// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors, // refer to the AUTHORS file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::fmt; use std::mem; use std::f64; use std::num::{cast, Float}; use std::ops::*; use angle::{Angle, Rad, acos, sin, sin_cos, rad}; use approx::ApproxEq; use array::Array1; use matrix::{Matrix3, ToMatrix3, ToMatrix4, Matrix4}; use num::{BaseFloat, one, zero}; use point::Point3; use rotation::{Rotation, Rotation3, Basis3, ToBasis3}; use vector::{Vector3, Vector, EuclideanVector}; /// A [quaternion](https://en.wikipedia.org/wiki/Quaternion) in scalar/vector /// form. #[derive(Copy, Clone, PartialEq, RustcEncodable, RustcDecodable, Rand)] pub struct Quaternion { pub s: S, pub v: Vector3 } /// Represents types which can be expressed as a quaternion. pub trait ToQuaternion { /// Convert this value to a quaternion. fn to_quaternion(&self) -> Quaternion; } impl Array1 for Quaternion { #[inline] fn map(&mut self, mut op: F) -> Quaternion where F: FnMut(S) -> S { self.s = op(self.s); self.v.x = op(self.v.x); self.v.y = op(self.v.y); self.v.z = op(self.v.z); *self } } impl Index for Quaternion { type Output = S; #[inline] fn index<'a>(&'a self, i: &usize) -> &'a S { let slice: &[S; 4] = unsafe { mem::transmute(self) }; &slice[*i] } } impl IndexMut for Quaternion { #[inline] fn index_mut<'a>(&'a mut self, i: &usize) -> &'a mut S { let slice: &'a mut [S; 4] = unsafe { mem::transmute(self) }; &mut slice[*i] } } impl Quaternion { /// Construct a new quaternion from one scalar component and three /// imaginary components #[inline] pub fn new(w: S, xi: S, yj: S, zk: S) -> Quaternion { Quaternion::from_sv(w, Vector3::new(xi, yj, zk)) } /// Construct a new quaternion from a scalar and a vector #[inline] pub fn from_sv(s: S, v: Vector3) -> Quaternion { Quaternion { s: s, v: v } } /// The additive identity, ie: `q = 0 + 0i + 0j + 0i` #[inline] pub fn zero() -> Quaternion { Quaternion::new(zero(), zero(), zero(), zero()) } /// The multiplicative identity, ie: `q = 1 + 0i + 0j + 0i` #[inline] pub fn identity() -> Quaternion { Quaternion::from_sv(one::(), zero()) } /// The result of multiplying the quaternion a scalar #[inline] pub fn mul_s(&self, value: S) -> Quaternion { Quaternion::from_sv(self.s * value, self.v.mul_s(value)) } /// The result of dividing the quaternion a scalar #[inline] pub fn div_s(&self, value: S) -> Quaternion { Quaternion::from_sv(self.s / value, self.v.div_s(value)) } /// The result of multiplying the quaternion by a vector #[inline] pub fn mul_v(&self, vec: &Vector3) -> Vector3 { let tmp = self.v.cross(vec).add_v(&vec.mul_s(self.s.clone())); self.v.cross(&tmp).mul_s(cast(2i8).unwrap()).add_v(vec) } /// The sum of this quaternion and `other` #[inline] pub fn add_q(&self, other: &Quaternion) -> Quaternion { Quaternion::from_sv(self.s + other.s, self.v + other.v) } /// The difference between this quaternion and `other` #[inline] pub fn sub_q(&self, other: &Quaternion) -> Quaternion { Quaternion::from_sv(self.s - other.s, self.v - other.v) } /// The result of multipliplying the quaternion by `other` pub fn mul_q(&self, other: &Quaternion) -> Quaternion { Quaternion::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z, self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y, self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z, self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x) } /// Multiply this quaternion by a scalar, in-place. #[inline] pub fn mul_self_s(&mut self, s: S) { self.s = self.s * s; self.v.mul_self_s(s); } /// Divide this quaternion by a scalar, in-place. #[inline] pub fn div_self_s(&mut self, s: S) { self.s = self.s / s; self.v.div_self_s(s); } /// Add this quaternion by another, in-place. #[inline] pub fn add_self_q(&mut self, q: &Quaternion) { self.s = self.s + q.s; self.v.add_self_v(&q.v); } /// Subtract another quaternion from this one, in-place. #[inline] pub fn sub_self_q(&mut self, q: &Quaternion) { self.s = self.s - q.s; self.v.sub_self_v(&q.v); } /// Multiply this quaternion by another, in-place. #[inline] pub fn mul_self_q(&mut self, q: &Quaternion) { self.s = self.s * q.s; self.v.mul_self_v(&q.v); } /// The dot product of the quaternion and `q`. #[inline] pub fn dot(&self, q: &Quaternion) -> S { self.s * q.s + self.v.dot(&q.v) } /// The conjugate of the quaternion. #[inline] pub fn conjugate(&self) -> Quaternion { Quaternion::from_sv(self.s.clone(), -self.v.clone()) } /// The squared magnitude of the quaternion. This is useful for /// magnitude comparisons where the exact magnitude does not need to be /// calculated. #[inline] pub fn magnitude2(&self) -> S { self.s * self.s + self.v.length2() } /// The magnitude of the quaternion /// /// # Performance notes /// /// For instances where the exact magnitude of the quaternion does not need /// to be known, for example for quaternion-quaternion magnitude comparisons, /// it is advisable to use the `magnitude2` method instead. #[inline] pub fn magnitude(&self) -> S { self.magnitude2().sqrt() } /// Normalize this quaternion, returning the new quaternion. #[inline] pub fn normalize(&self) -> Quaternion { self.mul_s(one::() / self.magnitude()) } /// Do a normalized linear interpolation with `other`, by `amount`. pub fn nlerp(&self, other: &Quaternion, amount: S) -> Quaternion { self.mul_s(one::() - amount).add_q(&other.mul_s(amount)).normalize() } } impl ApproxEq for Quaternion { #[inline] fn approx_eq_eps(&self, other: &Quaternion, epsilon: &S) -> bool { self.s.approx_eq_eps(&other.s, epsilon) && self.v.approx_eq_eps(&other.v, epsilon) } } impl Quaternion { /// Spherical Linear Intoperlation /// /// Return the spherical linear interpolation between the quaternion and /// `other`. Both quaternions should be normalized first. /// /// # Performance notes /// /// The `acos` operation used in `slerp` is an expensive operation, so /// unless your quarternions are far away from each other it's generally /// more advisable to use `nlerp` when you know your rotations are going /// to be small. /// /// - [Understanding Slerp, Then Not Using It] /// (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/) /// - [Arcsynthesis OpenGL tutorial] /// (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html) pub fn slerp(&self, other: &Quaternion, amount: S) -> Quaternion { use std::num::cast; let dot = self.dot(other); let dot_threshold = cast(0.9995f64).unwrap(); // if quaternions are close together use `nlerp` if dot > dot_threshold { self.nlerp(other, amount) } else { // stay within the domain of acos() // TODO REMOVE WHEN https://github.com/mozilla/rust/issues/12068 IS RESOLVED let robust_dot = if dot > one::() { one::() } else if dot < -one::() { -one::() } else { dot }; let theta: Rad = acos(robust_dot.clone()); let scale1 = sin(theta.mul_s(one::() - amount)); let scale2 = sin(theta.mul_s(amount)); self.mul_s(scale1) .add_q(&other.mul_s(scale2)) .mul_s(sin(theta).recip()) } } /// Convert a Quaternion to Eular angles /// This is a polar singularity aware conversion /// /// Based on: /// - [Maths - Conversion Quaternion to Euler] /// (http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/) pub fn to_euler(&self) -> (Rad, Rad, Rad) { let sig: S = cast(0.499f64).unwrap(); let two: S = cast(2f64).unwrap(); let one: S = cast(1f64).unwrap(); let (qw, qx, qy, qz) = (self.s, self.v.x, self.v.y, self.v.z); let (sqw, sqx, sqy, sqz) = (qw*qw, qx*qx, qy*qy, qz*qz); let unit = sqx + sqy + sqz + sqw; let test = qx*qy + qz*qw; if test > sig * unit { ( rad(zero::()), rad(cast(f64::consts::FRAC_PI_2).unwrap()), rad(two * qx.atan2(qw)), ) } else if test < -sig * unit { let y: S = cast(f64::consts::FRAC_PI_2).unwrap(); ( rad(zero::()), rad(-y), rad(two * qx.atan2(qw)), ) } else { ( rad((two * (qy*qw - qx*qz)).atan2(one - two*(sqy + sqz))), rad((two * (qx*qy + qz*qw)).asin()), rad((two * (qx*qw - qy*qz)).atan2(one - two*(sqx + sqz))), ) } } } impl ToMatrix3 for Quaternion { /// Convert the quaternion to a 3 x 3 rotation matrix fn to_matrix3(&self) -> Matrix3 { let x2 = self.v.x + self.v.x; let y2 = self.v.y + self.v.y; let z2 = self.v.z + self.v.z; let xx2 = x2 * self.v.x; let xy2 = x2 * self.v.y; let xz2 = x2 * self.v.z; let yy2 = y2 * self.v.y; let yz2 = y2 * self.v.z; let zz2 = z2 * self.v.z; let sy2 = y2 * self.s; let sz2 = z2 * self.s; let sx2 = x2 * self.s; Matrix3::new(one::() - yy2 - zz2, xy2 + sz2, xz2 - sy2, xy2 - sz2, one::() - xx2 - zz2, yz2 + sx2, xz2 + sy2, yz2 - sx2, one::() - xx2 - yy2) } } impl ToMatrix4 for Quaternion { /// Convert the quaternion to a 4 x 4 rotation matrix fn to_matrix4(&self) -> Matrix4 { let x2 = self.v.x + self.v.x; let y2 = self.v.y + self.v.y; let z2 = self.v.z + self.v.z; let xx2 = x2 * self.v.x; let xy2 = x2 * self.v.y; let xz2 = x2 * self.v.z; let yy2 = y2 * self.v.y; let yz2 = y2 * self.v.z; let zz2 = z2 * self.v.z; let sy2 = y2 * self.s; let sz2 = z2 * self.s; let sx2 = x2 * self.s; Matrix4::new(one::() - yy2 - zz2, xy2 + sz2, xz2 - sy2, zero::(), xy2 - sz2, one::() - xx2 - zz2, yz2 + sx2, zero::(), xz2 + sy2, yz2 - sx2, one::() - xx2 - yy2, zero::(), zero::(), zero::(), zero::(), one::()) } } impl Neg for Quaternion { type Output = Quaternion; #[inline] fn neg(self) -> Quaternion { Quaternion::from_sv(-self.s, -self.v) } } impl fmt::Show for Quaternion { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?} + {:?}i + {:?}j + {:?}k", self.s, self.v.x, self.v.y, self.v.z) } } // Quaternion Rotation impls impl ToBasis3 for Quaternion { #[inline] fn to_rot3(&self) -> Basis3 { Basis3::from_quaternion(self) } } impl ToQuaternion for Quaternion { #[inline] fn to_quaternion(&self) -> Quaternion { self.clone() } } impl Rotation, Point3> for Quaternion { #[inline] fn identity() -> Quaternion { Quaternion::identity() } #[inline] fn look_at(dir: &Vector3, up: &Vector3) -> Quaternion { Matrix3::look_at(dir, up).to_quaternion() } #[inline] fn between_vectors(a: &Vector3, b: &Vector3) -> Quaternion { //http://stackoverflow.com/questions/1171849/ //finding-quaternion-representing-the-rotation-from-one-vector-to-another Quaternion::from_sv(one::() + a.dot(b), a.cross(b)).normalize() } #[inline] fn rotate_vector(&self, vec: &Vector3) -> Vector3 { self.mul_v(vec) } #[inline] fn concat(&self, other: &Quaternion) -> Quaternion { self.mul_q(other) } #[inline] fn concat_self(&mut self, other: &Quaternion) { self.mul_self_q(other); } #[inline] fn invert(&self) -> Quaternion { self.conjugate().div_s(self.magnitude2()) } #[inline] fn invert_self(&mut self) { *self = self.invert() } } impl Rotation3 for Quaternion where S: 'static { #[inline] fn from_axis_angle(axis: &Vector3, angle: Rad) -> Quaternion { let (s, c) = sin_cos(angle.mul_s(cast(0.5f64).unwrap())); Quaternion::from_sv(c, axis.mul_s(s)) } /// - [Maths - Conversion Euler to Quaternion] /// (http://www.euclideanspace.com/maths/geometry/rotations/conversions/eulerToQuaternion/index.htm) fn from_euler(x: Rad, y: Rad, z: Rad) -> Quaternion { let (s1, c1) = sin_cos(x.mul_s(cast(0.5f64).unwrap())); let (s2, c2) = sin_cos(y.mul_s(cast(0.5f64).unwrap())); let (s3, c3) = sin_cos(z.mul_s(cast(0.5f64).unwrap())); Quaternion::new(c1 * c2 * c3 - s1 * s2 * s3, s1 * s2 * c3 + c1 * c2 * s3, s1 * c2 * c3 + c1 * s2 * s3, c1 * s2 * c3 - s1 * c2 * s3) } }