// Copyright 2013 The Lmath Developers. For a full listing of the authors, // refer to the AUTHORS file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::cast::transmute; use std::cmp::ApproxEq; use std::num::{Zero, One}; use vec::*; use quat::Quat; use num::NumAssign; /// The base square matrix trait /// /// # Type parameters /// /// - `T`: The type of the elements of the matrix. Should be a floating point type. /// - `V`: The type of the row and column vectors. Should have components of a /// floating point type and have the same number of dimensions as the /// number of rows and columns in the matrix. pub trait BaseMat: Eq + Neg { /// The column vector at `i` fn col<'a>(&'a self, i: uint) -> &'a V; /// The row vector at `i` fn row(&self, i: uint) -> V; /// The matrix element at `i`, `j` fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T; /// Construct a diagonal matrix with the major diagonal set to `value` fn from_value(value: T) -> Self; /// The identity matrix fn identity() -> Self; /// A matrix with all elements set to zero fn zero() -> Self; /// The scalar multiplication of this matrix and `value` fn mul_t(&self, value: T) -> Self; /// The matrix vector product of the matrix and `vec` fn mul_v(&self, vec: &V) -> V; /// The matrix addition of the matrix and `other` fn add_m(&self, other: &Self) -> Self; /// The difference between the matrix and `other` fn sub_m(&self, other: &Self) -> Self; /// The matrix product of the matrix and `other` fn mul_m(&self, other: &Self) -> Self; /// The matrix dot product of the matrix and `other` fn dot(&self, other: &Self) -> T; /// The determinant of the matrix fn determinant(&self) -> T; /// The sum of the main diagonal of the matrix fn trace(&self) -> T; /// Returns the inverse of the matrix /// /// # Return value /// /// - `Some(m)`: if the inversion was successful, where `m` is the inverted matrix /// - `None`: if the inversion was unsuccessful (because the matrix was not invertable) fn inverse(&self) -> Option; /// The transposed matrix fn transpose(&self) -> Self; /// A mutable reference to the column at `i` fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut V; /// A mutable reference to the matrix element at `i`, `j` fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T; /// Swap two columns of the matrix in place fn swap_cols(&mut self, a: uint, b: uint); /// Swap two rows of the matrix in place fn swap_rows(&mut self, a: uint, b: uint); /// Sets the matrix to `other` fn set(&mut self, other: &Self); /// Sets the matrix to the identity matrix fn to_identity(&mut self); /// Sets each element of the matrix to zero fn to_zero(&mut self); /// Multiplies the matrix by a scalar fn mul_self_t(&mut self, value: T); /// Add the matrix `other` to `self` fn add_self_m(&mut self, other: &Self); /// Subtract the matrix `other` from `self` fn sub_self_m(&mut self, other: &Self); /// Sets the matrix to its inverse /// /// # Failure /// /// Fails if the matrix is not invertable. Make sure you check with the /// `is_invertible` method before you attempt this! fn invert_self(&mut self); /// Sets the matrix to its transpose fn transpose_self(&mut self); /// Check to see if the matrix is an identity matrix /// /// # Return value /// /// `true` if the matrix is approximately equal to the identity matrix fn is_identity(&self) -> bool; /// Check to see if the matrix is diagonal /// /// # Return value /// /// `true` all the elements outside the main diagonal are approximately /// equal to zero. fn is_diagonal(&self) -> bool; /// Check to see if the matrix is rotated /// /// # Return value /// /// `true` if the matrix is not approximately equal to the identity matrix. fn is_rotated(&self) -> bool; /// Check to see if the matrix is symmetric /// /// # Return value /// /// `true` if the matrix is approximately equal to its transpose). fn is_symmetric(&self) -> bool; /// Check to see if the matrix is invertable /// /// # Return value /// /// `true` if the matrix is invertable fn is_invertible(&self) -> bool; /// A pointer to the first element of the matrix fn to_ptr(&self) -> *T; } /// A 2 x 2 matrix pub trait BaseMat2: BaseMat { fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Self; fn from_cols(c0: V, c1: V) -> Self; fn from_angle(radians: T) -> Self; fn to_mat3(&self) -> Mat3; fn to_mat4(&self) -> Mat4; } /// A 3 x 3 matrix pub trait BaseMat3: BaseMat { fn new(c0r0:T, c0r1:T, c0r2:T, c1r0:T, c1r1:T, c1r2:T, c2r0:T, c2r1:T, c2r2:T) -> Self; fn from_cols(c0: V, c1: V, c2: V) -> Self; fn from_angle_x(radians: T) -> Self; fn from_angle_y(radians: T) -> Self; fn from_angle_z(radians: T) -> Self; fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Self; fn from_angle_axis(radians: T, axis: &Vec3) -> Self; fn from_axes(x: V, y: V, z: V) -> Self; fn look_at(dir: &Vec3, up: &Vec3) -> Self; fn to_mat4(&self) -> Mat4; fn to_quat(&self) -> Quat; } /// A 4 x 4 matrix pub trait BaseMat4: BaseMat { fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T, c1r0: T, c1r1: T, c1r2: T, c1r3: T, c2r0: T, c2r1: T, c2r2: T, c2r3: T, c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Self; fn from_cols(c0: V, c1: V, c2: V, c3: V) -> Self; } /// A 2 x 2 column major matrix /// /// # Type parameters /// /// - `T`: The type of the elements of the matrix. Should be a floating point type. /// /// # Fields /// /// - `x`: the first column vector of the matrix /// - `y`: the second column vector of the matrix /// - `z`: the third column vector of the matrix #[deriving(Eq)] pub struct Mat2 { x: Vec2, y: Vec2 } impl BaseMat> for Mat2 { #[inline(always)] fn col<'a>(&'a self, i: uint) -> &'a Vec2 { unsafe { &'a transmute::<&'a Mat2, &'a [Vec2,..2]>(self)[i] } } #[inline(always)] fn row(&self, i: uint) -> Vec2 { BaseVec2::new(*self.col(0).index(i), *self.col(1).index(i)) } #[inline(always)] fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T { self.col(i).index(j) } /// Construct a 2 x 2 diagonal matrix with the major diagonal set to `value` /// /// # Arguments /// /// - `value`: the value to set the major diagonal to /// /// ~~~ /// c0 c1 /// +-----+-----+ /// r0 | val | 0 | /// +-----+-----+ /// r1 | 0 | val | /// +-----+-----+ /// ~~~ #[inline(always)] fn from_value(value: T) -> Mat2 { BaseMat2::new(value, Zero::zero(), Zero::zero(), value) } /// Returns the multiplicative identity matrix /// ~~~ /// c0 c1 /// +----+----+ /// r0 | 1 | 0 | /// +----+----+ /// r1 | 0 | 1 | /// +----+----+ /// ~~~ #[inline(always)] fn identity() -> Mat2 { BaseMat2::new( One::one::(), Zero::zero::(), Zero::zero::(), One::one::()) } /// Returns the additive identity matrix /// ~~~ /// c0 c1 /// +----+----+ /// r0 | 0 | 0 | /// +----+----+ /// r1 | 0 | 0 | /// +----+----+ /// ~~~ #[inline(always)] fn zero() -> Mat2 { BaseMat2::new(Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::()) } #[inline(always)] fn mul_t(&self, value: T) -> Mat2 { BaseMat2::from_cols(self.col(0).mul_t(value), self.col(1).mul_t(value)) } #[inline(always)] fn mul_v(&self, vec: &Vec2) -> Vec2 { BaseVec2::new(self.row(0).dot(vec), self.row(1).dot(vec)) } #[inline(always)] fn add_m(&self, other: &Mat2) -> Mat2 { BaseMat2::from_cols(self.col(0).add_v(other.col(0)), self.col(1).add_v(other.col(1))) } #[inline(always)] fn sub_m(&self, other: &Mat2) -> Mat2 { BaseMat2::from_cols(self.col(0).sub_v(other.col(0)), self.col(1).sub_v(other.col(1))) } #[inline(always)] fn mul_m(&self, other: &Mat2) -> Mat2 { BaseMat2::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)), self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1))) } fn dot(&self, other: &Mat2) -> T { other.transpose().mul_m(self).trace() } fn determinant(&self) -> T { (*self.col(0).index(0)) * (*self.col(1).index(1)) - (*self.col(1).index(0)) * (*self.col(0).index(1)) } fn trace(&self) -> T { (*self.col(0).index(0)) + (*self.col(1).index(1)) } #[inline(always)] fn inverse(&self) -> Option> { let d = self.determinant(); if d.approx_eq(&Zero::zero()) { None } else { Some(BaseMat2::new( self.elem(1, 1) / d, -self.elem(0, 1) / d, -self.elem(1, 0) / d, self.elem(0, 0) / d)) } } #[inline(always)] fn transpose(&self) -> Mat2 { BaseMat2::new(*self.elem(0, 0), *self.elem(1, 0), *self.elem(0, 1), *self.elem(1, 1)) } #[inline(always)] fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec2 { unsafe { &'a mut transmute::<&'a mut Mat2, &'a mut [Vec2,..2]>(self)[i] } } #[inline(always)] fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T { self.col_mut(i).index_mut(j) } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { let tmp = *self.col(a); *self.col_mut(a) = *self.col(b); *self.col_mut(b) = tmp; } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat2) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = BaseMat::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = BaseMat::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.x.mul_self_t(value); self.y.mul_self_t(value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat2) { self.x.add_self_v(other.col(0)); self.y.add_self_v(other.col(1)); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat2) { self.x.sub_self_v(other.col(0)); self.y.sub_self_v(other.col(1)); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail!(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { let tmp01 = *self.elem(0, 1); let tmp10 = *self.elem(1, 0); *self.elem_mut(0, 1) = *self.elem(1, 0); *self.elem_mut(1, 0) = *self.elem(0, 1); *self.elem_mut(1, 0) = tmp01; *self.elem_mut(0, 1) = tmp10; } #[inline(always)] fn is_identity(&self) -> bool { self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_diagonal(&self) -> bool { self.elem(0, 1).approx_eq(&Zero::zero()) && self.elem(1, 0).approx_eq(&Zero::zero()) } #[inline(always)] fn is_rotated(&self) -> bool { !self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_symmetric(&self) -> bool { self.elem(0, 1).approx_eq(self.elem(1, 0)) && self.elem(1, 0).approx_eq(self.elem(0, 1)) } #[inline(always)] fn is_invertible(&self) -> bool { !self.determinant().approx_eq(&Zero::zero()) } #[inline(always)] fn to_ptr(&self) -> *T { unsafe { transmute(self) } } } impl BaseMat2> for Mat2 { /// Construct a 2 x 2 matrix /// /// # Arguments /// /// - `c0r0`, `c0r1`: the first column of the matrix /// - `c1r0`, `c1r1`: the second column of the matrix /// /// ~~~ /// c0 c1 /// +------+------+ /// r0 | c0r0 | c1r0 | /// +------+------+ /// r1 | c0r1 | c1r1 | /// +------+------+ /// ~~~ #[inline(always)] fn new(c0r0: T, c0r1: T, c1r0: T, c1r1: T) -> Mat2 { BaseMat2::from_cols(BaseVec2::new::>(c0r0, c0r1), BaseVec2::new::>(c1r0, c1r1)) } /// Construct a 2 x 2 matrix from column vectors /// /// # Arguments /// /// - `c0`: the first column vector of the matrix /// - `c1`: the second column vector of the matrix /// /// ~~~ /// c0 c1 /// +------+------+ /// r0 | c0.x | c1.x | /// +------+------+ /// r1 | c0.y | c1.y | /// +------+------+ /// ~~~ #[inline(always)] fn from_cols(c0: Vec2, c1: Vec2) -> Mat2 { Mat2 { x: c0, y: c1 } } #[inline(always)] fn from_angle(radians: T) -> Mat2 { let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat2::new(cos_theta, -sin_theta, sin_theta, cos_theta) } /// Returns the the matrix with an extra row and column added /// ~~~ /// c0 c1 c0 c1 c2 /// +----+----+ +----+----+----+ /// r0 | a | b | r0 | a | b | 0 | /// +----+----+ +----+----+----+ /// r1 | c | d | => r1 | c | d | 0 | /// +----+----+ +----+----+----+ /// r2 | 0 | 0 | 1 | /// +----+----+----+ /// ~~~ #[inline(always)] fn to_mat3(&self) -> Mat3 { BaseMat3::new(*self.elem(0, 0), *self.elem(0, 1), Zero::zero(), *self.elem(1, 0), *self.elem(1, 1), Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } /// Returns the the matrix with an extra two rows and columns added /// ~~~ /// c0 c1 c0 c1 c2 c3 /// +----+----+ +----+----+----+----+ /// r0 | a | b | r0 | a | b | 0 | 0 | /// +----+----+ +----+----+----+----+ /// r1 | c | d | => r1 | c | d | 0 | 0 | /// +----+----+ +----+----+----+----+ /// r2 | 0 | 0 | 1 | 0 | /// +----+----+----+----+ /// r3 | 0 | 0 | 0 | 1 | /// +----+----+----+----+ /// ~~~ #[inline(always)] fn to_mat4(&self) -> Mat4 { BaseMat4::new(*self.elem(0, 0), *self.elem(0, 1), Zero::zero(), Zero::zero(), *self.elem(1, 0), *self.elem(1, 1), Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), One::one(), Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } } impl Neg> for Mat2 { #[inline(always)] fn neg(&self) -> Mat2 { BaseMat2::from_cols(-self.col(0), -self.col(1)) } } impl ApproxEq for Mat2 { #[inline(always)] fn approx_epsilon() -> T { ApproxEq::approx_epsilon::() } #[inline(always)] fn approx_eq(&self, other: &Mat2) -> bool { self.approx_eq_eps(other, &ApproxEq::approx_epsilon::()) } #[inline(always)] fn approx_eq_eps(&self, other: &Mat2, epsilon: &T) -> bool { self.col(0).approx_eq_eps(other.col(0), epsilon) && self.col(1).approx_eq_eps(other.col(1), epsilon) } } // GLSL-style type aliases, corresponding to Section 4.1.6 of the [GLSL 4.30.6 specification] // (http://www.opengl.org/registry/doc/GLSLangSpec.4.30.6.pdf). // a 2×2 single-precision floating-point matrix pub type mat2 = Mat2; // a 2×2 double-precision floating-point matrix pub type dmat2 = Mat2; // Rust-style type aliases pub type Mat2f = Mat2; pub type Mat2f32 = Mat2; pub type Mat2f64 = Mat2; /// A 3 x 3 column major matrix /// /// # Type parameters /// /// - `T`: The type of the elements of the matrix. Should be a floating point type. /// /// # Fields /// /// - `x`: the first column vector of the matrix /// - `y`: the second column vector of the matrix /// - `z`: the third column vector of the matrix #[deriving(Eq)] pub struct Mat3 { x: Vec3, y: Vec3, z: Vec3 } impl BaseMat> for Mat3 { #[inline(always)] fn col<'a>(&'a self, i: uint) -> &'a Vec3 { unsafe { &'a transmute::<&'a Mat3, &'a [Vec3,..3]>(self)[i] } } #[inline(always)] fn row(&self, i: uint) -> Vec3 { BaseVec3::new(*self.elem(0, i), *self.elem(1, i), *self.elem(2, i)) } #[inline(always)] fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T { self.col(i).index(j) } /// Construct a 3 x 3 diagonal matrix with the major diagonal set to `value` /// /// # Arguments /// /// - `value`: the value to set the major diagonal to /// /// ~~~ /// c0 c1 c2 /// +-----+-----+-----+ /// r0 | val | 0 | 0 | /// +-----+-----+-----+ /// r1 | 0 | val | 0 | /// +-----+-----+-----+ /// r2 | 0 | 0 | val | /// +-----+-----+-----+ /// ~~~ #[inline(always)] fn from_value(value: T) -> Mat3 { BaseMat3::new(value, Zero::zero(), Zero::zero(), Zero::zero(), value, Zero::zero(), Zero::zero(), Zero::zero(), value) } /// Returns the multiplicative identity matrix /// ~~~ /// c0 c1 c2 /// +----+----+----+ /// r0 | 1 | 0 | 0 | /// +----+----+----+ /// r1 | 0 | 1 | 0 | /// +----+----+----+ /// r2 | 0 | 0 | 1 | /// +----+----+----+ /// ~~~ #[inline(always)] fn identity() -> Mat3 { BaseMat3::new(One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::()) } /// Returns the additive identity matrix /// ~~~ /// c0 c1 c2 /// +----+----+----+ /// r0 | 0 | 0 | 0 | /// +----+----+----+ /// r1 | 0 | 0 | 0 | /// +----+----+----+ /// r2 | 0 | 0 | 0 | /// +----+----+----+ /// ~~~ #[inline(always)] fn zero() -> Mat3 { BaseMat3::new(Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::()) } #[inline(always)] fn mul_t(&self, value: T) -> Mat3 { BaseMat3::from_cols(self.col(0).mul_t(value), self.col(1).mul_t(value), self.col(2).mul_t(value)) } #[inline(always)] fn mul_v(&self, vec: &Vec3) -> Vec3 { BaseVec3::new(self.row(0).dot(vec), self.row(1).dot(vec), self.row(2).dot(vec)) } #[inline(always)] fn add_m(&self, other: &Mat3) -> Mat3 { BaseMat3::from_cols(self.col(0).add_v(other.col(0)), self.col(1).add_v(other.col(1)), self.col(2).add_v(other.col(2))) } #[inline(always)] fn sub_m(&self, other: &Mat3) -> Mat3 { BaseMat3::from_cols(self.col(0).sub_v(other.col(0)), self.col(1).sub_v(other.col(1)), self.col(2).sub_v(other.col(2))) } #[inline(always)] fn mul_m(&self, other: &Mat3) -> Mat3 { BaseMat3::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)), self.row(2).dot(other.col(0)), self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1)), self.row(2).dot(other.col(1)), self.row(0).dot(other.col(2)), self.row(1).dot(other.col(2)), self.row(2).dot(other.col(2))) } fn dot(&self, other: &Mat3) -> T { other.transpose().mul_m(self).trace() } fn determinant(&self) -> T { self.col(0).dot(&self.col(1).cross(self.col(2))) } fn trace(&self) -> T { *self.elem(0, 0) + *self.elem(1, 1) + *self.elem(2, 2) } fn inverse(&self) -> Option> { let d = self.determinant(); if d.approx_eq(&Zero::zero()) { None } else { let m: Mat3 = BaseMat3::from_cols(self.col(1).cross(self.col(2)).div_t(d), self.col(2).cross(self.col(0)).div_t(d), self.col(0).cross(self.col(1)).div_t(d)); Some(m.transpose()) } } #[inline(always)] fn transpose(&self) -> Mat3 { BaseMat3::new(*self.elem(0, 0), *self.elem(1, 0), *self.elem(2, 0), *self.elem(0, 1), *self.elem(1, 1), *self.elem(2, 1), *self.elem(0, 2), *self.elem(1, 2), *self.elem(2, 2)) } #[inline(always)] fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec3 { unsafe { &'a mut transmute::<&'a mut Mat3, &'a mut [Vec3,..3]>(self)[i] } } #[inline(always)] fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T { self.col_mut(i).index_mut(j) } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { let tmp = *self.col(a); *self.col_mut(a) = *self.col(b); *self.col_mut(b) = tmp; } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); self.z.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat3) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = BaseMat::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = BaseMat::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.col_mut(0).mul_self_t(value); self.col_mut(1).mul_self_t(value); self.col_mut(2).mul_self_t(value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat3) { self.col_mut(0).add_self_v(other.col(0)); self.col_mut(1).add_self_v(other.col(1)); self.col_mut(2).add_self_v(other.col(2)); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat3) { self.col_mut(0).sub_self_v(other.col(0)); self.col_mut(1).sub_self_v(other.col(1)); self.col_mut(2).sub_self_v(other.col(2)); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail!(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { let tmp01 = *self.elem(0, 1); let tmp02 = *self.elem(0, 2); let tmp10 = *self.elem(1, 0); let tmp12 = *self.elem(1, 2); let tmp20 = *self.elem(2, 0); let tmp21 = *self.elem(2, 1); *self.elem_mut(0, 1) = *self.elem(1, 0); *self.elem_mut(0, 2) = *self.elem(2, 0); *self.elem_mut(1, 0) = *self.elem(0, 1); *self.elem_mut(1, 2) = *self.elem(2, 1); *self.elem_mut(2, 0) = *self.elem(0, 2); *self.elem_mut(2, 1) = *self.elem(1, 2); *self.elem_mut(1, 0) = tmp01; *self.elem_mut(2, 0) = tmp02; *self.elem_mut(0, 1) = tmp10; *self.elem_mut(2, 1) = tmp12; *self.elem_mut(0, 2) = tmp20; *self.elem_mut(1, 2) = tmp21; } #[inline(always)] fn is_identity(&self) -> bool { self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_diagonal(&self) -> bool { self.elem(0, 1).approx_eq(&Zero::zero()) && self.elem(0, 2).approx_eq(&Zero::zero()) && self.elem(1, 0).approx_eq(&Zero::zero()) && self.elem(1, 2).approx_eq(&Zero::zero()) && self.elem(2, 0).approx_eq(&Zero::zero()) && self.elem(2, 1).approx_eq(&Zero::zero()) } #[inline(always)] fn is_rotated(&self) -> bool { !self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_symmetric(&self) -> bool { self.elem(0, 1).approx_eq(self.elem(1, 0)) && self.elem(0, 2).approx_eq(self.elem(2, 0)) && self.elem(1, 0).approx_eq(self.elem(0, 1)) && self.elem(1, 2).approx_eq(self.elem(2, 1)) && self.elem(2, 0).approx_eq(self.elem(0, 2)) && self.elem(2, 1).approx_eq(self.elem(1, 2)) } #[inline(always)] fn is_invertible(&self) -> bool { !self.determinant().approx_eq(&Zero::zero()) } #[inline(always)] fn to_ptr(&self) -> *T { unsafe { transmute(self) } } } impl BaseMat3> for Mat3 { /// Construct a 3 x 3 matrix /// /// # Arguments /// /// - `c0r0`, `c0r1`, `c0r2`: the first column of the matrix /// - `c1r0`, `c1r1`, `c1r2`: the second column of the matrix /// - `c2r0`, `c2r1`, `c2r2`: the third column of the matrix /// /// ~~~ /// c0 c1 c2 /// +------+------+------+ /// r0 | c0r0 | c1r0 | c2r0 | /// +------+------+------+ /// r1 | c0r1 | c1r1 | c2r1 | /// +------+------+------+ /// r2 | c0r2 | c1r2 | c2r2 | /// +------+------+------+ /// ~~~ #[inline(always)] fn new(c0r0:T, c0r1:T, c0r2:T, c1r0:T, c1r1:T, c1r2:T, c2r0:T, c2r1:T, c2r2:T) -> Mat3 { BaseMat3::from_cols(BaseVec3::new::>(c0r0, c0r1, c0r2), BaseVec3::new::>(c1r0, c1r1, c1r2), BaseVec3::new::>(c2r0, c2r1, c2r2)) } /// Construct a 3 x 3 matrix from column vectors /// /// # Arguments /// /// - `c0`: the first column vector of the matrix /// - `c1`: the second column vector of the matrix /// - `c2`: the third column vector of the matrix /// /// ~~~ /// c0 c1 c2 /// +------+------+------+ /// r0 | c0.x | c1.x | c2.x | /// +------+------+------+ /// r1 | c0.y | c1.y | c2.y | /// +------+------+------+ /// r2 | c0.z | c1.z | c2.z | /// +------+------+------+ /// ~~~ #[inline(always)] fn from_cols(c0: Vec3, c1: Vec3, c2: Vec3) -> Mat3 { Mat3 { x: c0, y: c1, z: c2 } } /// Construct a matrix from an angular rotation around the `x` axis #[inline(always)] fn from_angle_x(radians: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat3::new( One::one(), Zero::zero(), Zero::zero(), Zero::zero(), cos_theta, sin_theta, Zero::zero(), -sin_theta, cos_theta) } /// Construct a matrix from an angular rotation around the `y` axis #[inline(always)] fn from_angle_y(radians: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat3::new( cos_theta, Zero::zero(), -sin_theta, Zero::zero(), One::one(), Zero::zero(), sin_theta, Zero::zero(), cos_theta) } /// Construct a matrix from an angular rotation around the `z` axis #[inline(always)] fn from_angle_z(radians: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations let cos_theta = radians.cos(); let sin_theta = radians.sin(); BaseMat3::new( cos_theta, sin_theta, Zero::zero(), -sin_theta, cos_theta, Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } /// Construct a matrix from Euler angles /// /// # Arguments /// /// - `theta_x`: the angular rotation around the `x` axis (pitch) /// - `theta_y`: the angular rotation around the `y` axis (yaw) /// - `theta_z`: the angular rotation around the `z` axis (roll) #[inline(always)] fn from_angle_xyz(radians_x: T, radians_y: T, radians_z: T) -> Mat3 { // http://en.wikipedia.org/wiki/Rotation_matrix#General_rotations let cx = radians_x.cos(); let sx = radians_x.sin(); let cy = radians_y.cos(); let sy = radians_y.sin(); let cz = radians_z.cos(); let sz = radians_z.sin(); BaseMat3::new( cy*cz, cy*sz, -sy, -cx*sz + sx*sy*cz, cx*cz + sx*sy*sz, sx*cy, sx*sz + cx*sy*cz, -sx*cz + cx*sy*sz, cx*cy) } /// Construct a matrix from an axis and an angular rotation #[inline(always)] fn from_angle_axis(radians: T, axis: &Vec3) -> Mat3 { let c = radians.cos(); let s = radians.sin(); let _1_c = One::one::() - c; let x = axis.x; let y = axis.y; let z = axis.z; BaseMat3::new(_1_c*x*x + c, _1_c*x*y + s*z, _1_c*x*z - s*y, _1_c*x*y - s*z, _1_c*y*y + c, _1_c*y*z + s*x, _1_c*x*z + s*y, _1_c*y*z - s*x, _1_c*z*z + c) } #[inline(always)] fn from_axes(x: Vec3, y: Vec3, z: Vec3) -> Mat3 { BaseMat3::from_cols(x, y, z) } #[inline(always)] fn look_at(dir: &Vec3, up: &Vec3) -> Mat3 { let dir_ = dir.normalize(); let side = dir_.cross(&up.normalize()); let up_ = side.cross(&dir_).normalize(); BaseMat3::from_axes(up_, side, dir_) } /// Returns the the matrix with an extra row and column added /// ~~~ /// c0 c1 c2 c0 c1 c2 c3 /// +----+----+----+ +----+----+----+----+ /// r0 | a | b | c | r0 | a | b | c | 0 | /// +----+----+----+ +----+----+----+----+ /// r1 | d | e | f | => r1 | d | e | f | 0 | /// +----+----+----+ +----+----+----+----+ /// r2 | g | h | i | r2 | g | h | i | 0 | /// +----+----+----+ +----+----+----+----+ /// r3 | 0 | 0 | 0 | 1 | /// +----+----+----+----+ /// ~~~ #[inline(always)] fn to_mat4(&self) -> Mat4 { BaseMat4::new(*self.elem(0, 0), *self.elem(0, 1), *self.elem(0, 2), Zero::zero(), *self.elem(1, 0), *self.elem(1, 1), *self.elem(1, 2), Zero::zero(), *self.elem(2, 0), *self.elem(2, 1), *self.elem(2, 2), Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), One::one()) } /// Convert the matrix to a quaternion #[inline(always)] fn to_quat(&self) -> Quat { // Implemented using a mix of ideas from jMonkeyEngine and Ken Shoemake's // paper on Quaternions: http://www.cs.ucr.edu/~vbz/resources/Quatut.pdf let mut s; let w, x, y, z; let trace = self.trace(); let _1: T = num::cast(1.0); let half: T = num::cast(0.5); cond! ( (trace >= Zero::zero()) { s = (_1 + trace).sqrt(); w = half * s; s = half / s; x = (*self.elem(1, 2) - *self.elem(2, 1)) * s; y = (*self.elem(2, 0) - *self.elem(0, 2)) * s; z = (*self.elem(0, 1) - *self.elem(1, 0)) * s; } ((*self.elem(0, 0) > *self.elem(1, 1)) && (*self.elem(0, 0) > *self.elem(2, 2))) { s = (half + (*self.elem(0, 0) - *self.elem(1, 1) - *self.elem(2, 2))).sqrt(); w = half * s; s = half / s; x = (*self.elem(0, 1) - *self.elem(1, 0)) * s; y = (*self.elem(2, 0) - *self.elem(0, 2)) * s; z = (*self.elem(1, 2) - *self.elem(2, 1)) * s; } (*self.elem(1, 1) > *self.elem(2, 2)) { s = (half + (*self.elem(1, 1) - *self.elem(0, 0) - *self.elem(2, 2))).sqrt(); w = half * s; s = half / s; x = (*self.elem(0, 1) - *self.elem(1, 0)) * s; y = (*self.elem(1, 2) - *self.elem(2, 1)) * s; z = (*self.elem(2, 0) - *self.elem(0, 2)) * s; } _ { s = (half + (*self.elem(2, 2) - *self.elem(0, 0) - *self.elem(1, 1))).sqrt(); w = half * s; s = half / s; x = (*self.elem(2, 0) - *self.elem(0, 2)) * s; y = (*self.elem(1, 2) - *self.elem(2, 1)) * s; z = (*self.elem(0, 1) - *self.elem(1, 0)) * s; } ) Quat::new(w, x, y, z) } } impl Neg> for Mat3 { #[inline(always)] fn neg(&self) -> Mat3 { BaseMat3::from_cols(-self.col(0), -self.col(1), -self.col(2)) } } impl ApproxEq for Mat3 { #[inline(always)] fn approx_epsilon() -> T { ApproxEq::approx_epsilon::() } #[inline(always)] fn approx_eq(&self, other: &Mat3) -> bool { self.approx_eq_eps(other, &ApproxEq::approx_epsilon::()) } #[inline(always)] fn approx_eq_eps(&self, other: &Mat3, epsilon: &T) -> bool { self.col(0).approx_eq_eps(other.col(0), epsilon) && self.col(1).approx_eq_eps(other.col(1), epsilon) && self.col(2).approx_eq_eps(other.col(2), epsilon) } } // a 3×3 single-precision floating-point matrix pub type mat3 = Mat3; // a 3×3 double-precision floating-point matrix pub type dmat3 = Mat3; // Rust-style type aliases pub type Mat3f = Mat3; pub type Mat3f32 = Mat3; pub type Mat3f64 = Mat3; /// A 4 x 4 column major matrix /// /// # Type parameters /// /// - `T` - The type of the elements of the matrix. Should be a floating point type. /// /// # Fields /// /// - `x`: the first column vector of the matrix /// - `y`: the second column vector of the matrix /// - `z`: the third column vector of the matrix /// - `w`: the fourth column vector of the matrix #[deriving(Eq)] pub struct Mat4 { x: Vec4, y: Vec4, z: Vec4, w: Vec4 } impl BaseMat> for Mat4 { #[inline(always)] fn col<'a>(&'a self, i: uint) -> &'a Vec4 { unsafe { &'a transmute::<&'a Mat4, &'a [Vec4,..4]>(self)[i] } } #[inline(always)] fn row(&self, i: uint) -> Vec4 { BaseVec4::new(*self.elem(0, i), *self.elem(1, i), *self.elem(2, i), *self.elem(3, i)) } #[inline(always)] fn elem<'a>(&'a self, i: uint, j: uint) -> &'a T { self.col(i).index(j) } /// Construct a 4 x 4 diagonal matrix with the major diagonal set to `value` /// /// # Arguments /// /// - `value`: the value to set the major diagonal to /// /// ~~~ /// c0 c1 c2 c3 /// +-----+-----+-----+-----+ /// r0 | val | 0 | 0 | 0 | /// +-----+-----+-----+-----+ /// r1 | 0 | val | 0 | 0 | /// +-----+-----+-----+-----+ /// r2 | 0 | 0 | val | 0 | /// +-----+-----+-----+-----+ /// r3 | 0 | 0 | 0 | val | /// +-----+-----+-----+-----+ /// ~~~ #[inline(always)] fn from_value(value: T) -> Mat4 { BaseMat4::new(value, Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), value, Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), value, Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero(), value) } /// Returns the multiplicative identity matrix /// ~~~ /// c0 c1 c2 c3 /// +----+----+----+----+ /// r0 | 1 | 0 | 0 | 0 | /// +----+----+----+----+ /// r1 | 0 | 1 | 0 | 0 | /// +----+----+----+----+ /// r2 | 0 | 0 | 1 | 0 | /// +----+----+----+----+ /// r3 | 0 | 0 | 0 | 1 | /// +----+----+----+----+ /// ~~~ #[inline(always)] fn identity() -> Mat4 { BaseMat4::new(One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), One::one::()) } /// Returns the additive identity matrix /// ~~~ /// c0 c1 c2 c3 /// +----+----+----+----+ /// r0 | 0 | 0 | 0 | 0 | /// +----+----+----+----+ /// r1 | 0 | 0 | 0 | 0 | /// +----+----+----+----+ /// r2 | 0 | 0 | 0 | 0 | /// +----+----+----+----+ /// r3 | 0 | 0 | 0 | 0 | /// +----+----+----+----+ /// ~~~ #[inline(always)] fn zero() -> Mat4 { BaseMat4::new(Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::(), Zero::zero::()) } #[inline(always)] fn mul_t(&self, value: T) -> Mat4 { BaseMat4::from_cols(self.col(0).mul_t(value), self.col(1).mul_t(value), self.col(2).mul_t(value), self.col(3).mul_t(value)) } #[inline(always)] fn mul_v(&self, vec: &Vec4) -> Vec4 { BaseVec4::new(self.row(0).dot(vec), self.row(1).dot(vec), self.row(2).dot(vec), self.row(3).dot(vec)) } #[inline(always)] fn add_m(&self, other: &Mat4) -> Mat4 { BaseMat4::from_cols(self.col(0).add_v(other.col(0)), self.col(1).add_v(other.col(1)), self.col(2).add_v(other.col(2)), self.col(3).add_v(other.col(3))) } #[inline(always)] fn sub_m(&self, other: &Mat4) -> Mat4 { BaseMat4::from_cols(self.col(0).sub_v(other.col(0)), self.col(1).sub_v(other.col(1)), self.col(2).sub_v(other.col(2)), self.col(3).sub_v(other.col(3))) } #[inline(always)] fn mul_m(&self, other: &Mat4) -> Mat4 { BaseMat4::new(self.row(0).dot(other.col(0)), self.row(1).dot(other.col(0)), self.row(2).dot(other.col(0)), self.row(3).dot(other.col(0)), self.row(0).dot(other.col(1)), self.row(1).dot(other.col(1)), self.row(2).dot(other.col(1)), self.row(3).dot(other.col(1)), self.row(0).dot(other.col(2)), self.row(1).dot(other.col(2)), self.row(2).dot(other.col(2)), self.row(3).dot(other.col(2)), self.row(0).dot(other.col(3)), self.row(1).dot(other.col(3)), self.row(2).dot(other.col(3)), self.row(3).dot(other.col(3))) } fn dot(&self, other: &Mat4) -> T { other.transpose().mul_m(self).trace() } fn determinant(&self) -> T { let m0: Mat3 = BaseMat3::new(*self.elem(1, 1), *self.elem(2, 1), *self.elem(3, 1), *self.elem(1, 2), *self.elem(2, 2), *self.elem(3, 2), *self.elem(1, 3), *self.elem(2, 3), *self.elem(3, 3)); let m1: Mat3 = BaseMat3::new(*self.elem(0, 1), *self.elem(2, 1), *self.elem(3, 1), *self.elem(0, 2), *self.elem(2, 2), *self.elem(3, 2), *self.elem(0, 3), *self.elem(2, 3), *self.elem(3, 3)); let m2: Mat3 = BaseMat3::new(*self.elem(0, 1), *self.elem(1, 1), *self.elem(3, 1), *self.elem(0, 2), *self.elem(1, 2), *self.elem(3, 2), *self.elem(0, 3), *self.elem(1, 3), *self.elem(3, 3)); let m3: Mat3 = BaseMat3::new(*self.elem(0, 1), *self.elem(1, 1), *self.elem(2, 1), *self.elem(0, 2), *self.elem(1, 2), *self.elem(2, 2), *self.elem(0, 3), *self.elem(1, 3), *self.elem(2, 3)); self.elem(0, 0) * m0.determinant() - self.elem(1, 0) * m1.determinant() + self.elem(2, 0) * m2.determinant() - self.elem(3, 0) * m3.determinant() } fn trace(&self) -> T { *self.elem(0, 0) + *self.elem(1, 1) + *self.elem(2, 2) + *self.elem(3, 3) } fn inverse(&self) -> Option> { let d = self.determinant(); if d.approx_eq(&Zero::zero()) { None } else { // Gauss Jordan Elimination with partial pivoting // So take this matrix, A, augmented with the identity // and essentially reduce [A|I] let mut A = *self; let mut I: Mat4 = BaseMat::identity(); for uint::range(0, 4) |j| { // Find largest element in col j let mut i1 = j; for uint::range(j + 1, 4) |i| { if A.elem(j, i).abs() > A.elem(j, i1).abs() { i1 = i; } } // Swap columns i1 and j in A and I to // put pivot on diagonal A.swap_cols(i1, j); I.swap_cols(i1, j); // Scale col j to have a unit diagonal let ajj = *A.elem(j, j); I.col_mut(j).div_self_t(ajj); A.col_mut(j).div_self_t(ajj); // Eliminate off-diagonal elems in col j of A, // doing identical ops to I for uint::range(0, 4) |i| { if i != j { let ij_mul_aij = I.col(j).mul_t(*A.elem(i, j)); let aj_mul_aij = A.col(j).mul_t(*A.elem(i, j)); I.col_mut(i).sub_self_v(&ij_mul_aij); A.col_mut(i).sub_self_v(&aj_mul_aij); } } } Some(I) } } #[inline(always)] fn transpose(&self) -> Mat4 { BaseMat4::new(*self.elem(0, 0), *self.elem(1, 0), *self.elem(2, 0), *self.elem(3, 0), *self.elem(0, 1), *self.elem(1, 1), *self.elem(2, 1), *self.elem(3, 1), *self.elem(0, 2), *self.elem(1, 2), *self.elem(2, 2), *self.elem(3, 2), *self.elem(0, 3), *self.elem(1, 3), *self.elem(2, 3), *self.elem(3, 3)) } #[inline(always)] fn col_mut<'a>(&'a mut self, i: uint) -> &'a mut Vec4 { unsafe { &'a mut transmute::<&'a mut Mat4, &'a mut [Vec4,..4]>(self)[i] } } #[inline(always)] fn elem_mut<'a>(&'a mut self, i: uint, j: uint) -> &'a mut T { self.col_mut(i).index_mut(j) } #[inline(always)] fn swap_cols(&mut self, a: uint, b: uint) { let tmp = *self.col(a); *self.col_mut(a) = *self.col(b); *self.col_mut(b) = tmp; } #[inline(always)] fn swap_rows(&mut self, a: uint, b: uint) { self.x.swap(a, b); self.y.swap(a, b); self.z.swap(a, b); self.w.swap(a, b); } #[inline(always)] fn set(&mut self, other: &Mat4) { (*self) = (*other); } #[inline(always)] fn to_identity(&mut self) { (*self) = BaseMat::identity(); } #[inline(always)] fn to_zero(&mut self) { (*self) = BaseMat::zero(); } #[inline(always)] fn mul_self_t(&mut self, value: T) { self.col_mut(0).mul_self_t(value); self.col_mut(1).mul_self_t(value); self.col_mut(2).mul_self_t(value); self.col_mut(3).mul_self_t(value); } #[inline(always)] fn add_self_m(&mut self, other: &Mat4) { self.col_mut(0).add_self_v(other.col(0)); self.col_mut(1).add_self_v(other.col(1)); self.col_mut(2).add_self_v(other.col(2)); self.col_mut(3).add_self_v(other.col(3)); } #[inline(always)] fn sub_self_m(&mut self, other: &Mat4) { self.col_mut(0).sub_self_v(other.col(0)); self.col_mut(1).sub_self_v(other.col(1)); self.col_mut(2).sub_self_v(other.col(2)); self.col_mut(3).sub_self_v(other.col(3)); } #[inline(always)] fn invert_self(&mut self) { match self.inverse() { Some(m) => (*self) = m, None => fail!(~"Couldn't invert the matrix!") } } #[inline(always)] fn transpose_self(&mut self) { let tmp01 = *self.elem(0, 1); let tmp02 = *self.elem(0, 2); let tmp03 = *self.elem(0, 3); let tmp10 = *self.elem(1, 0); let tmp12 = *self.elem(1, 2); let tmp13 = *self.elem(1, 3); let tmp20 = *self.elem(2, 0); let tmp21 = *self.elem(2, 1); let tmp23 = *self.elem(2, 3); let tmp30 = *self.elem(3, 0); let tmp31 = *self.elem(3, 1); let tmp32 = *self.elem(3, 2); *self.elem_mut(0, 1) = *self.elem(1, 0); *self.elem_mut(0, 2) = *self.elem(2, 0); *self.elem_mut(0, 3) = *self.elem(3, 0); *self.elem_mut(1, 0) = *self.elem(0, 1); *self.elem_mut(1, 2) = *self.elem(2, 1); *self.elem_mut(1, 3) = *self.elem(3, 1); *self.elem_mut(2, 0) = *self.elem(0, 2); *self.elem_mut(2, 1) = *self.elem(1, 2); *self.elem_mut(2, 3) = *self.elem(3, 2); *self.elem_mut(3, 0) = *self.elem(0, 3); *self.elem_mut(3, 1) = *self.elem(1, 3); *self.elem_mut(3, 2) = *self.elem(2, 3); *self.elem_mut(1, 0) = tmp01; *self.elem_mut(2, 0) = tmp02; *self.elem_mut(3, 0) = tmp03; *self.elem_mut(0, 1) = tmp10; *self.elem_mut(2, 1) = tmp12; *self.elem_mut(3, 1) = tmp13; *self.elem_mut(0, 2) = tmp20; *self.elem_mut(1, 2) = tmp21; *self.elem_mut(3, 2) = tmp23; *self.elem_mut(0, 3) = tmp30; *self.elem_mut(1, 3) = tmp31; *self.elem_mut(2, 3) = tmp32; } #[inline(always)] fn is_identity(&self) -> bool { self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_diagonal(&self) -> bool { self.elem(0, 1).approx_eq(&Zero::zero()) && self.elem(0, 2).approx_eq(&Zero::zero()) && self.elem(0, 3).approx_eq(&Zero::zero()) && self.elem(1, 0).approx_eq(&Zero::zero()) && self.elem(1, 2).approx_eq(&Zero::zero()) && self.elem(1, 3).approx_eq(&Zero::zero()) && self.elem(2, 0).approx_eq(&Zero::zero()) && self.elem(2, 1).approx_eq(&Zero::zero()) && self.elem(2, 3).approx_eq(&Zero::zero()) && self.elem(3, 0).approx_eq(&Zero::zero()) && self.elem(3, 1).approx_eq(&Zero::zero()) && self.elem(3, 2).approx_eq(&Zero::zero()) } #[inline(always)] fn is_rotated(&self) -> bool { !self.approx_eq(&BaseMat::identity()) } #[inline(always)] fn is_symmetric(&self) -> bool { self.elem(0, 1).approx_eq(self.elem(1, 0)) && self.elem(0, 2).approx_eq(self.elem(2, 0)) && self.elem(0, 3).approx_eq(self.elem(3, 0)) && self.elem(1, 0).approx_eq(self.elem(0, 1)) && self.elem(1, 2).approx_eq(self.elem(2, 1)) && self.elem(1, 3).approx_eq(self.elem(3, 1)) && self.elem(2, 0).approx_eq(self.elem(0, 2)) && self.elem(2, 1).approx_eq(self.elem(1, 2)) && self.elem(2, 3).approx_eq(self.elem(3, 2)) && self.elem(3, 0).approx_eq(self.elem(0, 3)) && self.elem(3, 1).approx_eq(self.elem(1, 3)) && self.elem(3, 2).approx_eq(self.elem(2, 3)) } #[inline(always)] fn is_invertible(&self) -> bool { !self.determinant().approx_eq(&Zero::zero()) } #[inline(always)] fn to_ptr(&self) -> *T { unsafe { transmute(self) } } } impl BaseMat4> for Mat4 { /// Construct a 4 x 4 matrix /// /// # Arguments /// /// - `c0r0`, `c0r1`, `c0r2`, `c0r3`: the first column of the matrix /// - `c1r0`, `c1r1`, `c1r2`, `c1r3`: the second column of the matrix /// - `c2r0`, `c2r1`, `c2r2`, `c2r3`: the third column of the matrix /// - `c3r0`, `c3r1`, `c3r2`, `c3r3`: the fourth column of the matrix /// /// ~~~ /// c0 c1 c2 c3 /// +------+------+------+------+ /// r0 | c0r0 | c1r0 | c2r0 | c3r0 | /// +------+------+------+------+ /// r1 | c0r1 | c1r1 | c2r1 | c3r1 | /// +------+------+------+------+ /// r2 | c0r2 | c1r2 | c2r2 | c3r2 | /// +------+------+------+------+ /// r3 | c0r3 | c1r3 | c2r3 | c3r3 | /// +------+------+------+------+ /// ~~~ #[inline(always)] fn new(c0r0: T, c0r1: T, c0r2: T, c0r3: T, c1r0: T, c1r1: T, c1r2: T, c1r3: T, c2r0: T, c2r1: T, c2r2: T, c2r3: T, c3r0: T, c3r1: T, c3r2: T, c3r3: T) -> Mat4 { BaseMat4::from_cols(BaseVec4::new::>(c0r0, c0r1, c0r2, c0r3), BaseVec4::new::>(c1r0, c1r1, c1r2, c1r3), BaseVec4::new::>(c2r0, c2r1, c2r2, c2r3), BaseVec4::new::>(c3r0, c3r1, c3r2, c3r3)) } /// Construct a 4 x 4 matrix from column vectors /// /// # Arguments /// /// - `c0`: the first column vector of the matrix /// - `c1`: the second column vector of the matrix /// - `c2`: the third column vector of the matrix /// - `c3`: the fourth column vector of the matrix /// /// ~~~ /// c0 c1 c2 c3 /// +------+------+------+------+ /// r0 | c0.x | c1.x | c2.x | c3.x | /// +------+------+------+------+ /// r1 | c0.y | c1.y | c2.y | c3.y | /// +------+------+------+------+ /// r2 | c0.z | c1.z | c2.z | c3.z | /// +------+------+------+------+ /// r3 | c0.w | c1.w | c2.w | c3.w | /// +------+------+------+------+ /// ~~~ #[inline(always)] fn from_cols(c0: Vec4, c1: Vec4, c2: Vec4, c3: Vec4) -> Mat4 { Mat4 { x: c0, y: c1, z: c2, w: c3 } } } impl Neg> for Mat4 { #[inline(always)] fn neg(&self) -> Mat4 { BaseMat4::from_cols(-self.col(0), -self.col(1), -self.col(2), -self.col(3)) } } impl ApproxEq for Mat4 { #[inline(always)] fn approx_epsilon() -> T { ApproxEq::approx_epsilon::() } #[inline(always)] fn approx_eq(&self, other: &Mat4) -> bool { self.approx_eq_eps(other, &ApproxEq::approx_epsilon::()) } #[inline(always)] fn approx_eq_eps(&self, other: &Mat4, epsilon: &T) -> bool { self.col(0).approx_eq_eps(other.col(0), epsilon) && self.col(1).approx_eq_eps(other.col(1), epsilon) && self.col(2).approx_eq_eps(other.col(2), epsilon) && self.col(3).approx_eq_eps(other.col(3), epsilon) } } // GLSL-style type aliases, corresponding to Section 4.1.6 of the [GLSL 4.30.6 specification] // (http://www.opengl.org/registry/doc/GLSLangSpec.4.30.6.pdf). // a 4×4 single-precision floating-point matrix pub type mat4 = Mat4; // a 4×4 double-precision floating-point matrix pub type dmat4 = Mat4; // Rust-style type aliases pub type Mat4f = Mat4; pub type Mat4f32 = Mat4; pub type Mat4f64 = Mat4;