use std::cmp::FuzzyEq; use numeric::float::Float::frac_pi_2; use numeric::float::Float::frac_pi_3; use vec::*; // TODO #[test] fn test_vec2() { // assert!(vec2::dim == 2); let a = Vec2 { x: 1.0, y: 2.0 }; let b = Vec2 { x: 3.0, y: 4.0 }; let f1 = 1.5; let f2 = 0.5; let mut mut_a = a; assert!(vec2::new(1.0, 2.0) == a); assert!(vec2::from_value(1.0) == vec2::new(1.0, 1.0)); assert!(vec2::zero() == vec2::new(0.0, 0.0)); assert!(vec2::unit_x() == vec2::new(1.0, 0.0)); assert!(vec2::unit_y() == vec2::new(0.0, 1.0)); assert!(vec2::identity() == vec2::new(1.0, 1.0)); *mut_a.index_mut(0) = 42.0; *mut_a.index_mut(1) = 43.0; assert!(mut_a == vec2::new(42.0, 43.0)); mut_a = a; mut_a.swap(0, 1); assert!(mut_a[0] == a[1]); assert!(mut_a[1] == a[0]); mut_a = a; assert!(a.x == 1.0); assert!(a.y == 2.0); assert!(a[0] == 1.0); assert!(a[1] == 2.0); assert!(-a == vec2::new(-1.0, -2.0)); assert!(a.neg() == vec2::new(-1.0, -2.0)); assert!(vec2::new(0.0, 0.0).is_zero()); assert!(!vec2::new(1.0, 1.0).is_zero()); assert!(a.mul_t(f1) == vec2::new( 1.5, 3.0)); assert!(a.div_t(f2) == vec2::new( 2.0, 4.0)); assert!(a.add_v(&b) == vec2::new( 4.0, 6.0)); assert!(a.sub_v(&b) == vec2::new( -2.0, -2.0)); assert!(a.mul_v(&b) == vec2::new( 3.0, 8.0)); assert!(a.div_v(&b) == vec2::new(1.0/3.0, 2.0/4.0)); mut_a.neg_self(); assert!(mut_a == -a); mut_a = a; mut_a.mul_self_t(f1); assert!(mut_a == a.mul_t(f1)); mut_a = a; mut_a.div_self_t(f2); assert!(mut_a == a.div_t(f2)); mut_a = a; mut_a.add_self_v(&b); assert!(mut_a == a.add_v(&b)); mut_a = a; mut_a.sub_self_v(&b); assert!(mut_a == a.sub_v(&b)); mut_a = a; mut_a.mul_self_v(&b); assert!(mut_a == a.mul_v(&b)); mut_a = a; mut_a.div_self_v(&b); assert!(mut_a == a.div_v(&b)); // mut_a = a; // assert!(c.abs() == vec2::new( 2.0, 1.0)); // assert!(c.min(&d) == vec2::new(-2.0, -1.0)); // assert!(c.max(&d) == vec2::new( 1.0, 0.0)); } #[test] fn test_vec2_fuzzy_eq() { assert!(!vec2::new(0.000001, 0.000001).fuzzy_eq(&vec2::new(0.0, 0.0))); assert!(vec2::new(0.0000001, 0.0000001).fuzzy_eq(&vec2::new(0.0, 0.0))); } #[test] fn test_vec2_euclidean() { let a = vec2::new(5.0, 12.0); // (5, 12, 13) Pythagorean triple let b0 = vec2::new(3.0, 4.0); // (3, 4, 5) Pythagorean triple let b = a.add_v(&b0); assert!(a.length() == 13.0); assert!(a.length2() == 13.0 * 13.0); assert!(b0.length() == 5.0); assert!(b0.length2() == 5.0 * 5.0); assert!(a.distance(&b) == 5.0); assert!(a.distance2(&b) == 5.0 * 5.0); assert!(vec2::new(1.0, 0.0).angle(&vec2::new(0.0, 1.0)).fuzzy_eq(&frac_pi_2())); assert!(vec2::new(10.0, 0.0).angle(&vec2::new(0.0, 5.0)).fuzzy_eq(&frac_pi_2())); assert!(vec2::new(-1.0, 0.0).angle(&vec2::new(0.0, 1.0)).fuzzy_eq(&-frac_pi_2::())); assert!(vec2::new(3.0, 4.0).normalize().fuzzy_eq(&vec2::new(3.0/5.0, 4.0/5.0))); // TODO: test normalize_to, normalize_self, and normalize_self_to let c = vec2::new(-2.0, -1.0); let d = vec2::new( 1.0, 0.0); assert!(c.lerp(&d, 0.75) == vec2::new(0.250, -0.250)); let mut mut_c = c; mut_c.lerp_self(&d, 0.75); assert!(mut_c == c.lerp(&d, 0.75)); } #[test] fn test_vec2_boolean() { let tf = bvec2::new(true, false); let ff = bvec2::new(false, false); let tt = bvec2::new(true, true); assert!(tf.any() == true); assert!(tf.all() == false); assert!(tf.not() == bvec2::new(false, true)); assert!(ff.any() == false); assert!(ff.all() == false); assert!(ff.not() == bvec2::new(true, true)); assert!(tt.any() == true); assert!(tt.all() == true); assert!(tt.not() == bvec2::new(false, false)); } #[test] fn test_vec3() { // assert!(Vec3::dim == 3); let a = Vec3 { x: 1.0, y: 2.0, z: 3.0 }; let b = Vec3 { x: 4.0, y: 5.0, z: 6.0 }; let f1 = 1.5; let f2 = 0.5; let mut mut_a = a; assert!(vec3::new(1.0, 2.0, 3.0) == a); assert!(vec3::from_value(1.0) == vec3::new(1.0, 1.0, 1.0)); assert!(vec3::zero() == vec3::new(0.0, 0.0, 0.0)); assert!(vec3::unit_x() == vec3::new(1.0, 0.0, 0.0)); assert!(vec3::unit_y() == vec3::new(0.0, 1.0, 0.0)); assert!(vec3::unit_z() == vec3::new(0.0, 0.0, 1.0)); assert!(vec3::identity() == vec3::new(1.0, 1.0, 1.0)); *mut_a.index_mut(0) = 42.0; *mut_a.index_mut(1) = 43.0; *mut_a.index_mut(2) = 44.0; assert!(mut_a == vec3::new(42.0, 43.0, 44.0)); mut_a = a; mut_a.swap(0, 2); assert!(mut_a[0] == a[2]); assert!(mut_a[2] == a[0]); mut_a = a; mut_a.swap(1, 2); assert!(mut_a[1] == a[2]); assert!(mut_a[2] == a[1]); mut_a = a; assert!(a.x == 1.0); assert!(a.y == 2.0); assert!(a.z == 3.0); assert!(a[0] == 1.0); assert!(a[1] == 2.0); assert!(a[2] == 3.0); assert!(a.cross(&b) == vec3::new(-3.0, 6.0, -3.0)); mut_a.cross_self(&b); assert!(mut_a == a.cross(&b)); mut_a = a; assert!(-a == vec3::new(-1.0, -2.0, -3.0)); assert!(a.neg() == vec3::new(-1.0, -2.0, -3.0)); assert!(vec3::new(0.0, 0.0, 0.0).is_zero()); assert!(!vec3::new(1.0, 1.0, 1.0).is_zero()); assert!(a.mul_t(f1) == vec3::new( 1.5, 3.0, 4.5)); assert!(a.div_t(f2) == vec3::new( 2.0, 4.0, 6.0)); assert!(a.add_v(&b) == vec3::new( 5.0, 7.0, 9.0)); assert!(a.sub_v(&b) == vec3::new( -3.0, -3.0, -3.0)); assert!(a.mul_v(&b) == vec3::new( 4.0, 10.0, 18.0)); assert!(a.div_v(&b) == vec3::new(1.0/4.0, 2.0/5.0, 3.0/6.0)); mut_a.neg_self(); assert!(mut_a == -a); mut_a = a; mut_a.mul_self_t(f1); assert!(mut_a == a.mul_t(f1)); mut_a = a; mut_a.div_self_t(f2); assert!(mut_a == a.div_t(f2)); mut_a = a; mut_a.add_self_v(&b); assert!(mut_a == a.add_v(&b)); mut_a = a; mut_a.sub_self_v(&b); assert!(mut_a == a.sub_v(&b)); mut_a = a; mut_a.mul_self_v(&b); assert!(mut_a == a.mul_v(&b)); mut_a = a; mut_a.div_self_v(&b); assert!(mut_a == a.div_v(&b)); // mut_a = a; // exact_eq // fuzzy_eq // eq // assert!(c.abs() == vec3::new( 2.0, 1.0, 1.0)); // assert!(c.min(&d) == vec3::new(-2.0, -1.0, 0.5)); // assert!(c.max(&d) == vec3::new( 1.0, 0.0, 1.0)); } #[test] fn test_vec3_fuzzy_eq() { assert!(!vec3::new(0.000001, 0.000001, 0.000001).fuzzy_eq(&vec3::new(0.0, 0.0, 0.0))); assert!(vec3::new(0.0000001, 0.0000001, 0.0000001).fuzzy_eq(&vec3::new(0.0, 0.0, 0.0))); } #[test] fn test_vec3_euclidean() { let a = vec3::new(2.0, 3.0, 6.0); // (2, 3, 6, 7) Pythagorean quadruple let b0 = vec3::new(1.0, 4.0, 8.0); // (1, 4, 8, 9) Pythagorean quadruple let b = a.add_v(&b0); assert!(a.length() == 7.0); assert!(a.length2() == 7.0 * 7.0); assert!(b0.length() == 9.0); assert!(b0.length2() == 9.0 * 9.0); assert!(a.distance(&b) == 9.0); assert!(a.distance2(&b) == 9.0 * 9.0); assert!(vec3::new(1.0, 0.0, 1.0).angle(&vec3::new(1.0, 1.0, 0.0)).fuzzy_eq(&frac_pi_3())); assert!(vec3::new(10.0, 0.0, 10.0).angle(&vec3::new(5.0, 5.0, 0.0)).fuzzy_eq(&frac_pi_3())); assert!(vec3::new(-1.0, 0.0, -1.0).angle(&vec3::new(1.0, -1.0, 0.0)).fuzzy_eq(&(2.0 * frac_pi_3()))); assert!(vec3::new(2.0, 3.0, 6.0).normalize().fuzzy_eq(&vec3::new(2.0/7.0, 3.0/7.0, 6.0/7.0))); // TODO: test normalize_to, normalize_self, and normalize_self_to let c = vec3::new(-2.0, -1.0, 1.0); let d = vec3::new( 1.0, 0.0, 0.5); assert!(c.lerp(&d, 0.75) == vec3::new(0.250, -0.250, 0.625)); let mut mut_c = c; mut_c.lerp_self(&d, 0.75); assert!(mut_c == c.lerp(&d, 0.75)); } #[test] fn test_vec3_boolean() { let tft = bvec3::new(true, false, true); let fff = bvec3::new(false, false, false); let ttt = bvec3::new(true, true, true); assert!(tft.any() == true); assert!(tft.all() == false); assert!(tft.not() == bvec3::new(false, true, false)); assert!(fff.any() == false); assert!(fff.all() == false); assert!(fff.not() == bvec3::new(true, true, true)); assert!(ttt.any() == true); assert!(ttt.all() == true); assert!(ttt.not() == bvec3::new(false, false, false)); } #[test] fn test_vec4() { // assert!(Vec4::dim == 4); let a = Vec4 { x: 1.0, y: 2.0, z: 3.0, w: 4.0 }; let b = Vec4 { x: 5.0, y: 6.0, z: 7.0, w: 8.0 }; let f1 = 1.5; let f2 = 0.5; let mut mut_a = a; assert!(vec4::new(1.0, 2.0, 3.0, 4.0) == a); assert!(vec4::from_value(1.0) == vec4::new(1.0, 1.0, 1.0, 1.0)); *mut_a.index_mut(0) = 42.0; *mut_a.index_mut(1) = 43.0; *mut_a.index_mut(2) = 44.0; *mut_a.index_mut(3) = 45.0; assert!(mut_a == vec4::new(42.0, 43.0, 44.0, 45.0)); mut_a = a; mut_a.swap(0, 3); assert!(mut_a[0] == a[3]); assert!(mut_a[3] == a[0]); mut_a = a; mut_a.swap(1, 2); assert!(mut_a[1] == a[2]); assert!(mut_a[2] == a[1]); mut_a = a; assert!(vec4::zero() == vec4::new(0.0, 0.0, 0.0, 0.0)); assert!(vec4::unit_x() == vec4::new(1.0, 0.0, 0.0, 0.0)); assert!(vec4::unit_y() == vec4::new(0.0, 1.0, 0.0, 0.0)); assert!(vec4::unit_z() == vec4::new(0.0, 0.0, 1.0, 0.0)); assert!(vec4::unit_w() == vec4::new(0.0, 0.0, 0.0, 1.0)); assert!(vec4::identity() == vec4::new(1.0, 1.0, 1.0, 1.0)); assert!(a.x == 1.0); assert!(a.y == 2.0); assert!(a.z == 3.0); assert!(a.w == 4.0); assert!(a[0] == 1.0); assert!(a[1] == 2.0); assert!(a[2] == 3.0); assert!(a[3] == 4.0); assert!(-a == vec4::new(-1.0, -2.0, -3.0, -4.0)); assert!(a.neg() == vec4::new(-1.0, -2.0, -3.0, -4.0)); assert!(vec4::new(0.0, 0.0, 0.0, 0.0).is_zero()); assert!(!vec4::new(1.0, 1.0, 1.0, 1.0).is_zero()); assert!(a.mul_t(f1) == vec4::new( 1.5, 3.0, 4.5, 6.0)); assert!(a.div_t(f2) == vec4::new( 2.0, 4.0, 6.0, 8.0)); assert!(a.add_v(&b) == vec4::new( 6.0, 8.0, 10.0, 12.0)); assert!(a.sub_v(&b) == vec4::new( -4.0, -4.0, -4.0, -4.0)); assert!(a.mul_v(&b) == vec4::new( 5.0, 12.0, 21.0, 32.0)); assert!(a.div_v(&b) == vec4::new(1.0/5.0, 2.0/6.0, 3.0/7.0, 4.0/8.0)); assert!(a.dot(&b) == 70.0); mut_a.neg_self(); assert!(mut_a == -a); mut_a = a; mut_a.mul_self_t(f1); assert!(mut_a == a.mul_t(f1)); mut_a = a; mut_a.div_self_t(f2); assert!(mut_a == a.div_t(f2)); mut_a = a; mut_a.add_self_v(&b); assert!(mut_a == a.add_v(&b)); mut_a = a; mut_a.sub_self_v(&b); assert!(mut_a == a.sub_v(&b)); mut_a = a; mut_a.mul_self_v(&b); assert!(mut_a == a.mul_v(&b)); mut_a = a; mut_a.div_self_v(&b); assert!(mut_a == a.div_v(&b)); // mut_a = a; // assert!(c.abs() == vec4::new( 2.0, 1.0, 1.0, 2.0)); // assert!(c.min(&d) == vec4::new(-2.0, -1.0, 0.5, 1.0)); // assert!(c.max(&d) == vec4::new( 1.0, 0.0, 1.0, 2.0)); } #[test] fn test_vec4_fuzzy_eq() { assert!(!vec4::new(0.000001, 0.000001, 0.000001, 0.000001).fuzzy_eq(&vec4::new(0.0, 0.0, 0.0, 0.0))); assert!(vec4::new(0.0000001, 0.0000001, 0.0000001, 0.0000001).fuzzy_eq(&vec4::new(0.0, 0.0, 0.0, 0.0))); } #[test] fn test_vec4_euclidean() { let a = vec4::new(1.0, 2.0, 4.0, 10.0); // (1, 2, 4, 10, 11) Pythagorean quintuple let b0 = vec4::new(1.0, 2.0, 8.0, 10.0); // (1, 2, 8, 10, 13) Pythagorean quintuple let b = a.add_v(&b0); assert!(a.length() == 11.0); assert!(a.length2() == 11.0 * 11.0); assert!(b0.length() == 13.0); assert!(b0.length2() == 13.0 * 13.0); assert!(a.distance(&b) == 13.0); assert!(a.distance2(&b) == 13.0 * 13.0); assert!(vec4::new(1.0, 0.0, 1.0, 0.0).angle(&vec4::new(0.0, 1.0, 0.0, 1.0)).fuzzy_eq(&frac_pi_2())); assert!(vec4::new(10.0, 0.0, 10.0, 0.0).angle(&vec4::new(0.0, 5.0, 0.0, 5.0)).fuzzy_eq(&frac_pi_2())); assert!(vec4::new(-1.0, 0.0, -1.0, 0.0).angle(&vec4::new(0.0, 1.0, 0.0, 1.0)).fuzzy_eq(&frac_pi_2())); assert!(vec4::new(1.0, 2.0, 4.0, 10.0).normalize().fuzzy_eq(&vec4::new(1.0/11.0, 2.0/11.0, 4.0/11.0, 10.0/11.0))); // TODO: test normalize_to, normalize_self, and normalize_self_to let c = vec4::new(-2.0, -1.0, 1.0, 2.0); let d = vec4::new( 1.0, 0.0, 0.5, 1.0); assert!(c.lerp(&d, 0.75) == vec4::new(0.250, -0.250, 0.625, 1.250)); let mut mut_c = c; mut_c.lerp_self(&d, 0.75); assert!(mut_c == c.lerp(&d, 0.75)); } #[test] fn test_vec4_boolean() { let tftf = bvec4::new(true, false, true, false); let ffff = bvec4::new(false, false, false, false); let tttt = bvec4::new(true, true, true, true); assert!(tftf.any() == true); assert!(tftf.all() == false); assert!(tftf.not() == bvec4::new(false, true, false, true)); assert!(ffff.any() == false); assert!(ffff.all() == false); assert!(ffff.not() == bvec4::new(true, true, true, true)); assert!(tttt.any() == true); assert!(tttt.all() == true); assert!(tttt.not() == bvec4::new(false, false, false, false)); }