use core::cast::transmute; use core::cmp::Eq; use core::ptr::to_unsafe_ptr; use core::vec::raw::buf_as_slice; use std::cmp::FuzzyEq; use numeric::funs::*; use numeric::types::angle::Angle; use numeric::types::float::Float; use numeric::types::number::Number; use quat::Quat; use vec::Vec3; /** * A 3 x 3 column major matrix * * # Type parameters * * * `T` - The type of the elements of the matrix. Should be a floating point type. * * # Fields * * * `x` - the first column vector of the matrix * * `y` - the second column vector of the matrix * * `z` - the third column vector of the matrix */ pub struct Mat3 { x: Vec3, y: Vec3, z: Vec3 } pub impl Mat3 { /** * Construct a 3 x 3 matrix * * # Arguments * * * `c0r0`, `c0r1`, `c0r2` - the first column of the matrix * * `c1r0`, `c1r1`, `c1r2` - the second column of the matrix * * `c2r0`, `c2r1`, `c2r2` - the third column of the matrix * * ~~~ * c0 c1 c2 * +------+------+------+ * r0 | c0r0 | c1r0 | c2r0 | * +------+------+------+ * r1 | c0r1 | c1r1 | c2r1 | * +------+------+------+ * r2 | c0r2 | c1r2 | c2r2 | * +------+------+------+ * ~~~ */ #[inline(always)] static pure fn new(c0r0:T, c0r1:T, c0r2:T, c1r0:T, c1r1:T, c1r2:T, c2r0:T, c2r1:T, c2r2:T) -> Mat3 { Mat3::from_cols(Vec3::new(move c0r0, move c0r1, move c0r2), Vec3::new(move c1r0, move c1r1, move c1r2), Vec3::new(move c2r0, move c2r1, move c2r2)) } /** * Construct a 3 x 3 matrix from column vectors * * # Arguments * * * `c0` - the first column vector of the matrix * * `c1` - the second column vector of the matrix * * `c2` - the third column vector of the matrix * * ~~~ * c0 c1 c2 * +------+------+------+ * r0 | c0.x | c1.x | c2.x | * +------+------+------+ * r1 | c0.y | c1.y | c2.y | * +------+------+------+ * r2 | c0.z | c1.z | c2.z | * +------+------+------+ * ~~~ */ #[inline(always)] static pure fn from_cols(c0: Vec3, c1: Vec3, c2: Vec3) -> Mat3 { Mat3 { x: move c0, y: move c1, z: move c2 } } /** * Construct a 3 x 3 diagonal matrix with the major diagonal set to `value` * * # Arguments * * * `value` - the value to set the major diagonal to * * ~~~ * c0 c1 c2 * +-----+-----+-----+ * r0 | val | 0 | 0 | * +-----+-----+-----+ * r1 | 0 | val | 0 | * +-----+-----+-----+ * r2 | 0 | 0 | val | * +-----+-----+-----+ * ~~~ */ #[inline(always)] static pure fn from_value(value: T) -> Mat3 { let _0 = Number::from(0); Mat3::new(value, _0, _0, _0, value, _0, _0, _0, value) } // FIXME: An interim solution to the issues with static functions #[inline(always)] static pure fn identity() -> Mat3 { let _0 = Number::from(0); let _1 = Number::from(1); Mat3::new(_1, _0, _0, _0, _1, _0, _0, _0, _1) } // FIXME: An interim solution to the issues with static functions #[inline(always)] static pure fn zero() -> Mat3 { let _0 = Number::from(0); Mat3::new(_0, _0, _0, _0, _0, _0, _0, _0, _0) } /** * Construct a matrix from an angular rotation around the `x` axis */ #[inline(always)] static pure fn from_angle_x>(theta: A) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = cos(&theta.to_radians()); let sin_theta = sin(&theta.to_radians()); let _0 = Number::from(0); let _1 = Number::from(1); Mat3::new(_1, _0, _0, _0, cos_theta, sin_theta, _0, -sin_theta, cos_theta) } /** * Construct a matrix from an angular rotation around the `y` axis */ #[inline(always)] static pure fn from_angle_y>(theta: A) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = cos(&theta.to_radians()); let sin_theta = sin(&theta.to_radians()); let _0 = Number::from(0); let _1 = Number::from(1); Mat3::new(cos_theta, _0, -sin_theta, _0, _1, _0, sin_theta, _0, cos_theta) } /** * Construct a matrix from an angular rotation around the `z` axis */ #[inline(always)] static pure fn from_angle_z>(theta: A) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = cos(&theta.to_radians()); let sin_theta = sin(&theta.to_radians()); let _0 = Number::from(0); let _1 = Number::from(1); Mat3::new( cos_theta, sin_theta, _0, -sin_theta, cos_theta, _0, _0, _0, _1) } /** * Construct a matrix from Euler angles * * # Arguments * * * `theta_x` - the angular rotation around the `x` axis (pitch) * * `theta_y` - the angular rotation around the `y` axis (yaw) * * `theta_z` - the angular rotation around the `z` axis (roll) */ #[inline(always)] static pure fn from_angle_xyz>(theta_x: A, theta_y: A, theta_z: A) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations let cx = cos(&theta_x.to_radians()); let sx = sin(&theta_x.to_radians()); let cy = cos(&theta_y.to_radians()); let sy = sin(&theta_y.to_radians()); let cz = cos(&theta_z.to_radians()); let sz = sin(&theta_z.to_radians()); Mat3::new( cy*cz, cy*sz, -sy, -cx*sz + sx*sy*cz, cx*cz + sx*sy*sz, sx*cy, sx*sz + cx*sy*cz, -sx*cz + cx*sy*sz, cx*cy) } /** * Construct a matrix from an axis and an angular rotation */ #[inline(always)] static pure fn from_axis_angle>(axis: &Vec3, theta: A) -> Mat3 { let c: T = cos(&theta.to_radians()); let s: T = sin(&theta.to_radians()); let _0: T = Number::from(0); let _1: T = Number::from(1); let _1_c: T = _1 - c; let x = axis.x; let y = axis.y; let z = axis.z; Mat3::new(_1_c*x*x + c, _1_c*x*y + s*z, _1_c*x*z - s*y, _1_c*x*y - s*z, _1_c*y*y + c, _1_c*y*z + s*x, _1_c*x*z + s*y, _1_c*y*z - s*x, _1_c*z*z + c) } } pub impl Mat3: Matrix> { #[inline(always)] pure fn col(&self, i: uint) -> Vec3 { self[i] } #[inline(always)] pure fn row(&self, i: uint) -> Vec3 { Vec3::new(self[0][i], self[1][i], self[2][i]) } /** * Returns the multiplicative identity matrix * ~~~ * c0 c1 c2 * +----+----+----+ * r0 | 1 | 0 | 0 | * +----+----+----+ * r1 | 0 | 1 | 0 | * +----+----+----+ * r2 | 0 | 0 | 1 | * +----+----+----+ * ~~~ */ #[inline(always)] static pure fn identity() -> Mat3 { let _0 = Number::from(0); let _1 = Number::from(1); Mat3::new(_1, _0, _0, _0, _1, _0, _0, _0, _1) } /** * Returns the additive identity matrix * ~~~ * c0 c1 c2 * +----+----+----+ * r0 | 0 | 0 | 0 | * +----+----+----+ * r1 | 0 | 0 | 0 | * +----+----+----+ * r2 | 0 | 0 | 0 | * +----+----+----+ * ~~~ */ #[inline(always)] static pure fn zero() -> Mat3 { let _0 = Number::from(0); Mat3::new(_0, _0, _0, _0, _0, _0, _0, _0, _0) } #[inline(always)] pure fn mul_t(&self, value: T) -> Mat3 { Mat3::from_cols(self[0].mul_t(value), self[1].mul_t(value), self[2].mul_t(value)) } #[inline(always)] pure fn mul_v(&self, vec: &Vec3) -> Vec3 { Vec3::new(self.row(0).dot(vec), self.row(1).dot(vec), self.row(2).dot(vec)) } #[inline(always)] pure fn add_m(&self, other: &Mat3) -> Mat3 { Mat3::from_cols(self[0].add_v(&other[0]), self[1].add_v(&other[1]), self[2].add_v(&other[2])) } #[inline(always)] pure fn sub_m(&self, other: &Mat3) -> Mat3 { Mat3::from_cols(self[0].sub_v(&other[0]), self[1].sub_v(&other[1]), self[2].sub_v(&other[2])) } #[inline(always)] pure fn mul_m(&self, other: &Mat3) -> Mat3 { Mat3::new(self.row(0).dot(&other.col(0)), self.row(1).dot(&other.col(0)), self.row(2).dot(&other.col(0)), self.row(0).dot(&other.col(1)), self.row(1).dot(&other.col(1)), self.row(2).dot(&other.col(1)), self.row(0).dot(&other.col(2)), self.row(1).dot(&other.col(2)), self.row(2).dot(&other.col(2))) } pure fn dot(&self, other: &Mat3) -> T { other.transpose().mul_m(self).trace() } pure fn determinant(&self) -> T { self.col(0).dot(&self.col(1).cross(&self.col(2))) } pure fn trace(&self) -> T { self[0][0] + self[1][1] + self[2][2] } // #[inline(always)] pure fn inverse(&self) -> Option> { let d = self.determinant(); if d.fuzzy_eq(&Number::from(0)) { None } else { Some(Mat3::from_cols(self[1].cross(&self[2]).div_t(d), self[2].cross(&self[0]).div_t(d), self[0].cross(&self[1]).div_t(d)).transpose()) } } #[inline(always)] pure fn transpose(&self) -> Mat3 { Mat3::new(self[0][0], self[1][0], self[2][0], self[0][1], self[1][1], self[2][1], self[0][2], self[1][2], self[2][2]) } #[inline(always)] pure fn is_identity(&self) -> bool { // self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here! self.fuzzy_eq(&Mat3::identity()) } #[inline(always)] pure fn is_diagonal(&self) -> bool { let _0 = Number::from(0); self[0][1].fuzzy_eq(&_0) && self[0][2].fuzzy_eq(&_0) && self[1][0].fuzzy_eq(&_0) && self[1][2].fuzzy_eq(&_0) && self[2][0].fuzzy_eq(&_0) && self[2][1].fuzzy_eq(&_0) } #[inline(always)] pure fn is_rotated(&self) -> bool { // !self.fuzzy_eq(&Matrix::identity()) // FIXME: there's something wrong with static functions here! !self.fuzzy_eq(&Mat3::identity()) } #[inline(always)] pure fn is_symmetric(&self) -> bool { self[0][1].fuzzy_eq(&self[1][0]) && self[0][2].fuzzy_eq(&self[2][0]) && self[1][0].fuzzy_eq(&self[0][1]) && self[1][2].fuzzy_eq(&self[2][1]) && self[2][0].fuzzy_eq(&self[0][2]) && self[2][1].fuzzy_eq(&self[1][2]) } #[inline(always)] pure fn is_invertible(&self) -> bool { !self.determinant().fuzzy_eq(&Number::zero()) } #[inline(always)] pure fn to_ptr(&self) -> *T { unsafe { transmute::<*Mat3, *T>( to_unsafe_ptr(self) ) } } } pub impl Mat3: MutableMatrix> { #[inline(always)] fn col_mut(&mut self, i: uint) -> &self/mut Vec3 { match i { 0 => &mut self.x, 1 => &mut self.y, 2 => &mut self.z, _ => fail(fmt!("index out of bounds: expected an index from 0 to 2, but found %u", i)) } } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { util::swap(self.col_mut(a), self.col_mut(b)); } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); self.z.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat3) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = Mat3::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = Mat3::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.col_mut(0).mul_self_t(&value); self.col_mut(1).mul_self_t(&value); self.col_mut(2).mul_self_t(&value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat3) { self.col_mut(0).add_self_v(&other[0]); self.col_mut(1).add_self_v(&other[1]); self.col_mut(2).add_self_v(&other[2]); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat3) { self.col_mut(0).sub_self_v(&other[0]); self.col_mut(1).sub_self_v(&other[1]); self.col_mut(2).sub_self_v(&other[2]); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { util::swap(self.col_mut(0).index_mut(1), self.col_mut(1).index_mut(0)); util::swap(self.col_mut(0).index_mut(2), self.col_mut(2).index_mut(0)); util::swap(self.col_mut(1).index_mut(0), self.col_mut(0).index_mut(1)); util::swap(self.col_mut(1).index_mut(2), self.col_mut(2).index_mut(1)); util::swap(self.col_mut(2).index_mut(0), self.col_mut(0).index_mut(2)); util::swap(self.col_mut(2).index_mut(1), self.col_mut(1).index_mut(2)); } } pub impl Mat3: Matrix3> { #[inline(always)] static pure fn from_axis_angle>(axis: &Vec3, theta: A) -> Mat3 { let c: T = cos(&theta.to_radians()); let s: T = sin(&theta.to_radians()); let _0: T = Number::from(0); let _1: T = Number::from(1); let _1_c: T = _1 - c; let x = axis.x; let y = axis.y; let z = axis.z; Mat3::new(_1_c * x * x + c, _1_c * x * y + s * z, _1_c * x * z - s * y, _1_c * x * y - s * z, _1_c * y * y + c, _1_c * y * z + s * x, _1_c * x * z + s * y, _1_c * y * z - s * x, _1_c * z * z + c) } #[inline(always)] pure fn to_mat4(&self) -> Mat4 { let _0 = Number::from(0); let _1 = Number::from(1); Mat4::new(self[0][0], self[0][1], self[0][2], _0, self[1][0], self[1][1], self[1][2], _0, self[2][0], self[2][1], self[2][2], _0, _0, _0, _0, _1) } pure fn to_Quat() -> Quat { // Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's // paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf let mut s; let w, x, y, z; let trace = self.trace(); let _1: T = Number::from(1.0); let half: T = Number::from(0.5); if trace >= Number::from(0) { s = (_1 + trace).sqrt(); w = half * s; s = half / s; x = (self[1][2] - self[2][1]) * s; y = (self[2][0] - self[0][2]) * s; z = (self[0][1] - self[1][0]) * s; } else if (self[0][0] > self[1][1]) && (self[0][0] > self[2][2]) { s = (half + (self[0][0] - self[1][1] - self[2][2])).sqrt(); w = half * s; s = half / s; x = (self[0][1] - self[1][0]) * s; y = (self[2][0] - self[0][2]) * s; z = (self[1][2] - self[2][1]) * s; } else if self[1][1] > self[2][2] { s = (half + (self[1][1] - self[0][0] - self[2][2])).sqrt(); w = half * s; s = half / s; x = (self[0][1] - self[1][0]) * s; y = (self[1][2] - self[2][1]) * s; z = (self[2][0] - self[0][2]) * s; } else { s = (half + (self[2][2] - self[0][0] - self[1][1])).sqrt(); w = half * s; s = half / s; x = (self[2][0] - self[0][2]) * s; y = (self[1][2] - self[2][1]) * s; z = (self[0][1] - self[1][0]) * s; } Quat::new(w, x, y, z) } } pub impl Mat3: Index> { #[inline(always)] pure fn index(&self, i: uint) -> Vec3 { unsafe { do buf_as_slice( transmute::<*Mat3, *Vec3>( to_unsafe_ptr(self)), 3) |slice| { slice[i] } } } } pub impl Mat3: Neg> { #[inline(always)] pure fn neg(&self) -> Mat3 { Mat3::from_cols(-self[0], -self[1], -self[2]) } } pub impl Mat3: Eq { #[inline(always)] pure fn eq(&self, other: &Mat3) -> bool { self[0] == other[0] && self[1] == other[1] && self[2] == other[2] } #[inline(always)] pure fn ne(&self, other: &Mat3) -> bool { !(self == other) } } pub impl Mat3: FuzzyEq { #[inline(always)] pure fn fuzzy_eq(other: &Mat3) -> bool { self[0].fuzzy_eq(&other[0]) && self[1].fuzzy_eq(&other[1]) && self[2].fuzzy_eq(&other[2]) } }