use core::cast::transmute; use core::cmp::{Eq, Ord}; use core::ptr::to_unsafe_ptr; use core::sys::size_of; use core::vec::raw::buf_as_slice; use std::cmp::FuzzyEq; use dim::Dimensional; use funs::common::*; use funs::exponential::*; use funs::triganomic::*; use mat::{Mat3, Mat4}; use num::cast::*; use num::default_eq::DefaultEq; use vec::Vec3; /// /// The base quaternion trait /// pub trait Quaternion: Dimensional, Eq, DefaultEq, Neg { static pure fn identity() -> self; static pure fn zero() -> self; pure fn mul_t(&self, value: T) -> self; pure fn div_t(&self, value: T) -> self; pure fn mul_v(&self, vec: &Vec3) -> Vec3; pure fn add_q(&self, other: &self) -> self; pure fn sub_q(&self, other: &self) -> self; pure fn mul_q(&self, other: &self) -> self; pure fn dot(&self, other: &self) -> T; pure fn conjugate(&self) -> self; pure fn inverse(&self) -> self; pure fn length2(&self) -> T; pure fn length(&self) -> T; pure fn normalize(&self) -> self; pure fn nlerp(&self, other: &self, amount: T) -> self; pure fn slerp(&self, other: &self, amount: T) -> self; pure fn to_mat3(&self) -> Mat3; pure fn to_mat4(&self) -> Mat4; } pub trait ToQuat { pure fn to_Quat() -> Quat; } pub struct Quat { s: T, v: Vec3 } pub impl Quat { #[inline(always)] static pure fn new(s: T, vx: T, vy: T, vz: T) -> Quat { Quat::from_sv(move s, move Vec3::new(move vx, move vy, move vz)) } #[inline(always)] static pure fn from_sv(s: T, v: Vec3) -> Quat { Quat { s: move s, v: move v } } } pub impl Quat: Dimensional { #[inline(always)] static pure fn dim() -> uint { 4 } #[inline(always)] static pure fn size_of() -> uint { size_of::>() } #[inline(always)] pure fn to_ptr(&self) -> *T { to_unsafe_ptr(&self[0]) } } pub impl Quat: Index { #[inline(always)] pure fn index(i: uint) -> T { unsafe { do buf_as_slice( transmute::<*Quat, *T>( to_unsafe_ptr(&self)), 4) |slice| { slice[i] } } } } pub impl Quat: Quaternion { #[inline(always)] static pure fn identity() -> Quat { Quat::new(NumCast::one(), NumCast::one(), NumCast::one(), NumCast::one()) } #[inline(always)] static pure fn zero() -> Quat { Quat::new(NumCast::zero(), NumCast::zero(), NumCast::zero(), NumCast::zero()) } #[inline(always)] pure fn mul_t(&self, value: T) -> Quat { Quat::new(self[0] * value, self[1] * value, self[2] * value, self[3] * value) } #[inline(always)] pure fn div_t(&self, value: T) -> Quat { Quat::new(self[0] / value, self[1] / value, self[2] / value, self[3] / value) } #[inline(always)] pure fn mul_v(&self, vec: &Vec3) -> Vec3 { let tmp = self.v.cross(vec).add_v(&vec.mul_t(self.s)); self.v.cross(&tmp).mul_t(cast(2)).add_v(vec) } #[inline(always)] pure fn add_q(&self, other: &Quat) -> Quat { Quat::new(self[0] + other[0], self[1] + other[1], self[2] + other[2], self[3] + other[3]) } #[inline(always)] pure fn sub_q(&self, other: &Quat) -> Quat { Quat::new(self[0] - other[0], self[1] - other[1], self[2] - other[2], self[3] - other[3]) } #[inline(always)] pure fn mul_q(&self, other: &Quat) -> Quat { Quat::new(self.s * other.s - self.v.x * other.v.x - self.v.y * other.v.y - self.v.z * other.v.z, self.s * other.v.x + self.v.x * other.s + self.v.y * other.v.z - self.v.z * other.v.y, self.s * other.v.y + self.v.y * other.s + self.v.z * other.v.x - self.v.x * other.v.z, self.s * other.v.z + self.v.z * other.s + self.v.x * other.v.y - self.v.y * other.v.x) } #[inline(always)] pure fn dot(&self, other: &Quat) -> T { self.s * other.s + self.v.dot(&other.v) } #[inline(always)] pure fn conjugate(&self) -> Quat { Quat::from_sv(self.s, -self.v) } #[inline(always)] pure fn inverse(&self) -> Quat { self.conjugate().div_t(self.length2()) } #[inline(always)] pure fn length2(&self) -> T { self.s * self.s + self.v.length2() } #[inline(always)] pure fn length(&self) -> T { self.length2().sqrt() } #[inline(always)] pure fn normalize(&self) -> Quat { let mut n: T = cast(1); n /= self.length(); return self.mul_t(n); } #[inline(always)] pure fn nlerp(&self, other: &Quat, amount: T) -> Quat { let _1: T = cast(1); self.mul_t(_1 - amount).add_q(&other.mul_t(amount)).normalize() } /** * Spherical Linear Intoperlation * * Both quaternions should be normalized first, or else strange things will * will happen... * * Note: The `acos` used in `slerp` is an expensive operation, so unless your * quarternions a far away from each other it's generally more advisable to * use nlerp when you know your rotations are going to be small. * * See *[Understanding Slerp, Then Not Using It] * (http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/)* * for more information. The [Arcsynthesis OpenGL tutorial] * (http://www.arcsynthesis.org/gltut/Positioning/Tut08%20Interpolation.html) * also provides a good explanation. */ #[inline(always)] pure fn slerp(&self, other: &Quat, amount: T) -> Quat { let dot: T = cast(self.dot(other)); // if quaternions are close together use `nlerp` let dot_threshold = cast(0.9995); if dot > dot_threshold { return self.nlerp(other, amount) } let robust_dot = dot.clamp(&-cast(1), &cast(1)); // stay within the domain of acos() let theta_0 = acos(&robust_dot); // the angle between the quaternions let theta = theta_0 * amount; // the fraction of theta specified by `amount` let q = other.sub_q(&self.mul_t(robust_dot)) .normalize(); self.mul_t(cos(&theta)).add_q(&q.mul_t(sin(&theta))) } #[inline(always)] pure fn to_mat3(&self) -> Mat3 { let x2 = self.v.x + self.v.x; let y2 = self.v.y + self.v.y; let z2 = self.v.z + self.v.z; let xx2 = x2 * self.v.x; let xy2 = x2 * self.v.y; let xz2 = x2 * self.v.z; let yy2 = y2 * self.v.y; let yz2 = y2 * self.v.z; let zz2 = z2 * self.v.z; let sy2 = y2 * self.s; let sz2 = z2 * self.s; let sx2 = x2 * self.s; let _1: T = cast(1); Mat3::new(_1 - yy2 - zz2, xy2 - sz2, xz2 + sy2, xy2 + sz2, _1 - xx2 - zz2, yz2 - sx2, xz2 - sy2, yz2 + sx2, _1 - xx2 - yy2) } #[inline(always)] pure fn to_mat4(&self) -> Mat4 { self.to_mat3().to_mat4() } } pub impl Quat: Neg> { #[inline(always)] pure fn neg(&self) -> Quat { Quat::new(-self[0], -self[1], -self[2], -self[3]) } } pub impl Quat: Eq { #[inline(always)] pure fn eq(&self, other: &Quat) -> bool { self[0] == other[0] && self[1] == other[1] && self[2] == other[2] && self[3] == other[3] } #[inline(always)] pure fn ne(&self, other: &Quat) -> bool { !(self == other) } } pub impl Quat: FuzzyEq { #[inline(always)] pure fn fuzzy_eq(other: &Quat) -> bool { self[0].fuzzy_eq(&other[0]) && self[1].fuzzy_eq(&other[1]) && self[2].fuzzy_eq(&other[2]) && self[3].fuzzy_eq(&other[3]) } } pub impl Quat: DefaultEq { #[inline(always)] pure fn default_eq(other: &Quat) -> bool { self[0].default_eq(&other[0]) && self[1].default_eq(&other[1]) && self[2].default_eq(&other[2]) && self[3].default_eq(&other[3]) } }