use core::num::Zero::zero; use core::num::One::one; use std::cmp::{FuzzyEq, FUZZY_EPSILON}; use vec::*; use quat::Quat; use num::NumAssign; /** * The base square matrix trait * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * `V` - The type of the row and column vectors. Should have components of a * floating point type and have the same number of dimensions as the * number of rows and columns in the matrix. */ pub trait BaseMat: Index + Eq + Neg { /** * # Return value * * The column vector at `i` */ fn col(&self, i: uint) -> V; /** * # Return value * * The row vector at `i` */ fn row(&self, i: uint) -> V; /** * Construct a diagonal matrix with the major diagonal set to `value` */ fn from_value(value: T) -> Self; /** * # Return value * * The identity matrix */ fn identity() -> Self; /** * # Return value * * A matrix with all elements set to zero */ fn zero() -> Self; /** * # Return value * * The scalar multiplication of this matrix and `value` */ fn mul_t(&self, value: T) -> Self; /** * # Return value * * The matrix vector product of the matrix and `vec` */ fn mul_v(&self, vec: &V) -> V; /** * # Return value * * The matrix addition of the matrix and `other` */ fn add_m(&self, other: &Self) -> Self; /** * # Return value * * The difference between the matrix and `other` */ fn sub_m(&self, other: &Self) -> Self; /** * # Return value * * The matrix product of the matrix and `other` */ fn mul_m(&self, other: &Self) -> Self; /** * # Return value * * The matrix dot product of the matrix and `other` */ fn dot(&self, other: &Self) -> T; /** * # Return value * * The determinant of the matrix */ fn determinant(&self) -> T; /** * # Return value * * The sum of the main diagonal of the matrix */ fn trace(&self) -> T; /** * Returns the inverse of the matrix * * # Return value * * * `Some(m)` - if the inversion was successful, where `m` is the inverted matrix * * `None` - if the inversion was unsuccessful (because the matrix was not invertable) */ fn inverse(&self) -> Option; /** * # Return value * * The transposed matrix */ fn transpose(&self) -> Self; /** * # Return value * * A mutable reference to the column at `i` */ fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut V; /** * Swap two columns of the matrix in place */ fn swap_cols(&mut self, a: uint, b: uint); /** * Swap two rows of the matrix in place */ fn swap_rows(&mut self, a: uint, b: uint); /** * Sets the matrix to `other` */ fn set(&mut self, other: &Self); /** * Sets the matrix to the identity matrix */ fn to_identity(&mut self); /** * Sets each element of the matrix to zero */ fn to_zero(&mut self); /** * Multiplies the matrix by a scalar */ fn mul_self_t(&mut self, value: T); /** * Add the matrix `other` to `self` */ fn add_self_m(&mut self, other: &Self); /** * Subtract the matrix `other` from `self` */ fn sub_self_m(&mut self, other: &Self); /** * Sets the matrix to its inverse * * # Failure * * Fails if the matrix is not invertable. Make sure you check with the * `is_invertible` method before you attempt this! */ fn invert_self(&mut self); /** * Sets the matrix to its transpose */ fn transpose_self(&mut self); /** * Check to see if the matrix is an identity matrix * * # Return value * * `true` if the matrix is approximately equal to the identity matrix */ fn is_identity(&self) -> bool; /** * Check to see if the matrix is diagonal * * # Return value * * `true` all the elements outside the main diagonal are approximately * equal to zero. */ fn is_diagonal(&self) -> bool; /** * Check to see if the matrix is rotated * * # Return value * * `true` if the matrix is not approximately equal to the identity matrix. */ fn is_rotated(&self) -> bool; /** * Check to see if the matrix is symmetric * * # Return value * * `true` if the matrix is approximately equal to its transpose). */ fn is_symmetric(&self) -> bool; /** * Check to see if the matrix is invertable * * # Return value * * `true` if the matrix is invertable */ fn is_invertible(&self) -> bool; /** * # Return value * * A pointer to the first element of the matrix */ fn to_ptr(&self) -> *T; } /** * A 2 x 2 matrix */ pub trait BaseMat2: BaseMat { fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Self; fn from_cols(c0: V, c1: V) -> Self; fn from_angle(radians: T) -> Self; fn to_mat3(&self) -> Mat3; fn to_mat4(&self) -> Mat4; } /** * A 3 x 3 matrix */ pub trait BaseMat3: BaseMat { fn new(c0r0:T, c0r1:T, c0r2:T, c1r0:T, c1r1:T, c1r2:T, c2r0:T, c2r1:T, c2r2:T) -> Self; fn from_cols(c0: V, c1: V, c2: V) -> Self; fn from_angle_x(radians: T) -> Self; fn from_angle_y(radians: T) -> Self; fn from_angle_z(radians: T) -> Self; fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Self; fn from_angle_axis(radians: T, axis: &Vec3) -> Self; fn from_axes(x: V, y: V, z: V) -> Self; fn look_at(dir: &Vec3, up: &Vec3) -> Self; fn to_mat4(&self) -> Mat4; fn to_quat(&self) -> Quat; } /** * A 4 x 4 matrix */ pub trait BaseMat4: BaseMat { fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T, c1r0: T, c1r1: T, c1r2: T, c1r3: T, c2r0: T, c2r1: T, c2r2: T, c2r3: T, c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Self; fn from_cols(c0: V, c1: V, c2: V, c3: V) -> Self; } /** * A 2 x 2 column major matrix * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix */ #[deriving(Eq)] pub struct Mat2 { x: Vec2, y: Vec2 } impl> BaseMat> for Mat2 { #[inline(always)] fn col(&self, i: uint) -> Vec2 { self[i] } #[inline(always)] fn row(&self, i: uint) -> Vec2 { BaseVec2::new(self[0][i], self[1][i]) } /** * Construct a 2 x 2 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 * +-----+-----+ * r0 | val | 0 | * +-----+-----+ * r1 | 0 | val | * +-----+-----+ * ~~~ */ #[inline(always)] fn from_value(value: T) -> Mat2 { BaseMat2::new(value, zero(), zero(), value) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 * +----+----+ * r0 | 1 | 0 | * +----+----+ * r1 | 0 | 1 | * +----+----+ * ~~~ */ #[inline(always)] fn identity() -> Mat2 { BaseMat2::new( one::(), zero::(), zero::(), one::()) } /** * Returns the additive identity matrix * ~~~ * c0 c1 * +----+----+ * r0 | 0 | 0 | * +----+----+ * r1 | 0 | 0 | * +----+----+ * ~~~ */ #[inline(always)] fn zero() -> Mat2 { BaseMat2::new(zero::(), zero::(), zero::(), zero::()) } #[inline(always)] fn mul_t(&self, value: T) -> Mat2 { BaseMat2::from_cols(self[0].mul_t(value), self[1].mul_t(value)) } #[inline(always)] fn mul_v(&self, vec: &Vec2) -> Vec2 { BaseVec2::new(self.row(0).dot(vec), self.row(1).dot(vec)) } #[inline(always)] fn add_m(&self, other: &Mat2) -> Mat2 { BaseMat2::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1])) } #[inline(always)] fn sub_m(&self, other: &Mat2) -> Mat2 { BaseMat2::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1])) } #[inline(always)] fn mul_m(&self, other: &Mat2) -> Mat2 { BaseMat2::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1))) } fn dot(&self, other: &Mat2) -> T { other.transpose().mul_m(self).trace() } fn determinant(&self) -> T { self[0][0] * self[1][1] - self[1][0] * self[0][1] } fn trace(&self) -> T { self[0][0] + self[1][1] } #[inline(always)] fn inverse(&self) -> Option> { let d = self.determinant(); if d.fuzzy_eq(&zero()) { None } else { Some(BaseMat2::new( self[1][1]/d, -self[0][1]/d, -self[1][0]/d, self[0][0]/d)) } } #[inline(always)] fn transpose(&self) -> Mat2 { BaseMat2::new(self[0][0], self[1][0], self[0][1], self[1][1]) } #[inline(always)] fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec2 { match i { 0 => &mut self.x, 1 => &mut self.y, _ => fail!(fmt!("index out of bounds: expected an index from 0 to 1, but found %u", i)) } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { *self.col_mut(a) <-> *self.col_mut(b); } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat2) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = BaseMat::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = BaseMat::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.x.mul_self_t(value); self.y.mul_self_t(value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat2) { self.x.add_self_v(&other[0]); self.y.add_self_v(&other[1]); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat2) { self.x.sub_self_v(&other[0]); self.y.sub_self_v(&other[1]); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail!(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { *self.x.index_mut(1) <-> *self.y.index_mut(0); *self.y.index_mut(0) <-> *self.x.index_mut(1); } #[inline(always)] fn is_identity(&self) -> bool { self.fuzzy_eq(&BaseMat::identity()) } #[inline(always)] fn is_diagonal(&self) -> bool { self[0][1].fuzzy_eq(&zero()) && self[1][0].fuzzy_eq(&zero()) } #[inline(always)] fn is_rotated(&self) -> bool { !self.fuzzy_eq(&BaseMat::identity()) } #[inline(always)] fn is_symmetric(&self) -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[1][0].fuzzy_eq(&self[0][1]) } #[inline(always)] fn is_invertible(&self) -> bool { !self.determinant().fuzzy_eq(&zero()) } #[inline(always)] fn to_ptr(&self) -> *T { unsafe { cast::transmute(self) } } } impl> BaseMat2> for Mat2 { /** * Construct a 2 x 2 matrix * * # Arguments * * * `c0r0`, `c0r1` - the first column of the matrix * * `c1r0`, `c1r1` - the second column of the matrix * * ~~~ * c0 c1 * +------+------+ * r0 | c0r0 | c1r0 | * +------+------+ * r1 | c0r1 | c1r1 | * +------+------+ * ~~~ */ #[inline(always)] fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Mat2 { BaseMat2::from_cols(BaseVec2::new::>(c0r0, c0r1), BaseVec2::new::>(c1r0, c1r1)) } /** * Construct a 2 x 2 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * ~~~ * c0 c1 * +------+------+ * r0 | c0.x | c1.x | * +------+------+ * r1 | c0.y | c1.y | * +------+------+ * ~~~ */ #[inline(always)] fn from_cols(c0: Vec2, c1: Vec2) -> Mat2 { Mat2 { x: c0, y: c1 } } #[inline(always)] fn from_angle(radians: T) -> Mat2 { let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat2::new(cos_theta, -sin_theta, sin_theta, cos_theta) } /** * Returns the the matrix with an extra row and column added * ~~~ * c0 c1 c0 c1 c2 * +----+----+ +----+----+----+ * r0 | a | b | r0 | a | b | 0 | * +----+----+ +----+----+----+ * r1 | c | d | => r1 | c | d | 0 | * +----+----+ +----+----+----+ * r2 | 0 | 0 | 1 | * +----+----+----+ * ~~~ */ #[inline(always)] fn to_mat3(&self) -> Mat3 { BaseMat3::new(self[0][0], self[0][1], zero(), self[1][0], self[1][1], zero(), zero(), zero(), one()) } /** * Returns the the matrix with an extra two rows and columns added * ~~~ * c0 c1 c0 c1 c2 c3 * +----+----+ +----+----+----+----+ * r0 | a | b | r0 | a | b | 0 | 0 | * +----+----+ +----+----+----+----+ * r1 | c | d | => r1 | c | d | 0 | 0 | * +----+----+ +----+----+----+----+ * r2 | 0 | 0 | 1 | 0 | * +----+----+----+----+ * r3 | 0 | 0 | 0 | 1 | * +----+----+----+----+ * ~~~ */ #[inline(always)] fn to_mat4(&self) -> Mat4 { BaseMat4::new(self[0][0], self[0][1], zero(), zero(), self[1][0], self[1][1], zero(), zero(), zero(), zero(), one(), zero(), zero(), zero(), zero(), one()) } } impl Index> for Mat2 { #[inline(always)] fn index(&self, i: &uint) -> Vec2 { unsafe { do vec::raw::buf_as_slice(cast::transmute(self), 2) |slice| { slice[*i] } } } } impl> Neg> for Mat2 { #[inline(always)] fn neg(&self) -> Mat2 { BaseMat2::from_cols(-self[0], -self[1]) } } impl> FuzzyEq for Mat2 { #[inline(always)] fn fuzzy_eq(&self, other: &Mat2) -> bool { self.fuzzy_eq_eps(other, &num::cast(FUZZY_EPSILON)) } #[inline(always)] fn fuzzy_eq_eps(&self, other: &Mat2, epsilon: &T) -> bool { self[0].fuzzy_eq_eps(&other[0], epsilon) && self[1].fuzzy_eq_eps(&other[1], epsilon) } } /** * A 3 x 3 column major matrix * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix */ #[deriving(Eq)] pub struct Mat3 { x: Vec3, y: Vec3, z: Vec3 } impl> BaseMat> for Mat3 { #[inline(always)] fn col(&self, i: uint) -> Vec3 { self[i] } #[inline(always)] fn row(&self, i: uint) -> Vec3 { BaseVec3::new(self[0][i], self[1][i], self[2][i]) } /** * Construct a 3 x 3 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 c2 * +-----+-----+-----+ * r0 | val | 0 | 0 | * +-----+-----+-----+ * r1 | 0 | val | 0 | * +-----+-----+-----+ * r2 | 0 | 0 | val | * +-----+-----+-----+ * ~~~ */ #[inline(always)] fn from_value(value: T) -> Mat3 { BaseMat3::new(value, zero(), zero(), zero(), value, zero(), zero(), zero(), value) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 c2 * +----+----+----+ * r0 | 1 | 0 | 0 | * +----+----+----+ * r1 | 0 | 1 | 0 | * +----+----+----+ * r2 | 0 | 0 | 1 | * +----+----+----+ * ~~~ */ #[inline(always)] fn identity() -> Mat3 { BaseMat3::new( one::(), zero::(), zero::(), zero::(), one::(), zero::(), zero::(), zero::(), one::()) } /** * Returns the additive identity matrix * ~~~ * c0 c1 c2 * +----+----+----+ * r0 | 0 | 0 | 0 | * +----+----+----+ * r1 | 0 | 0 | 0 | * +----+----+----+ * r2 | 0 | 0 | 0 | * +----+----+----+ * ~~~ */ #[inline(always)] fn zero() -> Mat3 { BaseMat3::new(zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::()) } #[inline(always)] fn mul_t(&self, value: T) -> Mat3 { BaseMat3::from_cols(self[0].mul_t(value), self[1].mul_t(value), self[2].mul_t(value)) } #[inline(always)] fn mul_v(&self, vec: &Vec3) -> Vec3 { BaseVec3::new(self.row(0).dot(vec), self.row(1).dot(vec), self.row(2).dot(vec)) } #[inline(always)] fn add_m(&self, other: &Mat3) -> Mat3 { BaseMat3::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1]), self[2].add_v(&other[2])) } #[inline(always)] fn sub_m(&self, other: &Mat3) -> Mat3 { BaseMat3::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1]), self[2].sub_v(&other[2])) } #[inline(always)] fn mul_m(&self, other: &Mat3) -> Mat3 { BaseMat3::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2))) } fn dot(&self, other: &Mat3) -> T { other.transpose().mul_m(self).trace() } fn determinant(&self) -> T { self.col(0).dot(&self.col(1).cross(&self.col(2))) } fn trace(&self) -> T { self[0][0] + self[1][1] + self[2][2] } // #[inline(always)] fn inverse(&self) -> Option> { let d = self.determinant(); if d.fuzzy_eq(&zero()) { None } else { let m: Mat3 = BaseMat3::from_cols(self[1].cross(&self[2]).div_t(d), self[2].cross(&self[0]).div_t(d), self[0].cross(&self[1]).div_t(d)); Some(m.transpose()) } } #[inline(always)] fn transpose(&self) -> Mat3 { BaseMat3::new(self[0][0], self[1][0], self[2][0], self[0][1], self[1][1], self[2][1], self[0][2], self[1][2], self[2][2]) } #[inline(always)] fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec3 { match i { 0 => &mut self.x, 1 => &mut self.y, 2 => &mut self.z, _ => fail!(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i)) } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { *self.col_mut(a) <-> *self.col_mut(b); } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); self.z.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat3) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = BaseMat::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = BaseMat::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.col_mut(0).mul_self_t(value); self.col_mut(1).mul_self_t(value); self.col_mut(2).mul_self_t(value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat3) { self.col_mut(0).add_self_v(&other[0]); self.col_mut(1).add_self_v(&other[1]); self.col_mut(2).add_self_v(&other[2]); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat3) { self.col_mut(0).sub_self_v(&other[0]); self.col_mut(1).sub_self_v(&other[1]); self.col_mut(2).sub_self_v(&other[2]); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail!(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { *self.col_mut(0).index_mut(1) <-> *self.col_mut(1).index_mut(0); *self.col_mut(0).index_mut(2) <-> *self.col_mut(2).index_mut(0); *self.col_mut(1).index_mut(0) <-> *self.col_mut(0).index_mut(1); *self.col_mut(1).index_mut(2) <-> *self.col_mut(2).index_mut(1); *self.col_mut(2).index_mut(0) <-> *self.col_mut(0).index_mut(2); *self.col_mut(2).index_mut(1) <-> *self.col_mut(1).index_mut(2); } #[inline(always)] fn is_identity(&self) -> bool { self.fuzzy_eq(&BaseMat::identity()) } #[inline(always)] fn is_diagonal(&self) -> bool { self[0][1].fuzzy_eq(&zero()) && self[0][2].fuzzy_eq(&zero()) && self[1][0].fuzzy_eq(&zero()) && self[1][2].fuzzy_eq(&zero()) && self[2][0].fuzzy_eq(&zero()) && self[2][1].fuzzy_eq(&zero()) } #[inline(always)] fn is_rotated(&self) -> bool { !self.fuzzy_eq(&BaseMat::identity()) } #[inline(always)] fn is_symmetric(&self) -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[0][2].fuzzy_eq(&self[2][0]) && self[1][0].fuzzy_eq(&self[0][1]) && self[1][2].fuzzy_eq(&self[2][1]) && self[2][0].fuzzy_eq(&self[0][2]) && self[2][1].fuzzy_eq(&self[1][2]) } #[inline(always)] fn is_invertible(&self) -> bool { !self.determinant().fuzzy_eq(&zero()) } #[inline(always)] fn to_ptr(&self) -> *T { unsafe { cast::transmute(self) } } } impl> BaseMat3> for Mat3 { /** * Construct a 3 x 3 matrix * * # Arguments * * * `c0r0`, `c0r1`, `c0r2` - the first column of the matrix * * `c1r0`, `c1r1`, `c1r2` - the second column of the matrix * * `c2r0`, `c2r1`, `c2r2` - the third column of the matrix * * ~~~ * c0 c1 c2 * +------+------+------+ * r0 | c0r0 | c1r0 | c2r0 | * +------+------+------+ * r1 | c0r1 | c1r1 | c2r1 | * +------+------+------+ * r2 | c0r2 | c1r2 | c2r2 | * +------+------+------+ * ~~~ */ #[inline(always)] fn new(c0r0:T, c0r1:T, c0r2:T, c1r0:T, c1r1:T, c1r2:T, c2r0:T, c2r1:T, c2r2:T) -> Mat3 { BaseMat3::from_cols(BaseVec3::new::>(c0r0, c0r1, c0r2), BaseVec3::new::>(c1r0, c1r1, c1r2), BaseVec3::new::>(c2r0, c2r1, c2r2)) } /** * Construct a 3 x 3 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * `c2` - the third column vector of the matrix * * ~~~ * c0 c1 c2 * +------+------+------+ * r0 | c0.x | c1.x | c2.x | * +------+------+------+ * r1 | c0.y | c1.y | c2.y | * +------+------+------+ * r2 | c0.z | c1.z | c2.z | * +------+------+------+ * ~~~ */ #[inline(always)] fn from_cols(c0: Vec3, c1: Vec3, c2: Vec3) -> Mat3 { Mat3 { x: c0, y: c1, z: c2 } } /** * Construct a matrix from an angular rotation around the `x` axis */ #[inline(always)] fn from_angle_x(radians: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat3::new( one(), zero(), zero(), zero(), cos_theta, sin_theta, zero(), -sin_theta, cos_theta) } /** * Construct a matrix from an angular rotation around the `y` axis */ #[inline(always)] fn from_angle_y(radians: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat3::new(cos_theta, zero(), -sin_theta, zero(), one(), zero(), sin_theta, zero(), cos_theta) } /** * Construct a matrix from an angular rotation around the `z` axis */ #[inline(always)] fn from_angle_z(radians: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat3::new( cos_theta, sin_theta, zero(), -sin_theta, cos_theta, zero(), zero(), zero(), one()) } /** * Construct a matrix from Euler angles * * # Arguments * * * `theta_x` - the angular rotation around the `x` axis (pitch) * * `theta_y` - the angular rotation around the `y` axis (yaw) * * `theta_z` - the angular rotation around the `z` axis (roll) */ #[inline(always)] fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations let cx = radians_x.cos(); let sx = radians_x.sin(); let cy = radians_y.cos(); let sy = radians_y.sin(); let cz = radians_z.cos(); let sz = radians_z.sin(); BaseMat3::new( cy*cz, cy*sz, -sy, -cx*sz + sx*sy*cz, cx*cz + sx*sy*sz, sx*cy, sx*sz + cx*sy*cz, -sx*cz + cx*sy*sz, cx*cy) } /** * Construct a matrix from an axis and an angular rotation */ #[inline(always)] fn from_angle_axis(radians: T, axis: &Vec3) -> Mat3 { let c = radians.cos(); let s = radians.sin(); let _1_c = one::() - c; let x = axis.x; let y = axis.y; let z = axis.z; BaseMat3::new(_1_c*x*x + c, _1_c*x*y + s*z, _1_c*x*z - s*y, _1_c*x*y - s*z, _1_c*y*y + c, _1_c*y*z + s*x, _1_c*x*z + s*y, _1_c*y*z - s*x, _1_c*z*z + c) } #[inline(always)] fn from_axes(x: Vec3, y: Vec3, z: Vec3) -> Mat3 { BaseMat3::from_cols(x, y, z) } #[inline(always)] fn look_at(dir: &Vec3, up: &Vec3) -> Mat3 { let dir_ = dir.normalize(); let side = dir_.cross(&up.normalize()); let up_ = side.cross(&dir_).normalize(); BaseMat3::from_axes(up_, side, dir_) } /** * Returns the the matrix with an extra row and column added * ~~~ * c0 c1 c2 c0 c1 c2 c3 * +----+----+----+ +----+----+----+----+ * r0 | a | b | c | r0 | a | b | c | 0 | * +----+----+----+ +----+----+----+----+ * r1 | d | e | f | => r1 | d | e | f | 0 | * +----+----+----+ +----+----+----+----+ * r2 | g | h | i | r2 | g | h | i | 0 | * +----+----+----+ +----+----+----+----+ * r3 | 0 | 0 | 0 | 1 | * +----+----+----+----+ * ~~~ */ #[inline(always)] fn to_mat4(&self) -> Mat4 { BaseMat4::new(self[0][0], self[0][1], self[0][2], zero(), self[1][0], self[1][1], self[1][2], zero(), self[2][0], self[2][1], self[2][2], zero(), zero(), zero(), zero(), one()) } /** * Convert the matrix to a quaternion */ #[inline(always)] fn to_quat(&self) -> Quat { // Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's // paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf let mut s; let w, x, y, z; let trace = self.trace(); let _1: T = num::cast(1.0); let half: T = num::cast(0.5); if trace >= zero() { s = (_1 + trace).sqrt(); w = half * s; s = half / s; x = (self[1][2] - self[2][1]) * s; y = (self[2][0] - self[0][2]) * s; z = (self[0][1] - self[1][0]) * s; } else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) { s = (half + (self[0][0] - self[1][1] - self[2][2])).sqrt(); w = half * s; s = half / s; x = (self[0][1] - self[1][0]) * s; y = (self[2][0] - self[0][2]) * s; z = (self[1][2] - self[2][1]) * s; } else if self[1][1] > self[2][2] { s = (half + (self[1][1] - self[0][0] - self[2][2])).sqrt(); w = half * s; s = half / s; x = (self[0][1] - self[1][0]) * s; y = (self[1][2] - self[2][1]) * s; z = (self[2][0] - self[0][2]) * s; } else { s = (half + (self[2][2] - self[0][0] - self[1][1])).sqrt(); w = half * s; s = half / s; x = (self[2][0] - self[0][2]) * s; y = (self[1][2] - self[2][1]) * s; z = (self[0][1] - self[1][0]) * s; } Quat::new(w, x, y, z) } } impl Index> for Mat3 { #[inline(always)] fn index(&self, i: &uint) -> Vec3 { unsafe { do vec::raw::buf_as_slice(cast::transmute(self), 3) |slice| { slice[*i] } } } } impl> Neg> for Mat3 { #[inline(always)] fn neg(&self) -> Mat3 { BaseMat3::from_cols(-self[0], -self[1], -self[2]) } } impl> FuzzyEq for Mat3 { #[inline(always)] fn fuzzy_eq(&self, other: &Mat3) -> bool { self.fuzzy_eq_eps(other, &num::cast(FUZZY_EPSILON)) } #[inline(always)] fn fuzzy_eq_eps(&self, other: &Mat3, epsilon: &T) -> bool { self[0].fuzzy_eq_eps(&other[0], epsilon) && self[1].fuzzy_eq_eps(&other[1], epsilon) && self[2].fuzzy_eq_eps(&other[2], epsilon) } } /** * A 4 x 4 column major matrix * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix * * `w` - the fourth column vector of the matrix */ #[deriving(Eq)] pub struct Mat4 { x: Vec4, y: Vec4, z: Vec4, w: Vec4 } impl> BaseMat> for Mat4 { #[inline(always)] fn col(&self, i: uint) -> Vec4 { self[i] } #[inline(always)] fn row(&self, i: uint) -> Vec4 { BaseVec4::new(self[0][i], self[1][i], self[2][i], self[3][i]) } /** * Construct a 4 x 4 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 c2 c3 * +-----+-----+-----+-----+ * r0 | val | 0 | 0 | 0 | * +-----+-----+-----+-----+ * r1 | 0 | val | 0 | 0 | * +-----+-----+-----+-----+ * r2 | 0 | 0 | val | 0 | * +-----+-----+-----+-----+ * r3 | 0 | 0 | 0 | val | * +-----+-----+-----+-----+ * ~~~ */ #[inline(always)] fn from_value(value: T) -> Mat4 { BaseMat4::new(value, zero(), zero(), zero(), zero(), value, zero(), zero(), zero(), zero(), value, zero(), zero(), zero(), zero(), value) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 c2 c3 * +----+----+----+----+ * r0 | 1 | 0 | 0 | 0 | * +----+----+----+----+ * r1 | 0 | 1 | 0 | 0 | * +----+----+----+----+ * r2 | 0 | 0 | 1 | 0 | * +----+----+----+----+ * r3 | 0 | 0 | 0 | 1 | * +----+----+----+----+ * ~~~ */ #[inline(always)] fn identity() -> Mat4 { BaseMat4::new( one::(), zero::(), zero::(), zero::(), zero::(), one::(), zero::(), zero::(), zero::(), zero::(), one::(), zero::(), zero::(), zero::(), zero::(), one::()) } /** * Returns the additive identity matrix * ~~~ * c0 c1 c2 c3 * +----+----+----+----+ * r0 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * r1 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * r2 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * r3 | 0 | 0 | 0 | 0 | * +----+----+----+----+ * ~~~ */ #[inline(always)] fn zero() -> Mat4 { BaseMat4::new(zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::(), zero::()) } #[inline(always)] fn mul_t(&self, value: T) -> Mat4 { BaseMat4::from_cols(self[0].mul_t(value), self[1].mul_t(value), self[2].mul_t(value), self[3].mul_t(value)) } #[inline(always)] fn mul_v(&self, vec: &Vec4) -> Vec4 { BaseVec4::new(self.row(0).dot(vec), self.row(1).dot(vec), self.row(2).dot(vec), self.row(3).dot(vec)) } #[inline(always)] fn add_m(&self, other: &Mat4) -> Mat4 { BaseMat4::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1]), self[2].add_v(&other[2]), self[3].add_v(&other[3])) } #[inline(always)] fn sub_m(&self, other: &Mat4) -> Mat4 { BaseMat4::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1]), self[2].sub_v(&other[2]), self[3].sub_v(&other[3])) } #[inline(always)] fn mul_m(&self, other: &Mat4) -> Mat4 { BaseMat4::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), self.row(3).dot(&other.col(0)), self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), self.row(3).dot(&other.col(1)), self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2)), self.row(3).dot(&other.col(2)), self.row(0).dot(&other.col(3)), self.row(1).dot(&other.col(3)), self.row(2).dot(&other.col(3)), self.row(3).dot(&other.col(3))) } fn dot(&self, other: &Mat4) -> T { other.transpose().mul_m(self).trace() } fn determinant(&self) -> T { let m0: Mat3 = BaseMat3::new(self[1][1], self[2][1], self[3][1], self[1][2], self[2][2], self[3][2], self[1][3], self[2][3], self[3][3]); let m1: Mat3 = BaseMat3::new(self[0][1], self[2][1], self[3][1], self[0][2], self[2][2], self[3][2], self[0][3], self[2][3], self[3][3]); let m2: Mat3 = BaseMat3::new(self[0][1], self[1][1], self[3][1], self[0][2], self[1][2], self[3][2], self[0][3], self[1][3], self[3][3]); let m3: Mat3 = BaseMat3::new(self[0][1], self[1][1], self[2][1], self[0][2], self[1][2], self[2][2], self[0][3], self[1][3], self[2][3]); self[0][0] * m0.determinant() - self[1][0] * m1.determinant() + self[2][0] * m2.determinant() - self[3][0] * m3.determinant() } fn trace(&self) -> T { self[0][0] + self[1][1] + self[2][2] + self[3][3] } fn inverse(&self) -> Option> { let d = self.determinant(); if d.fuzzy_eq(&zero()) { None } else { // Gauss Jordan Elimination with partial pivoting // So take this matrix, A, augmented with the identity // and essentially reduce [A|I] let mut A = *self; let mut I: Mat4 = BaseMat::identity(); for uint::range(0, 4) |j| { // Find largest element in col j let mut i1 = j; for uint::range(j + 1, 4) |i| { if A[j][i].abs() > A[j][i1].abs() { i1 = i; } } // Swap columns i1 and j in A and I to // put pivot on diagonal A.swap_cols(i1, j); I.swap_cols(i1, j); // Scale col j to have a unit diagonal I.col_mut(j).div_self_t(A[j][j]); A.col_mut(j).div_self_t(A[j][j]); // Eliminate off-diagonal elems in col j of A, // doing identical ops to I for uint::range(0, 4) |i| { if i != j { I.col_mut(i).sub_self_v(&I[j].mul_t(A[i][j])); A.col_mut(i).sub_self_v(&A[j].mul_t(A[i][j])); } } } Some(I) } } #[inline(always)] fn transpose(&self) -> Mat4 { BaseMat4::new(self[0][0], self[1][0], self[2][0], self[3][0], self[0][1], self[1][1], self[2][1], self[3][1], self[0][2], self[1][2], self[2][2], self[3][2], self[0][3], self[1][3], self[2][3], self[3][3]) } #[inline(always)] fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec4 { match i { 0 => &mut self.x, 1 => &mut self.y, 2 => &mut self.z, 3 => &mut self.w, _ => fail!(fmt!("index out of bounds: expected an index from 0 to 3, but found %u", i)) } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { *self.col_mut(a) <-> *self.col_mut(b); } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); self.z.swap(a, b); self.w.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat4) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = BaseMat::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = BaseMat::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.col_mut(0).mul_self_t(value); self.col_mut(1).mul_self_t(value); self.col_mut(2).mul_self_t(value); self.col_mut(3).mul_self_t(value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat4) { self.col_mut(0).add_self_v(&other[0]); self.col_mut(1).add_self_v(&other[1]); self.col_mut(2).add_self_v(&other[2]); self.col_mut(3).add_self_v(&other[3]); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat4) { self.col_mut(0).sub_self_v(&other[0]); self.col_mut(1).sub_self_v(&other[1]); self.col_mut(2).sub_self_v(&other[2]); self.col_mut(3).sub_self_v(&other[3]); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail!(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { *self.col_mut(0).index_mut(1) <-> *self.col_mut(1).index_mut(0); *self.col_mut(0).index_mut(2) <-> *self.col_mut(2).index_mut(0); *self.col_mut(0).index_mut(3) <-> *self.col_mut(3).index_mut(0); *self.col_mut(1).index_mut(0) <-> *self.col_mut(0).index_mut(1); *self.col_mut(1).index_mut(2) <-> *self.col_mut(2).index_mut(1); *self.col_mut(1).index_mut(3) <-> *self.col_mut(3).index_mut(1); *self.col_mut(2).index_mut(0) <-> *self.col_mut(0).index_mut(2); *self.col_mut(2).index_mut(1) <-> *self.col_mut(1).index_mut(2); *self.col_mut(2).index_mut(3) <-> *self.col_mut(3).index_mut(2); *self.col_mut(3).index_mut(0) <-> *self.col_mut(0).index_mut(3); *self.col_mut(3).index_mut(1) <-> *self.col_mut(1).index_mut(3); *self.col_mut(3).index_mut(2) <-> *self.col_mut(2).index_mut(3); } #[inline(always)] fn is_identity(&self) -> bool { self.fuzzy_eq(&BaseMat::identity()) } #[inline(always)] fn is_diagonal(&self) -> bool { self[0][1].fuzzy_eq(&zero()) && self[0][2].fuzzy_eq(&zero()) && self[0][3].fuzzy_eq(&zero()) && self[1][0].fuzzy_eq(&zero()) && self[1][2].fuzzy_eq(&zero()) && self[1][3].fuzzy_eq(&zero()) && self[2][0].fuzzy_eq(&zero()) && self[2][1].fuzzy_eq(&zero()) && self[2][3].fuzzy_eq(&zero()) && self[3][0].fuzzy_eq(&zero()) && self[3][1].fuzzy_eq(&zero()) && self[3][2].fuzzy_eq(&zero()) } #[inline(always)] fn is_rotated(&self) -> bool { !self.fuzzy_eq(&BaseMat::identity()) } #[inline(always)] fn is_symmetric(&self) -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[0][2].fuzzy_eq(&self[2][0]) && self[0][3].fuzzy_eq(&self[3][0]) && self[1][0].fuzzy_eq(&self[0][1]) && self[1][2].fuzzy_eq(&self[2][1]) && self[1][3].fuzzy_eq(&self[3][1]) && self[2][0].fuzzy_eq(&self[0][2]) && self[2][1].fuzzy_eq(&self[1][2]) && self[2][3].fuzzy_eq(&self[3][2]) && self[3][0].fuzzy_eq(&self[0][3]) && self[3][1].fuzzy_eq(&self[1][3]) && self[3][2].fuzzy_eq(&self[2][3]) } #[inline(always)] fn is_invertible(&self) -> bool { !self.determinant().fuzzy_eq(&zero()) } #[inline(always)] fn to_ptr(&self) -> *T { unsafe { cast::transmute(self) } } } impl> BaseMat4> for Mat4 { /** * Construct a 4 x 4 matrix * * # Arguments * * * `c0r0`, `c0r1`, `c0r2`, `c0r3` - the first column of the matrix * * `c1r0`, `c1r1`, `c1r2`, `c1r3` - the second column of the matrix * * `c2r0`, `c2r1`, `c2r2`, `c2r3` - the third column of the matrix * * `c3r0`, `c3r1`, `c3r2`, `c3r3` - the fourth column of the matrix * * ~~~ * c0 c1 c2 c3 * +------+------+------+------+ * r0 | c0r0 | c1r0 | c2r0 | c3r0 | * +------+------+------+------+ * r1 | c0r1 | c1r1 | c2r1 | c3r1 | * +------+------+------+------+ * r2 | c0r2 | c1r2 | c2r2 | c3r2 | * +------+------+------+------+ * r3 | c0r3 | c1r3 | c2r3 | c3r3 | * +------+------+------+------+ * ~~~ */ #[inline(always)] fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T, c1r0: T, c1r1: T, c1r2: T, c1r3: T, c2r0: T, c2r1: T, c2r2: T, c2r3: T, c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4 { BaseMat4::from_cols(BaseVec4::new::>(c0r0, c0r1, c0r2, c0r3), BaseVec4::new::>(c1r0, c1r1, c1r2, c1r3), BaseVec4::new::>(c2r0, c2r1, c2r2, c2r3), BaseVec4::new::>(c3r0, c3r1, c3r2, c3r3)) } /** * Construct a 4 x 4 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * `c2` - the third column vector of the matrix * * `c3` - the fourth column vector of the matrix * * ~~~ * c0 c1 c2 c3 * +------+------+------+------+ * r0 | c0.x | c1.x | c2.x | c3.x | * +------+------+------+------+ * r1 | c0.y | c1.y | c2.y | c3.y | * +------+------+------+------+ * r2 | c0.z | c1.z | c2.z | c3.z | * +------+------+------+------+ * r3 | c0.w | c1.w | c2.w | c3.w | * +------+------+------+------+ * ~~~ */ #[inline(always)] fn from_cols(c0: Vec4, c1: Vec4, c2: Vec4, c3: Vec4) -> Mat4 { Mat4 { x: c0, y: c1, z: c2, w: c3 } } } impl> Neg> for Mat4 { #[inline(always)] fn neg(&self) -> Mat4 { BaseMat4::from_cols(-self[0], -self[1], -self[2], -self[3]) } } impl Index> for Mat4 { #[inline(always)] fn index(&self, i: &uint) -> Vec4 { unsafe { do vec::raw::buf_as_slice(cast::transmute(self), 4) |slice| { slice[*i] } } } } impl> FuzzyEq for Mat4 { #[inline(always)] fn fuzzy_eq(&self, other: &Mat4) -> bool { self.fuzzy_eq_eps(other, &num::cast(FUZZY_EPSILON)) } #[inline(always)] fn fuzzy_eq_eps(&self, other: &Mat4, epsilon: &T) -> bool { self[0].fuzzy_eq_eps(&other[0], epsilon) && self[1].fuzzy_eq_eps(&other[1], epsilon) && self[2].fuzzy_eq_eps(&other[2], epsilon) && self[3].fuzzy_eq_eps(&other[3], epsilon) } }