector of the matrix
///
/// ~~~
/// c0 c1
/// +------+------+
/// r0 | c0.x | c1.x |
/// +------+------+
/// r1 | c0.y | c1.y |
/// +------+------+
/// ~~~
#[inline]
pub fn from_cols(c0: Vec2<T>,
c1: Vec2<T>) -> Mat2<T> {
Mat2 { x: c0, y: c1 }
}
#[inline]
pub fn row(&self, i: uint) -> Vec2<T> {
Vec2::new(*self.elem(0, i),
*self.elem(1, i))
}
#[inline]
pub fn swap_cols(&mut self, a: uint, b: uint) {
let tmp = *self.col(a);
*self.col_mut(a) = *self.col(b);
*self.col_mut(b) = tmp;
}
#[inline]
pub fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
}
#[inline]
pub fn transpose(&self) -> Mat2<T> {
Mat2::new(*self.elem(0, 0), *self.elem(1, 0),
*self.elem(0, 1), *self.elem(1, 1))
}
#[inline]
pub fn transpose_self(&mut self) {
let tmp01 = *self.elem(0, 1);
let tmp10 = *self.elem(1, 0);
*self.elem_mut(0, 1) = *self.elem(1, 0);
*self.elem_mut(1, 0) = *self.elem(0, 1);
*self.elem_mut(1, 0) = tmp01;
*self.elem_mut(0, 1) = tmp10;
}
}
impl<T:Copy + Num> Mat2<T> {
/// Construct a 2 x 2 diagonal matrix with the major diagonal set to `value`.
/// ~~~
/// c0 c1
/// +-----+-----+
/// r0 | val | 0 |
/// +-----+-----+
/// r1 | 0 | val |
/// +-----+-----+
/// ~~~
#[inline]
pub fn from_value(value: T) -> Mat2<T> {
Mat2::new(value, Zero::zero(),
Zero::zero(), value)
}
/// Returns the multiplicative identity matrix
/// ~~~
/// c0 c1
/// +----+----+
/// r0 | 1 | 0 |
/// +----+----+
/// r1 | 0 | 1 |
/// +----+----+
/// ~~~
#[inline]
pub fn identity() -> Mat2<T> {
Mat2::new(One::one::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), One::one::<T>())
}
/// Returns the additive identity matrix
/// ~~~
/// c0 c1
/// +----+----+
/// r0 | 0 | 0 |
/// +----+----+
/// r1 | 0 | 0 |
/// +----+----+
/// ~~~
#[inline]
pub fn zero() -> Mat2<T> {
Mat2::new(Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn mul_t(&self, value: T) -> Mat2<T> {
Mat2::from_cols(self.col(0).mul_t(value),
self.col(1).mul_t(value))
}
#[inline]
pub fn mul_v(&self, vec: &Vec2<T>) -> Vec2<T> {
Vec2::new(self.row(0).dot(vec),
self.row(1).dot(vec))
}
#[inline]
pub fn add_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self.col(0).add_v(other.col(0)),
self.col(1).add_v(other.col(1)))
}
#[inline]
pub fn sub_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::from_cols(self.col(0).sub_v(other.col(0)),
self.col(1).sub_v(other.col(1)))
}
#[inline]
pub fn mul_m(&self, other: &Mat2<T>) -> Mat2<T> {
Mat2::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)),
self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1)))
}
#[inline]
pub fn mul_self_t(&mut self, value: T) {
self.x.mul_self_t(value);
self.y.mul_self_t(value);
}
#[inline]
pub fn add_self_m(&mut self, other: &Mat2<T>) {
self.x.add_self_v(other.col(0));
self.y.add_self_v(other.col(1));
}
#[inline]
pub fn sub_self_m(&mut self, other: &Mat2<T>) {
self.x.sub_self_v(other.col(0));
self.y.sub_self_v(other.col(1));
}
pub fn dot(&self, other: &Mat2<T>) -> T {
other.transpose().mul_m(self).trace()
}
pub fn determinant(&self) -> T {
*self.col(0).index(0) *
*self.col(1).index(1) -
*self.col(1).index(0) *
*self.col(0).index(1)
}
pub fn trace(&self) -> T {
*self.col(0).index(0) +
*self.col(1).index(1)
}
#[inline]
pub fn to_identity(&mut self) {
*self = Mat2::identity();
}
#[inline]
pub fn to_zero(&mut self) {
*self = Mat2::zero();
}
/// Returns the the matrix with an extra row and column added
/// ~~~
/// c0 c1 c0 c1 c2
/// +----+----+ +----+----+----+
/// r0 | a | b | r0 | a | b | 0 |
/// +----+----+ +----+----+----+
/// r1 | c | d | => r1 | c | d | 0 |
/// +----+----+ +----+----+----+
/// r2 | 0 | 0 | 1 |
/// +----+----+----+
/// ~~~
#[inline]
pub fn to_mat3(&self) -> Mat3<T> {
Mat3::new(*self.elem(0, 0), *self.elem(0, 1), Zero::zero(),
*self.elem(1, 0), *self.elem(1, 1), Zero::zero(),
Zero::zero(), Zero::zero(), One::one())
}
/// Returns the the matrix with an extra two rows and columns added
/// ~~~
/// c0 c1 c0 c1 c2 c3
/// +----+----+ +----+----+----+----+
/// r0 | a | b | r0 | a | b | 0 | 0 |
/// +----+----+ +----+----+----+----+
/// r1 | c | d | => r1 | c | d | 0 | 0 |
/// +----+----+ +----+----+----+----+
/// r2 | 0 | 0 | 1 | 0 |
/// +----+----+----+----+
/// r3 | 0 | 0 | 0 | 1 |
/// +----+----+----+----+
/// ~~~
#[inline]
pub fn to_mat4(&self) -> Mat4<T> {
Mat4::new(*self.elem(0, 0), *self.elem(0, 1), Zero::zero(), Zero::zero(),
*self.elem(1, 0), *self.elem(1, 1), Zero::zero(), Zero::zero(),
Zero::zero(), Zero::zero(), One::one(), Zero::zero(),
Zero::zero(), Zero::zero(), Zero::zero(), One::one())
}
}
impl<T:Copy + Num> Neg<Mat2<T>> for Mat2<T> {
#[inline]
pub fn neg(&self) -> Mat2<T> {
Mat2::from_cols(-self.col(0), -self.col(1))
}
}
impl<T:Copy + Real> Mat2<T> {
#[inline]
pub fn from_angle(radians: T) -> Mat2<T> {
let cos_theta = radians.cos();
let sin_theta = radians.sin();
Mat2::new(cos_theta, -sin_theta,
sin_theta, cos_theta)
}
}
impl<T:Copy + Real + ApproxEq<T>> Mat2<T> {
#[inline]
pub fn inverse(&self) -> Option<Mat2<T>> {
let d = self.determinant();
if d.approx_eq(&Zero::zero()) {
None
} else {
Some(Mat2::new(self.elem(1, 1) / d, -self.elem(0, 1) / d,
-self.elem(1, 0) / d, self.elem(0, 0) / d))
}
}
#[inline]
pub fn invert_self(&mut self) {
*self = self.inverse().expect("Couldn't invert the matrix!");
}
#[inline]
pub fn is_identity(&self) -> bool {
self.approx_eq(&Mat2::identity())
}
#[inline]
pub fn is_diagonal(&self) -> bool {
self.elem(0, 1).approx_eq(&Zero::zero()) &&
self.elem(1, 0).approx_eq(&Zero::zero())
}
#[inline]
pub fn is_rotated(&self) -> bool {
!self.approx_eq(&Mat2::identity())
}
#[inline]
pub fn is_symmetric(&self) -> bool {
self.elem(0, 1).approx_eq(self.elem(1, 0)) &&
self.elem(1, 0).approx_eq(self.elem(0, 1))
}
#[inline]
pub fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&Zero::zero())
}
}
impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Mat2<T> {
#[inline]
pub fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline]
pub fn approx_eq(&self, other: &Mat2<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline]
pub fn approx_eq_eps(&self, other: &Mat2<T>, epsilon: &T) -> bool {
self.col(0).approx_eq_eps(other.col(0), epsilon) &&
self.col(1).approx_eq_eps(other.col(1), epsilon)
}
}

550
src/mat3.rs Normal file
View file

@ -0,0 +1,550 @@
// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cast::transmute;
use std::cmp::ApproxEq;
use std::num::{Zero, One};
use vec::*;
use quat::Quat;
use super::Mat4;
#[deriving(Eq)]
pub struct Mat3<T> { x: Vec3<T>, y: Vec3<T>, z: Vec3<T> }
impl<T> Mat3<T> {
#[inline]
pub fn col<'a>(&'a self, i: uint) -> &'a Vec3<T> {
&'a self.as_slice()[i]
}
#[inline]
pub fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec3<T> {
&'a mut self.as_mut_slice()[i]
}
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [Vec3<T>,..3] {
unsafe { transmute(self) }
}
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [Vec3<T>,..3] {
unsafe { transmute(self) }
}
#[inline]
pub fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T {
self.col(i).index(j)
}
#[inline]
pub fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T {
self.col_mut(i).index_mut(j)
}
}
impl<T:Copy> Mat3<T> {
/// Construct a 3 x 3 matrix
///
/// # Arguments
///
/// - `c0r0`, `c0r1`, `c0r2`: the first column of the matrix
/// - `c1r0`, `c1r1`, `c1r2`: the second column of the matrix
/// - `c2r0`, `c2r1`, `c2r2`: the third column of the matrix
///
/// ~~~
/// c0 c1 c2
/// +------+------+------+
/// r0 | c0r0 | c1r0 | c2r0 |
/// +------+------+------+
/// r1 | c0r1 | c1r1 | c2r1 |
/// +------+------+------+
/// r2 | c0r2 | c1r2 | c2r2 |
/// +------+------+------+
/// ~~~
#[inline]
pub fn new(c0r0:T, c0r1:T, c0r2:T,
c1r0:T, c1r1:T, c1r2:T,
c2r0:T, c2r1:T, c2r2:T) -> Mat3<T> {
Mat3::from_cols(Vec3::new(c0r0, c0r1, c0r2),
Vec3::new(c1r0, c1r1, c1r2),
Vec3::new(c2r0, c2r1, c2r2))
}
/// Construct a 3 x 3 matrix from column vectors
///
/// # Arguments
///
/// - `c0`: the first column vector of the matrix
/// - `c1`: the second column vector of the matrix
/// - `c2`: the third column vector of the matrix
///
/// ~~~
/// c0 c1 c2
/// +------+------+------+
/// r0 | c0.x | c1.x | c2.x |
/// +------+------+------+
/// r1 | c0.y | c1.y | c2.y |
/// +------+------+------+
/// r2 | c0.z | c1.z | c2.z |
/// +------+------+------+
/// ~~~
#[inline]
pub fn from_cols(c0: Vec3<T>,
c1: Vec3<T>,
c2: Vec3<T>) -> Mat3<T> {
Mat3 { x: c0, y: c1, z: c2 }
}
#[inline]
pub fn row(&self, i: uint) -> Vec3<T> {
Vec3::new(*self.elem(0, i),
*self.elem(1, i),
*self.elem(2, i))
}
#[inline]
pub fn swap_cols(&mut self, a: uint, b: uint) {
let tmp = *self.col(a);
*self.col_mut(a) = *self.col(b);
*self.col_mut(b) = tmp;
}
#[inline]
pub fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
}
#[inline]
pub fn transpose(&self) -> Mat3<T> {
Mat3::new(*self.elem(0, 0), *self.elem(1, 0), *self.elem(2, 0),
*self.elem(0, 1), *self.elem(1, 1), *self.elem(2, 1),
*self.elem(0, 2), *self.elem(1, 2), *self.elem(2, 2))
}
#[inline]
pub fn transpose_self(&mut self) {
let tmp01 = *self.elem(0, 1);
let tmp02 = *self.elem(0, 2);
let tmp10 = *self.elem(1, 0);
let tmp12 = *self.elem(1, 2);
let tmp20 = *self.elem(2, 0);
let tmp21 = *self.elem(2, 1);
*self.elem_mut(0, 1) = *self.elem(1, 0);
*self.elem_mut(0, 2) = *self.elem(2, 0);
*self.elem_mut(1, 0) = *self.elem(0, 1);
*self.elem_mut(1, 2) = *self.elem(2, 1);
*self.elem_mut(2, 0) = *self.elem(0, 2);
*self.elem_mut(2, 1) = *self.elem(1, 2);
*self.elem_mut(1, 0) = tmp01;
*self.elem_mut(2, 0) = tmp02;
*self.elem_mut(0, 1) = tmp10;
*self.elem_mut(2, 1) = tmp12;
*self.elem_mut(0, 2) = tmp20;
*self.elem_mut(1, 2) = tmp21;
}
}
impl<T:Copy + Num> Mat3<T> {
/// Construct a 3 x 3 diagonal matrix with the major diagonal set to `value`
///
/// # Arguments
///
/// - `value`: the value to set the major diagonal to
///
/// ~~~
/// c0 c1 c2
/// +-----+-----+-----+
/// r0 | val | 0 | 0 |
/// +-----+-----+-----+
/// r1 | 0 | val | 0 |
/// +-----+-----+-----+
/// r2 | 0 | 0 | val |
/// +-----+-----+-----+
/// ~~~
#[inline]
pub fn from_value(value: T) -> Mat3<T> {
Mat3::new(value, Zero::zero(), Zero::zero(),
Zero::zero(), value, Zero::zero(),
Zero::zero(), Zero::zero(), value)
}
/// Returns the multiplicative identity matrix
/// ~~~
/// c0 c1 c2
/// +----+----+----+
/// r0 | 1 | 0 | 0 |
/// +----+----+----+
/// r1 | 0 | 1 | 0 |
/// +----+----+----+
/// r2 | 0 | 0 | 1 |
/// +----+----+----+
/// ~~~
#[inline]
pub fn identity() -> Mat3<T> {
Mat3::new(One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), One::one::<T>())
}
/// Returns the additive identity matrix
/// ~~~
/// c0 c1 c2
/// +----+----+----+
/// r0 | 0 | 0 | 0 |
/// +----+----+----+
/// r1 | 0 | 0 | 0 |
/// +----+----+----+
/// r2 | 0 | 0 | 0 |
/// +----+----+----+
/// ~~~
#[inline]
pub fn zero() -> Mat3<T> {
Mat3::new(Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn mul_t(&self, value: T) -> Mat3<T> {
Mat3::from_cols(self.col(0).mul_t(value),
self.col(1).mul_t(value),
self.col(2).mul_t(value))
}
#[inline]
pub fn mul_v(&self, vec: &Vec3<T>) -> Vec3<T> {
Vec3::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec))
}
#[inline]
pub fn add_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self.col(0).add_v(other.col(0)),
self.col(1).add_v(other.col(1)),
self.col(2).add_v(other.col(2)))
}
#[inline]
pub fn sub_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::from_cols(self.col(0).sub_v(other.col(0)),
self.col(1).sub_v(other.col(1)),
self.col(2).sub_v(other.col(2)))
}
#[inline]
pub fn mul_m(&self, other: &Mat3<T>) -> Mat3<T> {
Mat3::new(self.row(0).dot(other.col(0)),
self.row(1).dot(other.col(0)),
self.row(2).dot(other.col(0)),
self.row(0).dot(other.col(1)),
self.row(1).dot(other.col(1)),
self.row(2).dot(other.col(1)),
self.row(0).dot(other.col(2)),
self.row(1).dot(other.col(2)),
self.row(2).dot(other.col(2)))
}
#[inline]
pub fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(value);
self.col_mut(1).mul_self_t(value);
self.col_mut(2).mul_self_t(value);
}
#[inline]
pub fn add_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).add_self_v(other.col(0));
self.col_mut(1).add_self_v(other.col(1));
self.col_mut(2).add_self_v(other.col(2));
}
#[inline]
pub fn sub_self_m(&mut self, other: &Mat3<T>) {
self.col_mut(0).sub_self_v(other.col(0));
self.col_mut(1).sub_self_v(other.col(1));
self.col_mut(2).sub_self_v(other.col(2));
}
pub fn dot(&self, other: &Mat3<T>) -> T {
other.transpose().mul_m(self).trace()
}
pub fn determinant(&self) -> T {
self.col(0).dot(&self.col(1).cross(self.col(2)))
}
pub fn trace(&self) -> T {
*self.elem(0, 0) +
*self.elem(1, 1) +
*self.elem(2, 2)
}
#[inline]
pub fn to_identity(&mut self) {
*self = Mat3::identity();
}
#[inline]
pub fn to_zero(&mut self) {
*self = Mat3::zero();
}
/// Returns the the matrix with an extra row and column added
/// ~~~
/// c0 c1 c2 c0 c1 c2 c3
/// +----+----+----+ +----+----+----+----+
/// r0 | a | b | c | r0 | a | b | c | 0 |
/// +----+----+----+ +----+----+----+----+
/// r1 | d | e | f | => r1 | d | e | f | 0 |
/// +----+----+----+ +----+----+----+----+
/// r2 | g | h | i | r2 | g | h | i | 0 |
/// +----+----+----+ +----+----+----+----+
/// r3 | 0 | 0 | 0 | 1 |
/// +----+----+----+----+
/// ~~~
#[inline]
pub fn to_mat4(&self) -> Mat4<T> {
Mat4::new(*self.elem(0, 0), *self.elem(0, 1), *self.elem(0, 2), Zero::zero(),
*self.elem(1, 0), *self.elem(1, 1), *self.elem(1, 2), Zero::zero(),
*self.elem(2, 0), *self.elem(2, 1), *self.elem(2, 2), Zero::zero(),
Zero::zero(), Zero::zero(), Zero::zero(), One::one())
}
}
impl<T:Copy + Num> Neg<Mat3<T>> for Mat3<T> {
#[inline]
pub fn neg(&self) -> Mat3<T> {
Mat3::from_cols(-self.col(0), -self.col(1), -self.col(2))
}
}
impl<T:Copy + Real> Mat3<T> {
/// Construct a matrix from an angular rotation around the `x` axis
pub fn from_angle_x(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = radians.cos();
let sin_theta = radians.sin();
Mat3::new(One::one(), Zero::zero(), Zero::zero(),
Zero::zero(), cos_theta, sin_theta,
Zero::zero(), -sin_theta, cos_theta)
}
/// Construct a matrix from an angular rotation around the `y` axis
pub fn from_angle_y(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = radians.cos();
let sin_theta = radians.sin();
Mat3::new(cos_theta, Zero::zero(), -sin_theta,
Zero::zero(), One::one(), Zero::zero(),
sin_theta, Zero::zero(), cos_theta)
}
/// Construct a matrix from an angular rotation around the `z` axis
pub fn from_angle_z(radians: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations
let cos_theta = radians.cos();
let sin_theta = radians.sin();
Mat3::new(cos_theta, sin_theta, Zero::zero(),
-sin_theta, cos_theta, Zero::zero(),
Zero::zero(), Zero::zero(), One::one())
}
/// Construct a matrix from Euler angles
///
/// # Arguments
///
/// - `theta_x`: the angular rotation around the `x` axis (pitch)
/// - `theta_y`: the angular rotation around the `y` axis (yaw)
/// - `theta_z`: the angular rotation around the `z` axis (roll)
pub fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Mat3<T> {
// http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
let cx = radians_x.cos();
let sx = radians_x.sin();
let cy = radians_y.cos();
let sy = radians_y.sin();
let cz = radians_z.cos();
let sz = radians_z.sin();
Mat3::new(cy*cz, cy*sz, -sy,
-cx*sz + sx*sy*cz, cx*cz + sx*sy*sz, sx*cy,
sx*sz + cx*sy*cz, -sx*cz + cx*sy*sz, cx*cy)
}
/// Construct a matrix from an axis and an angular rotation
pub fn from_angle_axis(radians: T, axis: &Vec3<T>) -> Mat3<T> {
let c = radians.cos();
let s = radians.sin();
let _1_c = One::one::<T>() - c;
let x = axis.x;
let y = axis.y;
let z = axis.z;
Mat3::new(_1_c*x*x + c, _1_c*x*y + s*z, _1_c*x*z - s*y,
_1_c*x*y - s*z, _1_c*y*y + c, _1_c*y*z + s*x,
_1_c*x*z + s*y, _1_c*y*z - s*x, _1_c*z*z + c)
}
#[inline]
pub fn from_axes(x: Vec3<T>, y: Vec3<T>, z: Vec3<T>) -> Mat3<T> {
Mat3::from_cols(x, y, z)
}
pub fn look_at(dir: &Vec3<T>, up: &Vec3<T>) -> Mat3<T> {
let dir_ = dir.normalize();
let side = dir_.cross(&up.normalize());
let up_ = side.cross(&dir_).normalize();
Mat3::from_axes(up_, side, dir_)
}
/// Convert the matrix to a quaternion
pub fn to_quat(&self) -> Quat<T> {
// Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's
// paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf
let mut s;
let w; let x; let y; let z;
let trace = self.trace();
// FIXME: We don't have any numeric conversions in std yet :P
let half = One::one::<T>() / (One::one::<T>() + One::one::<T>());
cond! (
(trace >= Zero::zero()) {
s = (One::one::<T>() + trace).sqrt();
w = half * s;
s = half / s;
x = (*self.elem(1, 2) - *self.elem(2, 1)) * s;
y = (*self.elem(2, 0) - *self.elem(0, 2)) * s;
z = (*self.elem(0, 1) - *self.elem(1, 0)) * s;
}
((*self.elem(0, 0) > *self.elem(1, 1))
&& (*self.elem(0, 0) > *self.elem(2, 2))) {
s = (half + (*self.elem(0, 0) - *self.elem(1, 1) - *self.elem(2, 2))).sqrt();
w = half * s;
s = half / s;
x = (*self.elem(0, 1) - *self.elem(1, 0)) * s;
y = (*self.elem(2, 0) - *self.elem(0, 2)) * s;
z = (*self.elem(1, 2) - *self.elem(2, 1)) * s;
}
(*self.elem(1, 1) > *self.elem(2, 2)) {
s = (half + (*self.elem(1, 1) - *self.elem(0, 0) - *self.elem(2, 2))).sqrt();
w = half * s;
s = half / s;
x = (*self.elem(0, 1) - *self.elem(1, 0)) * s;
y = (*self.elem(1, 2) - *self.elem(2, 1)) * s;
z = (*self.elem(2, 0) - *self.elem(0, 2)) * s;
}
_ {
s = (half + (*self.elem(2, 2) - *self.elem(0, 0) - *self.elem(1, 1))).sqrt();
w = half * s;
s = half / s;
x = (*self.elem(2, 0) - *self.elem(0, 2)) * s;
y = (*self.elem(1, 2) - *self.elem(2, 1)) * s;
z = (*self.elem(0, 1) - *self.elem(1, 0)) * s;
}
)
Quat::new(w, x, y, z)
}
}
impl<T:Copy + Real + ApproxEq<T>> Mat3<T> {
pub fn inverse(&self) -> Option<Mat3<T>> {
let d = self.determinant();
if d.approx_eq(&Zero::zero()) {
None
} else {
Some(Mat3::from_cols(self.col(1).cross(self.col(2)).div_t(d),
self.col(2).cross(self.col(0)).div_t(d),
self.col(0).cross(self.col(1)).div_t(d)).transpose())
}
}
#[inline]
pub fn invert_self(&mut self) {
*self = self.inverse().expect("Couldn't invert the matrix!");
}
#[inline]
pub fn is_identity(&self) -> bool {
self.approx_eq(&Mat3::identity())
}
#[inline]
pub fn is_diagonal(&self) -> bool {
self.elem(0, 1).approx_eq(&Zero::zero()) &&
self.elem(0, 2).approx_eq(&Zero::zero()) &&
self.elem(1, 0).approx_eq(&Zero::zero()) &&
self.elem(1, 2).approx_eq(&Zero::zero()) &&
self.elem(2, 0).approx_eq(&Zero::zero()) &&
self.elem(2, 1).approx_eq(&Zero::zero())
}
#[inline]
pub fn is_rotated(&self) -> bool {
!self.approx_eq(&Mat3::identity())
}
#[inline]
pub fn is_symmetric(&self) -> bool {
self.elem(0, 1).approx_eq(self.elem(1, 0)) &&
self.elem(0, 2).approx_eq(self.elem(2, 0)) &&
self.elem(1, 0).approx_eq(self.elem(0, 1)) &&
self.elem(1, 2).approx_eq(self.elem(2, 1)) &&
self.elem(2, 0).approx_eq(self.elem(0, 2)) &&
self.elem(2, 1).approx_eq(self.elem(1, 2))
}
#[inline]
pub fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&Zero::zero())
}
}
impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Mat3<T> {
#[inline]
pub fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline]
pub fn approx_eq(&self, other: &Mat3<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline]
pub fn approx_eq_eps(&self, other: &Mat3<T>, epsilon: &T) -> bool {
self.col(0).approx_eq_eps(other.col(0), epsilon) &&
self.col(1).approx_eq_eps(other.col(1), epsilon) &&
self.col(2).approx_eq_eps(other.col(2), epsilon)
}
}

528
src/mat4.rs Normal file
View file

@ -0,0 +1,528 @@
// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cast::transmute;
use std::cmp::ApproxEq;
use std::num::{Zero, One};
use std::uint;
use vec::*;
use super::Mat3;
/// A 4 x 4 column major matrix
///
/// # Type parameters
///
/// - `T` - The type of the elements of the matrix. Should be a floating point type.
///
/// # Fields
///
/// - `x`: the first column vector of the matrix
/// - `y`: the second column vector of the matrix
/// - `z`: the third column vector of the matrix
/// - `w`: the fourth column vector of the matrix
#[deriving(Eq)]
pub struct Mat4<T> { x: Vec4<T>, y: Vec4<T>, z: Vec4<T>, w: Vec4<T> }
impl<T> Mat4<T> {
#[inline]
pub fn col<'a>(&'a self, i: uint) -> &'a Vec4<T> {
&'a self.as_slice()[i]
}
#[inline]
pub fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec4<T> {
&'a mut self.as_mut_slice()[i]
}
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [Vec4<T>,..4] {
unsafe { transmute(self) }
}
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [Vec4<T>,..4] {
unsafe { transmute(self) }
}
#[inline]
pub fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T {
self.col(i).index(j)
}
#[inline]
pub fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T {
self.col_mut(i).index_mut(j)
}
}
impl<T:Copy> Mat4<T> {
/// Construct a 4 x 4 matrix
///
/// # Arguments
///
/// - `c0r0`, `c0r1`, `c0r2`, `c0r3`: the first column of the matrix
/// - `c1r0`, `c1r1`, `c1r2`, `c1r3`: the second column of the matrix
/// - `c2r0`, `c2r1`, `c2r2`, `c2r3`: the third column of the matrix
/// - `c3r0`, `c3r1`, `c3r2`, `c3r3`: the fourth column of the matrix
///
/// ~~~
/// c0 c1 c2 c3
/// +------+------+------+------+
/// r0 | c0r0 | c1r0 | c2r0 | c3r0 |
/// +------+------+------+------+
/// r1 | c0r1 | c1r1 | c2r1 | c3r1 |
/// +------+------+------+------+
/// r2 | c0r2 | c1r2 | c2r2 | c3r2 |
/// +------+------+------+------+
/// r3 | c0r3 | c1r3 | c2r3 | c3r3 |
/// +------+------+------+------+
/// ~~~
#[inline]
pub fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T,
c1r0: T, c1r1: T, c1r2: T, c1r3: T,
c2r0: T, c2r1: T, c2r2: T, c2r3: T,
c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4<T> {
Mat4::from_cols(Vec4::new(c0r0, c0r1, c0r2, c0r3),
Vec4::new(c1r0, c1r1, c1r2, c1r3),
Vec4::new(c2r0, c2r1, c2r2, c2r3),
Vec4::new(c3r0, c3r1, c3r2, c3r3))
}
/// Construct a 4 x 4 matrix from column vectors
///
/// # Arguments
///
/// - `c0`: the first column vector of the matrix
/// - `c1`: the second column vector of the matrix
/// - `c2`: the third column vector of the matrix
/// - `c3`: the fourth column vector of the matrix
///
/// ~~~
/// c0 c1 c2 c3
/// +------+------+------+------+
/// r0 | c0.x | c1.x | c2.x | c3.x |
/// +------+------+------+------+
/// r1 | c0.y | c1.y | c2.y | c3.y |
/// +------+------+------+------+
/// r2 | c0.z | c1.z | c2.z | c3.z |
/// +------+------+------+------+
/// r3 | c0.w | c1.w | c2.w | c3.w |
/// +------+------+------+------+
/// ~~~
#[inline]
pub fn from_cols(c0: Vec4<T>,
c1: Vec4<T>,
c2: Vec4<T>,
c3: Vec4<T>) -> Mat4<T> {
Mat4 { x: c0, y: c1, z: c2, w: c3 }
}
#[inline]
pub fn row(&self, i: uint) -> Vec4<T> {
Vec4::new(*self.elem(0, i),
*self.elem(1, i),
*self.elem(2, i),
*self.elem(3, i))
}
#[inline]
pub fn swap_cols(&mut self, a: uint, b: uint) {
let tmp = *self.col(a);
*self.col_mut(a) = *self.col(b);
*self.col_mut(b) = tmp;
}
#[inline]
pub fn swap_rows(&mut self, a: uint, b: uint) {
self.x.swap(a, b);
self.y.swap(a, b);
self.z.swap(a, b);
self.w.swap(a, b);
}
#[inline]
pub fn transpose(&self) -> Mat4<T> {
Mat4::new(*self.elem(0, 0), *self.elem(1, 0), *self.elem(2, 0), *self.elem(3, 0),
*self.elem(0, 1), *self.elem(1, 1), *self.elem(2, 1), *self.elem(3, 1),
*self.elem(0, 2), *self.elem(1, 2), *self.elem(2, 2), *self.elem(3, 2),
*self.elem(0, 3), *self.elem(1, 3), *self.elem(2, 3), *self.elem(3, 3))
}
#[inline]
pub fn transpose_self(&mut self) {
let tmp01 = *self.elem(0, 1);
let tmp02 = *self.elem(0, 2);
let tmp03 = *self.elem(0, 3);
let tmp10 = *self.elem(1, 0);
let tmp12 = *self.elem(1, 2);
let tmp13 = *self.elem(1, 3);
let tmp20 = *self.elem(2, 0);
let tmp21 = *self.elem(2, 1);
let tmp23 = *self.elem(2, 3);
let tmp30 = *self.elem(3, 0);
let tmp31 = *self.elem(3, 1);
let tmp32 = *self.elem(3, 2);
*self.elem_mut(0, 1) = *self.elem(1, 0);
*self.elem_mut(0, 2) = *self.elem(2, 0);
*self.elem_mut(0, 3) = *self.elem(3, 0);
*self.elem_mut(1, 0) = *self.elem(0, 1);
*self.elem_mut(1, 2) = *self.elem(2, 1);
*self.elem_mut(1, 3) = *self.elem(3, 1);
*self.elem_mut(2, 0) = *self.elem(0, 2);
*self.elem_mut(2, 1) = *self.elem(1, 2);
*self.elem_mut(2, 3) = *self.elem(3, 2);
*self.elem_mut(3, 0) = *self.elem(0, 3);
*self.elem_mut(3, 1) = *self.elem(1, 3);
*self.elem_mut(3, 2) = *self.elem(2, 3);
*self.elem_mut(1, 0) = tmp01;
*self.elem_mut(2, 0) = tmp02;
*self.elem_mut(3, 0) = tmp03;
*self.elem_mut(0, 1) = tmp10;
*self.elem_mut(2, 1) = tmp12;
*self.elem_mut(3, 1) = tmp13;
*self.elem_mut(0, 2) = tmp20;
*self.elem_mut(1, 2) = tmp21;
*self.elem_mut(3, 2) = tmp23;
*self.elem_mut(0, 3) = tmp30;
*self.elem_mut(1, 3) = tmp31;
*self.elem_mut(2, 3) = tmp32;
}
}
impl<T:Copy + Num> Mat4<T> {
/// Construct a 4 x 4 diagonal matrix with the major diagonal set to `value`
///
/// # Arguments
///
/// - `value`: the value to set the major diagonal to
///
/// ~~~
/// c0 c1 c2 c3
/// +-----+-----+-----+-----+
/// r0 | val | 0 | 0 | 0 |
/// +-----+-----+-----+-----+
/// r1 | 0 | val | 0 | 0 |
/// +-----+-----+-----+-----+
/// r2 | 0 | 0 | val | 0 |
/// +-----+-----+-----+-----+
/// r3 | 0 | 0 | 0 | val |
/// +-----+-----+-----+-----+
/// ~~~
#[inline]
pub fn from_value(value: T) -> Mat4<T> {
Mat4::new(value, Zero::zero(), Zero::zero(), Zero::zero(),
Zero::zero(), value, Zero::zero(), Zero::zero(),
Zero::zero(), Zero::zero(), value, Zero::zero(),
Zero::zero(), Zero::zero(), Zero::zero(), value)
}
/// Returns the multiplicative identity matrix
/// ~~~
/// c0 c1 c2 c3
/// +----+----+----+----+
/// r0 | 1 | 0 | 0 | 0 |
/// +----+----+----+----+
/// r1 | 0 | 1 | 0 | 0 |
/// +----+----+----+----+
/// r2 | 0 | 0 | 1 | 0 |
/// +----+----+----+----+
/// r3 | 0 | 0 | 0 | 1 |
/// +----+----+----+----+
/// ~~~
#[inline]
pub fn identity() -> Mat4<T> {
Mat4::new(One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), One::one::<T>())
}
/// Returns the additive identity matrix
/// ~~~
/// c0 c1 c2 c3
/// +----+----+----+----+
/// r0 | 0 | 0 | 0 | 0 |
/// +----+----+----+----+
/// r1 | 0 | 0 | 0 | 0 |
/// +----+----+----+----+
/// r2 | 0 | 0 | 0 | 0 |
/// +----+----+----+----+
/// r3 | 0 | 0 | 0 | 0 |
/// +----+----+----+----+
/// ~~~
#[inline]
pub fn zero() -> Mat4<T> {
Mat4::new(Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(),
Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn mul_t(&self, value: T) -> Mat4<T> {
Mat4::from_cols(self.col(0).mul_t(value),
self.col(1).mul_t(value),
self.col(2).mul_t(value),
self.col(3).mul_t(value))
}
#[inline]
pub fn mul_v(&self, vec: &Vec4<T>) -> Vec4<T> {
Vec4::new(self.row(0).dot(vec),
self.row(1).dot(vec),
self.row(2).dot(vec),
self.row(3).dot(vec))
}
#[inline]
pub fn add_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self.col(0).add_v(other.col(0)),
self.col(1).add_v(other.col(1)),
self.col(2).add_v(other.col(2)),
self.col(3).add_v(other.col(3)))
}
#[inline]
pub fn sub_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::from_cols(self.col(0).sub_v(other.col(0)),
self.col(1).sub_v(other.col(1)),
self.col(2).sub_v(other.col(2)),
self.col(3).sub_v(other.col(3)))
}
#[inline]
pub fn mul_m(&self, other: &Mat4<T>) -> Mat4<T> {
Mat4::new(self.row(0).dot(other.col(0)),
self.row(1).dot(other.col(0)),
self.row(2).dot(other.col(0)),
self.row(3).dot(other.col(0)),
self.row(0).dot(other.col(1)),
self.row(1).dot(other.col(1)),
self.row(2).dot(other.col(1)),
self.row(3).dot(other.col(1)),
self.row(0).dot(other.col(2)),
self.row(1).dot(other.col(2)),
self.row(2).dot(other.col(2)),
self.row(3).dot(other.col(2)),
self.row(0).dot(other.col(3)),
self.row(1).dot(other.col(3)),
self.row(2).dot(other.col(3)),
self.row(3).dot(other.col(3)))
}
#[inline]
pub fn mul_self_t(&mut self, value: T) {
self.col_mut(0).mul_self_t(value);
self.col_mut(1).mul_self_t(value);
self.col_mut(2).mul_self_t(value);
self.col_mut(3).mul_self_t(value);
}
#[inline]
pub fn add_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).add_self_v(other.col(0));
self.col_mut(1).add_self_v(other.col(1));
self.col_mut(2).add_self_v(other.col(2));
self.col_mut(3).add_self_v(other.col(3));
}
#[inline]
pub fn sub_self_m(&mut self, other: &Mat4<T>) {
self.col_mut(0).sub_self_v(other.col(0));
self.col_mut(1).sub_self_v(other.col(1));
self.col_mut(2).sub_self_v(other.col(2));
self.col_mut(3).sub_self_v(other.col(3));
}
pub fn dot(&self, other: &Mat4<T>) -> T {
other.transpose().mul_m(self).trace()
}
pub fn determinant(&self) -> T {
let m0 = Mat3::new(*self.elem(1, 1), *self.elem(2, 1), *self.elem(3, 1),
*self.elem(1, 2), *self.elem(2, 2), *self.elem(3, 2),
*self.elem(1, 3), *self.elem(2, 3), *self.elem(3, 3));
let m1 = Mat3::new(*self.elem(0, 1), *self.elem(2, 1), *self.elem(3, 1),
*self.elem(0, 2), *self.elem(2, 2), *self.elem(3, 2),
*self.elem(0, 3), *self.elem(2, 3), *self.elem(3, 3));
let m2 = Mat3::new(*self.elem(0, 1), *self.elem(1, 1), *self.elem(3, 1),
*self.elem(0, 2), *self.elem(1, 2), *self.elem(3, 2),
*self.elem(0, 3), *self.elem(1, 3), *self.elem(3, 3));
let m3 = Mat3::new(*self.elem(0, 1), *self.elem(1, 1), *self.elem(2, 1),
*self.elem(0, 2), *self.elem(1, 2), *self.elem(2, 2),
*self.elem(0, 3), *self.elem(1, 3), *self.elem(2, 3));
self.elem(0, 0) * m0.determinant() -
self.elem(1, 0) * m1.determinant() +
self.elem(2, 0) * m2.determinant() -
self.elem(3, 0) * m3.determinant()
}
pub fn trace(&self) -> T {
*self.elem(0, 0) +
*self.elem(1, 1) +
*self.elem(2, 2) +
*self.elem(3, 3)
}
#[inline]
pub fn to_identity(&mut self) {
*self = Mat4::identity();
}
#[inline]
pub fn to_zero(&mut self) {
*self = Mat4::zero();
}
}
impl<T:Copy + Num> Neg<Mat4<T>> for Mat4<T> {
#[inline]
pub fn neg(&self) -> Mat4<T> {
Mat4::from_cols(-self.col(0), -self.col(1), -self.col(2), -self.col(3))
}
}
impl<T:Copy + Real + ApproxEq<T>> Mat4<T> {
pub fn inverse(&self) -> Option<Mat4<T>> {
let d = self.determinant();
if d.approx_eq(&Zero::zero()) {
None
} else {
// Gauss Jordan Elimination with partial pivoting
// So take this matrix, A, augmented with the identity
// and essentially reduce [A|I]
let mut A = *self;
let mut I = Mat4::identity::<T>();
for uint::range(0, 4) |j| {
// Find largest element in col j
let mut i1 = j;
for uint::range(j + 1, 4) |i| {
if A.elem(j, i).abs() > A.elem(j, i1).abs() {
i1 = i;
}
}
// Swap columns i1 and j in A and I to
// put pivot on diagonal
A.swap_cols(i1, j);
I.swap_cols(i1, j);
// Scale col j to have a unit diagonal
let ajj = *A.elem(j, j);
I.col_mut(j).div_self_t(ajj);
A.col_mut(j).div_self_t(ajj);
// Eliminate off-diagonal elems in col j of A,
// doing identical ops to I
for uint::range(0, 4) |i| {
if i != j {
let ij_mul_aij = I.col(j).mul_t(*A.elem(i, j));
let aj_mul_aij = A.col(j).mul_t(*A.elem(i, j));
I.col_mut(i).sub_self_v(&ij_mul_aij);
A.col_mut(i).sub_self_v(&aj_mul_aij);
}
}
}
Some(I)
}
}
#[inline]
pub fn invert_self(&mut self) {
*self = self.inverse().expect("Couldn't invert the matrix!");
}
#[inline]
pub fn is_identity(&self) -> bool {
self.approx_eq(&Mat4::identity())
}
#[inline]
pub fn is_diagonal(&self) -> bool {
self.elem(0, 1).approx_eq(&Zero::zero()) &&
self.elem(0, 2).approx_eq(&Zero::zero()) &&
self.elem(0, 3).approx_eq(&Zero::zero()) &&
self.elem(1, 0).approx_eq(&Zero::zero()) &&
self.elem(1, 2).approx_eq(&Zero::zero()) &&
self.elem(1, 3).approx_eq(&Zero::zero()) &&
self.elem(2, 0).approx_eq(&Zero::zero()) &&
self.elem(2, 1).approx_eq(&Zero::zero()) &&
self.elem(2, 3).approx_eq(&Zero::zero()) &&
self.elem(3, 0).approx_eq(&Zero::zero()) &&
self.elem(3, 1).approx_eq(&Zero::zero()) &&
self.elem(3, 2).approx_eq(&Zero::zero())
}
#[inline]
pub fn is_rotated(&self) -> bool {
!self.approx_eq(&Mat4::identity())
}
#[inline]
pub fn is_symmetric(&self) -> bool {
self.elem(0, 1).approx_eq(self.elem(1, 0)) &&
self.elem(0, 2).approx_eq(self.elem(2, 0)) &&
self.elem(0, 3).approx_eq(self.elem(3, 0)) &&
self.elem(1, 0).approx_eq(self.elem(0, 1)) &&
self.elem(1, 2).approx_eq(self.elem(2, 1)) &&
self.elem(1, 3).approx_eq(self.elem(3, 1)) &&
self.elem(2, 0).approx_eq(self.elem(0, 2)) &&
self.elem(2, 1).approx_eq(self.elem(1, 2)) &&
self.elem(2, 3).approx_eq(self.elem(3, 2)) &&
self.elem(3, 0).approx_eq(self.elem(0, 3)) &&
self.elem(3, 1).approx_eq(self.elem(1, 3)) &&
self.elem(3, 2).approx_eq(self.elem(2, 3))
}
#[inline]
pub fn is_invertible(&self) -> bool {
!self.determinant().approx_eq(&Zero::zero())
}
}
impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Mat4<T> {
#[inline]
pub fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline]
pub fn approx_eq(&self, other: &Mat4<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline]
pub fn approx_eq_eps(&self, other: &Mat4<T>, epsilon: &T) -> bool {
self.col(0).approx_eq_eps(other.col(0), epsilon) &&
self.col(1).approx_eq_eps(other.col(1), epsilon) &&
self.col(2).approx_eq_eps(other.col(2), epsilon) &&
self.col(3).approx_eq_eps(other.col(3), epsilon)
}
}

View file

@ -16,12 +16,6 @@
use std::num::{Zero, One};
use mat::Mat4;
// FIXME: We can remove this once we have numeric conversions in std
#[inline]
priv fn two<T:Num>() -> T {
One::one::<T>() + One::one::<T>()
}
///
/// Create a perspective projection matrix
///
@ -102,3 +96,9 @@ pub fn ortho<T:Copy + Real>(left: T, right: T, bottom: T, top: T, near: T, far:
c2r0, c2r1, c2r2, c2r3,
c3r0, c3r1, c3r2, c3r3)
}
// FIXME: We can remove this once we have numeric conversions in std
#[inline]
priv fn two<T:Num>() -> T {
One::one::<T>() + One::one::<T>()
}

View file

@ -20,11 +20,16 @@ use std::num::{Zero, One, cast};
use mat::Mat3;
use vec::Vec3;
// FIXME: We can remove this once we have numeric conversions in std
#[inline]
priv fn two<T:Num>() -> T {
One::one::<T>() + One::one::<T>()
}
// GLSL-style type aliases
pub type quat = Quat<f32>;
pub type dquat = Quat<f64>;
// Rust-style type aliases
pub type Quatf = Quat<float>;
pub type Quatf32 = Quat<f32>;
pub type Quatf64 = Quat<f64>;
/// A quaternion in scalar/vector form
///
@ -379,11 +384,8 @@ impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Quat<T> {
}
}
// GLSL-style type aliases
type quat = Quat<f32>;
type dquat = Quat<f64>;
// Rust-style type aliases
type Quatf = Quat<float>;
type Quatf32 = Quat<f32>;
type Quatf64 = Quat<f64>;
// FIXME: We can remove this once we have numeric conversions in std
#[inline]
priv fn two<T:Num>() -> T {
One::one::<T>() + One::one::<T>()
}

1353
src/vec.rs

File diff suppressed because it is too large Load diff

418
src/vec2.rs Normal file
View file

@ -0,0 +1,418 @@
// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cast::transmute;
use std::cmp::ApproxEq;
use std::num::{Zero, One};
use super::Vec3;
#[deriving(Eq)]
pub struct Vec2<T> { x: T, y: T }
impl<T> Vec2<T> {
#[inline]
pub fn index<'a>(&'a self, i: uint) -> &'a T {
&'a self.as_slice()[i]
}
#[inline]
pub fn index_mut<'a>(&'a mut self, i: uint) -> &'a mut T {
&'a mut self.as_mut_slice()[i]
}
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [T,..2] {
unsafe { transmute(self) }
}
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T,..2] {
unsafe { transmute(self) }
}
}
impl<T:Copy> Vec2<T> {
#[inline]
pub fn new(x: T, y: T ) -> Vec2<T> {
Vec2 { x: x, y: y }
}
#[inline]
pub fn from_value(value: T) -> Vec2<T> {
Vec2::new(value, value)
}
#[inline]
pub fn swap(&mut self, a: uint, b: uint) {
let tmp = *self.index(a);
*self.index_mut(a) = *self.index(b);
*self.index_mut(b) = tmp;
}
#[inline(always)]
pub fn map(&self, f: &fn(&T) -> T) -> Vec2<T> {
Vec2::new(f(self.index(0)),
f(self.index(1)))
}
}
impl<T:Copy + Num> Vec2<T> {
#[inline]
pub fn identity() -> Vec2<T> {
Vec2::new(One::one::<T>(), One::one::<T>())
}
#[inline]
pub fn zero() -> Vec2<T> {
Vec2::new(Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn unit_x() -> Vec2<T> {
Vec2::new(One::one::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn unit_y() -> Vec2<T> {
Vec2::new(Zero::zero::<T>(), One::one::<T>())
}
#[inline]
pub fn is_zero(&self) -> bool {
*self.index(0) == Zero::zero() &&
*self.index(1) == Zero::zero()
}
#[inline]
pub fn add_t(&self, value: T) -> Vec2<T> {
Vec2::new(*self.index(0) + value,
*self.index(1) + value)
}
#[inline]
pub fn sub_t(&self, value: T) -> Vec2<T> {
Vec2::new(*self.index(0) - value,
*self.index(1) - value)
}
#[inline]
pub fn mul_t(&self, value: T) -> Vec2<T> {
Vec2::new(*self.index(0) * value,
*self.index(1) * value)
}
#[inline]
pub fn div_t(&self, value: T) -> Vec2<T> {
Vec2::new(*self.index(0) / value,
*self.index(1) / value)
}
#[inline]
pub fn rem_t(&self, value: T) -> Vec2<T> {
Vec2::new(*self.index(0) % value,
*self.index(1) % value)
}
#[inline]
pub fn add_v(&self, other: &Vec2<T>) -> Vec2<T> {
Vec2::new(*self.index(0) + *other.index(0),
*self.index(1) + *other.index(1))
}
#[inline]
pub fn sub_v(&self, other: &Vec2<T>) -> Vec2<T> {
Vec2::new(*self.index(0) - *other.index(0),
*self.index(1) - *other.index(1))
}
#[inline]
pub fn mul_v(&self, other: &Vec2<T>) -> Vec2<T> {
Vec2::new(*self.index(0) * *other.index(0),
*self.index(1) * *other.index(1))
}
#[inline]
pub fn div_v(&self, other: &Vec2<T>) -> Vec2<T> {
Vec2::new(*self.index(0) / *other.index(0),
*self.index(1) / *other.index(1))
}
#[inline]
pub fn rem_v(&self, other: &Vec2<T>) -> Vec2<T> {
Vec2::new(*self.index(0) % *other.index(0),
*self.index(1) % *other.index(1))
}
#[inline]
pub fn neg_self(&mut self) {
*self.index_mut(0) = -*self.index(0);
*self.index_mut(1) = -*self.index(1);
}
#[inline]
pub fn add_self_t(&mut self, value: T) {
*self.index_mut(0) += value;
*self.index_mut(1) += value;
}
#[inline]
pub fn sub_self_t(&mut self, value: T) {
*self.index_mut(0) -= value;
*self.index_mut(1) -= value;
}
#[inline]
pub fn mul_self_t(&mut self, value: T) {
*self.index_mut(0) *= value;
*self.index_mut(1) *= value;
}
#[inline]
pub fn div_self_t(&mut self, value: T) {
*self.index_mut(0) /= value;
*self.index_mut(1) /= value;
}
#[inline]
pub fn rem_self_t(&mut self, value: T) {
*self.index_mut(0) %= value;
*self.index_mut(1) %= value;
}
#[inline]
pub fn add_self_v(&mut self, other: &Vec2<T>) {
*self.index_mut(0) += *other.index(0);
*self.index_mut(1) += *other.index(1);
}
#[inline]
pub fn sub_self_v(&mut self, other: &Vec2<T>) {
*self.index_mut(0) -= *other.index(0);
*self.index_mut(1) -= *other.index(1);
}
#[inline]
pub fn mul_self_v(&mut self, other: &Vec2<T>) {
*self.index_mut(0) *= *other.index(0);
*self.index_mut(1) *= *other.index(1);
}
#[inline]
pub fn div_self_v(&mut self, other: &Vec2<T>) {
*self.index_mut(0) /= *other.index(0);
*self.index_mut(1) /= *other.index(1);
}
#[inline]
pub fn rem_self_v(&mut self, other: &Vec2<T>) {
*self.index_mut(0) /= *other.index(0);
*self.index_mut(1) /= *other.index(1);
}
#[inline]
pub fn dot(&self, other: &Vec2<T>) -> T {
*self.index(0) * *other.index(0) +
*self.index(1) * *other.index(1)
}
#[inline]
pub fn perp_dot(&self, other: &Vec2<T>) -> T {
(*self.index(0) * *other.index(1)) -
(*self.index(1) * *other.index(0))
}
#[inline]
pub fn to_homogeneous(&self) -> Vec3<T> {
Vec3::new(self.x, self.y, Zero::zero())
}
}
impl<T:Copy + Num> Neg<Vec2<T>> for Vec2<T> {
#[inline]
pub fn neg(&self) -> Vec2<T> {
Vec2::new(-self.index(0), -self.index(1))
}
}
impl<T:Copy + Real> Vec2<T> {
#[inline]
pub fn length2(&self) -> T {
self.dot(self)
}
#[inline]
pub fn length(&self) -> T {
self.length2().sqrt()
}
#[inline]
pub fn distance2(&self, other: &Vec2<T>) -> T {
other.sub_v(self).length2()
}
#[inline]
pub fn distance(&self, other: &Vec2<T>) -> T {
other.distance2(self).sqrt()
}
#[inline]
pub fn angle(&self, other: &Vec2<T>) -> T {
self.perp_dot(other).atan2(self.dot(other))
}
#[inline]
pub fn normalize(&self) -> Vec2<T> {
self.mul_t(One::one::<T>()/self.length())
}
#[inline]
pub fn normalize_to(&self, length: T) -> Vec2<T> {
self.mul_t(length / self.length())
}
#[inline]
pub fn lerp(&self, other: &Vec2<T>, amount: T) -> Vec2<T> {
self.add_v(&other.sub_v(self).mul_t(amount))
}
#[inline]
pub fn normalize_self(&mut self) {
let n = One::one::<T>() / self.length();
self.mul_self_t(n);
}
#[inline]
pub fn normalize_self_to(&mut self, length: T) {
let n = length / self.length();
self.mul_self_t(n);
}
pub fn lerp_self(&mut self, other: &Vec2<T>, amount: T) {
let v = other.sub_v(self).mul_t(amount);
self.add_self_v(&v);
}
}
impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Vec2<T> {
#[inline]
pub fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline]
pub fn approx_eq(&self, other: &Vec2<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline]
pub fn approx_eq_eps(&self, other: &Vec2<T>, epsilon: &T) -> bool {
self.index(0).approx_eq_eps(other.index(0), epsilon) &&
self.index(1).approx_eq_eps(other.index(1), epsilon)
}
}
impl<T:Copy + Ord> Vec2<T> {
#[inline]
pub fn lt_t(&self, value: T) -> Vec2<bool> {
Vec2::new(*self.index(0) < value,
*self.index(1) < value)
}
#[inline]
pub fn le_t(&self, value: T) -> Vec2<bool> {
Vec2::new(*self.index(0) <= value,
*self.index(1) <= value)
}
#[inline]
pub fn ge_t(&self, value: T) -> Vec2<bool> {
Vec2::new(*self.index(0) >= value,
*self.index(1) >= value)
}
#[inline]
pub fn gt_t(&self, value: T) -> Vec2<bool> {
Vec2::new(*self.index(0) > value,
*self.index(1) > value)
}
#[inline]
pub fn lt_v(&self, other: &Vec2<T>) -> Vec2<bool> {
Vec2::new(*self.index(0) < *other.index(0),
*self.index(1) < *other.index(1))
}
#[inline]
pub fn le_v(&self, other: &Vec2<T>) -> Vec2<bool> {
Vec2::new(*self.index(0) <= *other.index(0),
*self.index(1) <= *other.index(1))
}
#[inline]
pub fn ge_v(&self, other: &Vec2<T>) -> Vec2<bool> {
Vec2::new(*self.index(0) >= *other.index(0),
*self.index(1) >= *other.index(1))
}
#[inline]
pub fn gt_v(&self, other: &Vec2<T>) -> Vec2<bool> {
Vec2::new(*self.index(0) > *other.index(0),
*self.index(1) > *other.index(1))
}
}
impl<T:Copy + Eq> Vec2<T> {
#[inline]
pub fn eq_t(&self, value: T) -> Vec2<bool> {
Vec2::new(*self.index(0) == value,
*self.index(1) == value)
}
#[inline]
pub fn ne_t(&self, value: T) -> Vec2<bool> {
Vec2::new(*self.index(0) != value,
*self.index(1) != value)
}
#[inline]
pub fn eq_v(&self, other: &Vec2<T>) -> Vec2<bool> {
Vec2::new(*self.index(0) == *other.index(0),
*self.index(1) == *other.index(1))
}
#[inline]
pub fn ne_v(&self, other: &Vec2<T>) -> Vec2<bool> {
Vec2::new(*self.index(0) != *other.index(0),
*self.index(1) != *other.index(1))
}
}
impl Vec2<bool> {
#[inline]
pub fn any(&self) -> bool {
*self.index(0) || *self.index(1)
}
#[inline]
pub fn all(&self) -> bool {
*self.index(0) && *self.index(1)
}
#[inline]
pub fn not(&self) -> Vec2<bool> {
Vec2::new(!*self.index(0), !*self.index(1))
}
}

466
src/vec3.rs Normal file
View file

@ -0,0 +1,466 @@
// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cast::transmute;
use std::cmp::ApproxEq;
use std::num::{Zero, One};
use super::Vec4;
#[deriving(Eq)]
pub struct Vec3<T> { x: T, y: T, z: T }
impl<T> Vec3<T> {
#[inline]
pub fn index<'a>(&'a self, i: uint) -> &'a T {
&'a self.as_slice()[i]
}
#[inline]
pub fn index_mut<'a>(&'a mut self, i: uint) -> &'a mut T {
&'a mut self.as_mut_slice()[i]
}
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [T,..3] {
unsafe { transmute(self) }
}
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T,..3] {
unsafe { transmute(self) }
}
}
impl<T:Copy> Vec3<T> {
#[inline]
pub fn new(x: T, y: T, z: T ) -> Vec3<T> {
Vec3 { x: x, y: y, z: z }
}
#[inline]
pub fn from_value(value: T) -> Vec3<T> {
Vec3::new(value, value, value)
}
#[inline]
pub fn swap(&mut self, a: uint, b: uint) {
let tmp = *self.index(a);
*self.index_mut(a) = *self.index(b);
*self.index_mut(b) = tmp;
}
#[inline(always)]
pub fn map(&self, f: &fn(&T) -> T) -> Vec3<T> {
Vec3::new(f(self.index(0)),
f(self.index(1)),
f(self.index(2)))
}
}
impl<T:Copy + Num> Vec3<T> {
#[inline]
pub fn identity() -> Vec3<T> {
Vec3::new(One::one::<T>(), One::one::<T>(), One::one::<T>())
}
#[inline]
pub fn zero() -> Vec3<T> {
Vec3::new(Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn unit_x() -> Vec3<T> {
Vec3::new(One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn unit_y() -> Vec3<T> {
Vec3::new(Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn unit_z() -> Vec3<T> {
Vec3::new(Zero::zero::<T>(), Zero::zero::<T>(), One::one::<T>())
}
#[inline]
pub fn is_zero(&self) -> bool {
*self.index(0) == Zero::zero() &&
*self.index(1) == Zero::zero() &&
*self.index(2) == Zero::zero()
}
#[inline]
pub fn add_t(&self, value: T) -> Vec3<T> {
Vec3::new(*self.index(0) + value,
*self.index(1) + value,
*self.index(2) + value)
}
#[inline]
pub fn sub_t(&self, value: T) -> Vec3<T> {
Vec3::new(*self.index(0) - value,
*self.index(1) - value,
*self.index(2) - value)
}
#[inline]
pub fn mul_t(&self, value: T) -> Vec3<T> {
Vec3::new(*self.index(0) * value,
*self.index(1) * value,
*self.index(2) * value)
}
#[inline]
pub fn div_t(&self, value: T) -> Vec3<T> {
Vec3::new(*self.index(0) / value,
*self.index(1) / value,
*self.index(2) / value)
}
#[inline]
pub fn rem_t(&self, value: T) -> Vec3<T> {
Vec3::new(*self.index(0) % value,
*self.index(1) % value,
*self.index(2) % value)
}
#[inline]
pub fn add_v(&self, other: &Vec3<T>) -> Vec3<T> {
Vec3::new(*self.index(0) + *other.index(0),
*self.index(1) + *other.index(1),
*self.index(2) + *other.index(2))
}
#[inline]
pub fn sub_v(&self, other: &Vec3<T>) -> Vec3<T> {
Vec3::new(*self.index(0) - *other.index(0),
*self.index(1) - *other.index(1),
*self.index(2) - *other.index(2))
}
#[inline]
pub fn mul_v(&self, other: &Vec3<T>) -> Vec3<T> {
Vec3::new(*self.index(0) * *other.index(0),
*self.index(1) * *other.index(1),
*self.index(2) * *other.index(2))
}
#[inline]
pub fn div_v(&self, other: &Vec3<T>) -> Vec3<T> {
Vec3::new(*self.index(0) / *other.index(0),
*self.index(1) / *other.index(1),
*self.index(2) / *other.index(2))
}
#[inline]
pub fn rem_v(&self, other: &Vec3<T>) -> Vec3<T> {
Vec3::new(*self.index(0) % *other.index(0),
*self.index(1) % *other.index(1),
*self.index(2) % *other.index(2))
}
#[inline]
pub fn neg_self(&mut self) {
*self.index_mut(0) = -*self.index(0);
*self.index_mut(1) = -*self.index(1);
*self.index_mut(2) = -*self.index(2);
}
#[inline]
pub fn add_self_t(&mut self, value: T) {
*self.index_mut(0) += value;
*self.index_mut(1) += value;
*self.index_mut(2) += value;
}
#[inline]
pub fn sub_self_t(&mut self, value: T) {
*self.index_mut(0) -= value;
*self.index_mut(1) -= value;
*self.index_mut(2) -= value;
}
#[inline]
pub fn mul_self_t(&mut self, value: T) {
*self.index_mut(0) *= value;
*self.index_mut(1) *= value;
*self.index_mut(2) *= value;
}
#[inline]
pub fn div_self_t(&mut self, value: T) {
*self.index_mut(0) /= value;
*self.index_mut(1) /= value;
*self.index_mut(2) /= value;
}
#[inline]
pub fn rem_self_t(&mut self, value: T) {
*self.index_mut(0) %= value;
*self.index_mut(1) %= value;
*self.index_mut(2) %= value;
}
#[inline]
pub fn add_self_v(&mut self, other: &Vec3<T>) {
*self.index_mut(0) += *other.index(0);
*self.index_mut(1) += *other.index(1);
*self.index_mut(2) += *other.index(2);
}
#[inline]
pub fn sub_self_v(&mut self, other: &Vec3<T>) {
*self.index_mut(0) -= *other.index(0);
*self.index_mut(1) -= *other.index(1);
*self.index_mut(2) -= *other.index(2);
}
#[inline]
pub fn mul_self_v(&mut self, other: &Vec3<T>) {
*self.index_mut(0) *= *other.index(0);
*self.index_mut(1) *= *other.index(1);
*self.index_mut(2) *= *other.index(2);
}
#[inline]
pub fn div_self_v(&mut self, other: &Vec3<T>) {
*self.index_mut(0) /= *other.index(0);
*self.index_mut(1) /= *other.index(1);
*self.index_mut(2) /= *other.index(2);
}
#[inline]
pub fn rem_self_v(&mut self, other: &Vec3<T>) {
*self.index_mut(0) /= *other.index(0);
*self.index_mut(1) /= *other.index(1);
*self.index_mut(2) /= *other.index(2);
}
#[inline]
pub fn dot(&self, other: &Vec3<T>) -> T {
*self.index(0) * *other.index(0) +
*self.index(1) * *other.index(1) +
*self.index(2) * *other.index(2)
}
#[inline]
pub fn cross(&self, other: &Vec3<T>) -> Vec3<T> {
Vec3::new((*self.index(1) * *other.index(2)) - (*self.index(2) * *other.index(1)),
(*self.index(2) * *other.index(0)) - (*self.index(0) * *other.index(2)),
(*self.index(0) * *other.index(1)) - (*self.index(1) * *other.index(0)))
}
#[inline]
pub fn cross_self(&mut self, other: &Vec3<T>) {
*self = self.cross(other)
}
#[inline]
pub fn to_homogeneous(&self) -> Vec4<T> {
Vec4::new(self.x, self.y, self.z, Zero::zero())
}
}
impl<T:Copy + Num> Neg<Vec3<T>> for Vec3<T> {
#[inline]
pub fn neg(&self) -> Vec3<T> {
Vec3::new(-self.index(0), -self.index(1), -self.index(2))
}
}
impl<T:Copy + Real> Vec3<T> {
#[inline]
pub fn length2(&self) -> T {
self.dot(self)
}
#[inline]
pub fn length(&self) -> T {
self.length2().sqrt()
}
#[inline]
pub fn distance2(&self, other: &Vec3<T>) -> T {
other.sub_v(self).length2()
}
#[inline]
pub fn distance(&self, other: &Vec3<T>) -> T {
other.distance2(self).sqrt()
}
#[inline]
pub fn angle(&self, other: &Vec3<T>) -> T {
self.cross(other).length().atan2(self.dot(other))
}
#[inline]
pub fn normalize(&self) -> Vec3<T> {
self.mul_t(One::one::<T>()/self.length())
}
#[inline]
pub fn normalize_to(&self, length: T) -> Vec3<T> {
self.mul_t(length / self.length())
}
#[inline]
pub fn lerp(&self, other: &Vec3<T>, amount: T) -> Vec3<T> {
self.add_v(&other.sub_v(self).mul_t(amount))
}
#[inline]
pub fn normalize_self(&mut self) {
let n = One::one::<T>() / self.length();
self.mul_self_t(n);
}
#[inline]
pub fn normalize_self_to(&mut self, length: T) {
let n = length / self.length();
self.mul_self_t(n);
}
pub fn lerp_self(&mut self, other: &Vec3<T>, amount: T) {
let v = other.sub_v(self).mul_t(amount);
self.add_self_v(&v);
}
}
impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Vec3<T> {
#[inline]
pub fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline]
pub fn approx_eq(&self, other: &Vec3<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline]
pub fn approx_eq_eps(&self, other: &Vec3<T>, epsilon: &T) -> bool {
self.index(0).approx_eq_eps(other.index(0), epsilon) &&
self.index(1).approx_eq_eps(other.index(1), epsilon) &&
self.index(2).approx_eq_eps(other.index(2), epsilon)
}
}
impl<T:Copy + Ord> Vec3<T> {
#[inline]
pub fn lt_t(&self, value: T) -> Vec3<bool> {
Vec3::new(*self.index(0) < value,
*self.index(1) < value,
*self.index(2) < value)
}
#[inline]
pub fn le_t(&self, value: T) -> Vec3<bool> {
Vec3::new(*self.index(0) <= value,
*self.index(1) <= value,
*self.index(2) <= value)
}
#[inline]
pub fn ge_t(&self, value: T) -> Vec3<bool> {
Vec3::new(*self.index(0) >= value,
*self.index(1) >= value,
*self.index(2) >= value)
}
#[inline]
pub fn gt_t(&self, value: T) -> Vec3<bool> {
Vec3::new(*self.index(0) > value,
*self.index(1) > value,
*self.index(2) > value)
}
#[inline]
pub fn lt_v(&self, other: &Vec3<T>) -> Vec3<bool> {
Vec3::new(*self.index(0) < *other.index(0),
*self.index(1) < *other.index(1),
*self.index(2) < *other.index(2))
}
#[inline]
pub fn le_v(&self, other: &Vec3<T>) -> Vec3<bool> {
Vec3::new(*self.index(0) <= *other.index(0),
*self.index(1) <= *other.index(1),
*self.index(2) <= *other.index(2))
}
#[inline]
pub fn ge_v(&self, other: &Vec3<T>) -> Vec3<bool> {
Vec3::new(*self.index(0) >= *other.index(0),
*self.index(1) >= *other.index(1),
*self.index(2) >= *other.index(2))
}
#[inline]
pub fn gt_v(&self, other: &Vec3<T>) -> Vec3<bool> {
Vec3::new(*self.index(0) > *other.index(0),
*self.index(1) > *other.index(1),
*self.index(2) > *other.index(2))
}
}
impl<T:Copy + Eq> Vec3<T> {
#[inline]
pub fn eq_t(&self, value: T) -> Vec3<bool> {
Vec3::new(*self.index(0) == value,
*self.index(1) == value,
*self.index(2) == value)
}
#[inline]
pub fn ne_t(&self, value: T) -> Vec3<bool> {
Vec3::new(*self.index(0) != value,
*self.index(1) != value,
*self.index(2) != value)
}
#[inline]
pub fn eq_v(&self, other: &Vec3<T>) -> Vec3<bool> {
Vec3::new(*self.index(0) == *other.index(0),
*self.index(1) == *other.index(1),
*self.index(2) == *other.index(2))
}
#[inline]
pub fn ne_v(&self, other: &Vec3<T>) -> Vec3<bool> {
Vec3::new(*self.index(0) != *other.index(0),
*self.index(1) != *other.index(1),
*self.index(2) != *other.index(2))
}
}
impl Vec3<bool> {
#[inline]
pub fn any(&self) -> bool {
*self.index(0) || *self.index(1) || *self.index(2)
}
#[inline]
pub fn all(&self) -> bool {
*self.index(0) && *self.index(1) && *self.index(2)
}
#[inline]
pub fn not(&self) -> Vec3<bool> {
Vec3::new(!*self.index(0), !*self.index(1), !*self.index(2))
}
}

489
src/vec4.rs Normal file
View file

@ -0,0 +1,489 @@
// Copyright 2013 The Lmath Developers. For a full listing of the authors,
// refer to the AUTHORS file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cast::transmute;
use std::cmp::ApproxEq;
use std::num::{Zero, One};
#[deriving(Eq)]
pub struct Vec4<T> { x: T, y: T, z: T, w: T }
impl<T> Vec4<T> {
#[inline]
pub fn index<'a>(&'a self, i: uint) -> &'a T {
&'a self.as_slice()[i]
}
#[inline]
pub fn index_mut<'a>(&'a mut self, i: uint) -> &'a mut T {
&'a mut self.as_mut_slice()[i]
}
#[inline]
pub fn as_slice<'a>(&'a self) -> &'a [T,..4] {
unsafe { transmute(self) }
}
#[inline]
pub fn as_mut_slice<'a>(&'a mut self) -> &'a mut [T,..4] {
unsafe { transmute(self) }
}
}
impl<T:Copy> Vec4<T> {
#[inline]
pub fn new(x: T, y: T, z: T, w: T ) -> Vec4<T> {
Vec4 { x: x, y: y, z: z, w: w }
}
#[inline]
pub fn from_value(value: T) -> Vec4<T> {
Vec4::new(value, value, value, value)
}
#[inline]
pub fn swap(&mut self, a: uint, b: uint) {
let tmp = *self.index(a);
*self.index_mut(a) = *self.index(b);
*self.index_mut(b) = tmp;
}
#[inline(always)]
pub fn map(&self, f: &fn(&T) -> T) -> Vec4<T> {
Vec4::new(f(self.index(0)),
f(self.index(1)),
f(self.index(2)),
f(self.index(3)))
}
}
impl<T:Copy + Num> Vec4<T> {
#[inline]
pub fn identity() -> Vec4<T> {
Vec4::new(One::one::<T>(), One::one::<T>(), One::one::<T>(), One::one::<T>())
}
#[inline]
pub fn zero() -> Vec4<T> {
Vec4::new(Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn unit_x() -> Vec4<T> {
Vec4::new(One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn unit_y() -> Vec4<T> {
Vec4::new(Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn unit_z() -> Vec4<T> {
Vec4::new(Zero::zero::<T>(), Zero::zero::<T>(), One::one::<T>(), Zero::zero::<T>())
}
#[inline]
pub fn unit_w() -> Vec4<T> {
Vec4::new(Zero::zero::<T>(), Zero::zero::<T>(), Zero::zero::<T>(), One::one::<T>())
}
#[inline]
pub fn is_zero(&self) -> bool {
*self.index(0) == Zero::zero() &&
*self.index(1) == Zero::zero() &&
*self.index(2) == Zero::zero() &&
*self.index(3) == Zero::zero()
}
#[inline]
pub fn add_t(&self, value: T) -> Vec4<T> {
Vec4::new(*self.index(0) + value,
*self.index(1) + value,
*self.index(2) + value,
*self.index(3) + value)
}
#[inline]
pub fn sub_t(&self, value: T) -> Vec4<T> {
Vec4::new(*self.index(0) - value,
*self.index(1) - value,
*self.index(2) - value,
*self.index(3) - value)
}
#[inline]
pub fn mul_t(&self, value: T) -> Vec4<T> {
Vec4::new(*self.index(0) * value,
*self.index(1) * value,
*self.index(2) * value,
*self.index(3) * value)
}
#[inline]
pub fn div_t(&self, value: T) -> Vec4<T> {
Vec4::new(*self.index(0) / value,
*self.index(1) / value,
*self.index(2) / value,
*self.index(3) / value)
}
#[inline]
pub fn rem_t(&self, value: T) -> Vec4<T> {
Vec4::new(*self.index(0) % value,
*self.index(1) % value,
*self.index(2) % value,
*self.index(3) % value)
}
#[inline]
pub fn add_v(&self, other: &Vec4<T>) -> Vec4<T> {
Vec4::new(*self.index(0) + *other.index(0),
*self.index(1) + *other.index(1),
*self.index(2) + *other.index(2),
*self.index(3) + *other.index(3))
}
#[inline]
pub fn sub_v(&self, other: &Vec4<T>) -> Vec4<T> {
Vec4::new(*self.index(0) - *other.index(0),
*self.index(1) - *other.index(1),
*self.index(2) - *other.index(2),
*self.index(3) - *other.index(3))
}
#[inline]
pub fn mul_v(&self, other: &Vec4<T>) -> Vec4<T> {
Vec4::new(*self.index(0) * *other.index(0),
*self.index(1) * *other.index(1),
*self.index(2) * *other.index(2),
*self.index(3) * *other.index(3))
}
#[inline]
pub fn div_v(&self, other: &Vec4<T>) -> Vec4<T> {
Vec4::new(*self.index(0) / *other.index(0),
*self.index(1) / *other.index(1),
*self.index(2) / *other.index(2),
*self.index(3) / *other.index(3))
}
#[inline]
pub fn rem_v(&self, other: &Vec4<T>) -> Vec4<T> {
Vec4::new(*self.index(0) % *other.index(0),
*self.index(1) % *other.index(1),
*self.index(2) % *other.index(2),
*self.index(3) % *other.index(3))
}
#[inline]
pub fn neg_self(&mut self) {
*self.index_mut(0) = -*self.index(0);
*self.index_mut(1) = -*self.index(1);
*self.index_mut(2) = -*self.index(2);
*self.index_mut(3) = -*self.index(3);
}
#[inline]
pub fn add_self_t(&mut self, value: T) {
*self.index_mut(0) += value;
*self.index_mut(1) += value;
*self.index_mut(2) += value;
*self.index_mut(3) += value;
}
#[inline]
pub fn sub_self_t(&mut self, value: T) {
*self.index_mut(0) -= value;
*self.index_mut(1) -= value;
*self.index_mut(2) -= value;
*self.index_mut(3) -= value;
}
#[inline]
pub fn mul_self_t(&mut self, value: T) {
*self.index_mut(0) *= value;
*self.index_mut(1) *= value;
*self.index_mut(2) *= value;
*self.index_mut(3) *= value;
}
#[inline]
pub fn div_self_t(&mut self, value: T) {
*self.index_mut(0) /= value;
*self.index_mut(1) /= value;
*self.index_mut(2) /= value;
*self.index_mut(3) /= value;
}
#[inline]
pub fn rem_self_t(&mut self, value: T) {
*self.index_mut(0) %= value;
*self.index_mut(1) %= value;
*self.index_mut(2) %= value;
*self.index_mut(3) %= value;
}
#[inline]
pub fn add_self_v(&mut self, other: &Vec4<T>) {
*self.index_mut(0) += *other.index(0);
*self.index_mut(1) += *other.index(1);
*self.index_mut(2) += *other.index(2);
*self.index_mut(3) += *other.index(3);
}
#[inline]
pub fn sub_self_v(&mut self, other: &Vec4<T>) {
*self.index_mut(0) -= *other.index(0);
*self.index_mut(1) -= *other.index(1);
*self.index_mut(2) -= *other.index(2);
*self.index_mut(3) -= *other.index(3);
}
#[inline]
pub fn mul_self_v(&mut self, other: &Vec4<T>) {
*self.index_mut(0) *= *other.index(0);
*self.index_mut(1) *= *other.index(1);
*self.index_mut(2) *= *other.index(2);
*self.index_mut(3) *= *other.index(3);
}
#[inline]
pub fn div_self_v(&mut self, other: &Vec4<T>) {
*self.index_mut(0) /= *other.index(0);
*self.index_mut(1) /= *other.index(1);
*self.index_mut(2) /= *other.index(2);
*self.index_mut(3) /= *other.index(3);
}
#[inline]
pub fn rem_self_v(&mut self, other: &Vec4<T>) {
*self.index_mut(0) /= *other.index(0);
*self.index_mut(1) /= *other.index(1);
*self.index_mut(2) /= *other.index(2);
*self.index_mut(3) /= *other.index(3);
}
#[inline]
pub fn dot(&self, other: &Vec4<T>) -> T {
*self.index(0) * *other.index(0) +
*self.index(1) * *other.index(1) +
*self.index(2) * *other.index(2) +
*self.index(3) * *other.index(3)
}
}
impl<T:Copy + Num> Neg<Vec4<T>> for Vec4<T> {
#[inline]
pub fn neg(&self) -> Vec4<T> {
Vec4::new(-self.index(0), -self.index(1), -self.index(2), -self.index(3))
}
}
impl<T:Copy + Real> Vec4<T> {
#[inline]
pub fn length2(&self) -> T {
self.dot(self)
}
#[inline]
pub fn length(&self) -> T {
self.length2().sqrt()
}
#[inline]
pub fn distance2(&self, other: &Vec4<T>) -> T {
other.sub_v(self).length2()
}
#[inline]
pub fn distance(&self, other: &Vec4<T>) -> T {
other.distance2(self).sqrt()
}
#[inline]
pub fn angle(&self, other: &Vec4<T>) -> T {
(self.dot(other) / (self.length() * other.length())).acos()
}
#[inline]
pub fn normalize(&self) -> Vec4<T> {
self.mul_t(One::one::<T>()/self.length())
}
#[inline]
pub fn normalize_to(&self, length: T) -> Vec4<T> {
self.mul_t(length / self.length())
}
#[inline]
pub fn lerp(&self, other: &Vec4<T>, amount: T) -> Vec4<T> {
self.add_v(&other.sub_v(self).mul_t(amount))
}
#[inline]
pub fn normalize_self(&mut self) {
let n = One::one::<T>() / self.length();
self.mul_self_t(n);
}
#[inline]
pub fn normalize_self_to(&mut self, length: T) {
let n = length / self.length();
self.mul_self_t(n);
}
pub fn lerp_self(&mut self, other: &Vec4<T>, amount: T) {
let v = other.sub_v(self).mul_t(amount);
self.add_self_v(&v);
}
}
impl<T:Copy + Eq + ApproxEq<T>> ApproxEq<T> for Vec4<T> {
#[inline]
pub fn approx_epsilon() -> T {
ApproxEq::approx_epsilon::<T,T>()
}
#[inline]
pub fn approx_eq(&self, other: &Vec4<T>) -> bool {
self.approx_eq_eps(other, &ApproxEq::approx_epsilon::<T,T>())
}
#[inline]
pub fn approx_eq_eps(&self, other: &Vec4<T>, epsilon: &T) -> bool {
self.index(0).approx_eq_eps(other.index(0), epsilon) &&
self.index(1).approx_eq_eps(other.index(1), epsilon) &&
self.index(2).approx_eq_eps(other.index(2), epsilon) &&
self.index(3).approx_eq_eps(other.index(3), epsilon)
}
}
impl<T:Copy + Ord> Vec4<T> {
#[inline]
pub fn lt_t(&self, value: T) -> Vec4<bool> {
Vec4::new(*self.index(0) < value,
*self.index(1) < value,
*self.index(2) < value,
*self.index(3) < value)
}
#[inline]
pub fn le_t(&self, value: T) -> Vec4<bool> {
Vec4::new(*self.index(0) <= value,
*self.index(1) <= value,
*self.index(2) <= value,
*self.index(3) <= value)
}
#[inline]
pub fn ge_t(&self, value: T) -> Vec4<bool> {
Vec4::new(*self.index(0) >= value,
*self.index(1) >= value,
*self.index(2) >= value,
*self.index(3) >= value)
}
#[inline]
pub fn gt_t(&self, value: T) -> Vec4<bool> {
Vec4::new(*self.index(0) > value,
*self.index(1) > value,
*self.index(2) > value,
*self.index(3) > value)
}
#[inline]
pub fn lt_v(&self, other: &Vec4<T>) -> Vec4<bool> {
Vec4::new(*self.index(0) < *other.index(0),
*self.index(1) < *other.index(1),
*self.index(2) < *other.index(2),
*self.index(3) < *other.index(3))
}
#[inline]
pub fn le_v(&self, other: &Vec4<T>) -> Vec4<bool> {
Vec4::new(*self.index(0) <= *other.index(0),
*self.index(1) <= *other.index(1),
*self.index(2) <= *other.index(2),
*self.index(3) <= *other.index(3))
}
#[inline]
pub fn ge_v(&self, other: &Vec4<T>) -> Vec4<bool> {
Vec4::new(*self.index(0) >= *other.index(0),
*self.index(1) >= *other.index(1),
*self.index(2) >= *other.index(2),
*self.index(3) >= *other.index(3))
}
#[inline]
pub fn gt_v(&self, other: &Vec4<T>) -> Vec4<bool> {
Vec4::new(*self.index(0) > *other.index(0),
*self.index(1) > *other.index(1),
*self.index(2) > *other.index(2),
*self.index(3) > *other.index(3))
}
}
impl<T:Copy + Eq> Vec4<T> {
#[inline]
pub fn eq_t(&self, value: T) -> Vec4<bool> {
Vec4::new(*self.index(0) == value,
*self.index(1) == value,
*self.index(2) == value,
*self.index(3) == value)
}
#[inline]
pub fn ne_t(&self, value: T) -> Vec4<bool> {
Vec4::new(*self.index(0) != value,
*self.index(1) != value,
*self.index(2) != value,
*self.index(3) != value)
}
#[inline]
pub fn eq_v(&self, other: &Vec4<T>) -> Vec4<bool> {
Vec4::new(*self.index(0) == *other.index(0),
*self.index(1) == *other.index(1),
*self.index(2) == *other.index(2),
*self.index(3) == *other.index(3))
}
#[inline]
pub fn ne_v(&self, other: &Vec4<T>) -> Vec4<bool> {
Vec4::new(*self.index(0) != *other.index(0),
*self.index(1) != *other.index(1),
*self.index(2) != *other.index(2),
*self.index(3) != *other.index(3))
}
}
impl Vec4<bool> {
#[inline]
pub fn any(&self) -> bool {
*self.index(0) || *self.index(1) || *self.index(2) || *self.index(3)
}
#[inline]
pub fn all(&self) -> bool {
*self.index(0) && *self.index(1) && *self.index(2) && *self.index(3)
}
#[inline]
pub fn not(&self) -> Vec4<bool> {
Vec4::new(!*self.index(0), !*self.index(1), !*self.index(2), !*self.index(3))
}
}