// Copyright 2013-2014 The CGMath Developers. For a full listing of the authors, // refer to the Cargo.toml file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Types and traits for two, three, and four-dimensional vectors. //! //! ## Working with Vectors //! //! Vectors can be created in several different ways. There is, of course, the //! traditional `new()` method, but unit vectors, zero vectors, and an one //! vector are also provided: //! //! ```rust //! use cgmath::{Vector, Vector2, Vector3, Vector4, vec2, vec3}; //! //! assert_eq!(Vector2::new(1.0f64, 0.0f64), Vector2::unit_x()); //! assert_eq!(vec3(0.0f64, 0.0f64, 0.0f64), Vector3::zero()); //! assert_eq!(Vector2::from_value(1.0f64), vec2(1.0, 1.0)); //! ``` //! //! Vectors can be manipulated with typical mathematical operations (addition, //! subtraction, element-wise multiplication, element-wise division, negation) //! using the built-in operators. //! //! ```rust //! use cgmath::{Vector, Vector2, Vector3, Vector4}; //! //! let a: Vector2 = Vector2::new(3.0, 4.0); //! let b: Vector2 = Vector2::new(-3.0, -4.0); //! //! assert_eq!(a + b, Vector2::zero()); //! assert_eq!(-(a * 2.0), Vector2::new(-6.0, -8.0)); //! //! // As with Rust's `int` and `f32` types, Vectors of different types cannot //! // be added and so on with impunity. The following will fail to compile: //! // let c = a + Vector3::new(1.0, 0.0, 2.0); //! //! // Instead, we need to convert the Vector2 to a Vector3 by "extending" it //! // with the value for the last coordinate: //! let c: Vector3 = a.extend(0.0) + Vector3::new(1.0, 0.0, 2.0); //! //! // Similarly, we can "truncate" a Vector4 down to a Vector3: //! let d: Vector3 = c + Vector4::unit_x().truncate(); //! //! assert_eq!(d, Vector3::new(5.0f64, 4.0f64, 2.0f64)); //! ``` //! //! Vectors also provide methods for typical operations such as //! [scalar multiplication](http://en.wikipedia.org/wiki/Scalar_multiplication), //! [dot products](http://en.wikipedia.org/wiki/Dot_product), //! and [cross products](http://en.wikipedia.org/wiki/Cross_product). //! //! ```rust //! use cgmath::{Vector, EuclideanVector}; //! use cgmath::{Vector2, Vector3, Vector4}; //! //! // All vectors implement the dot product as a method: //! let a: Vector2 = Vector2::new(3.0, 6.0); //! let b: Vector2 = Vector2::new(-2.0, 1.0); //! assert_eq!(a.dot(b), 0.0); //! //! // But there is also a top-level function: //! assert_eq!(a.dot(b), cgmath::dot(a, b)); //! //! // Cross products are defined for 3-dimensional vectors: //! let e: Vector3 = Vector3::unit_x(); //! let f: Vector3 = Vector3::unit_y(); //! assert_eq!(e.cross(f), Vector3::unit_z()); //! ``` //! //! Several other useful methods are provided as well. Vector fields can be //! accessed using array syntax (i.e. `vector[0] == vector.x`), or by using //! the methods provided by the [`Array`](../array/trait.Array.html) trait. //! This trait also provides a `map()` method for applying arbitrary functions. //! //! The [`Vector`](../trait.Vector.html) trait presents the most general //! features of the vectors, while [`EuclideanVector`] //! (../array/trait.EuclideanVector.html) is more specific to Euclidean space. use std::fmt; use std::mem; use std::ops::*; use rand::{Rand, Rng}; use rust_num::{NumCast, Zero, One}; use angle::{Angle, Rad}; use approx::ApproxEq; use array::{Array, ElementWise}; use num::{BaseNum, BaseFloat, PartialOrd}; /// A trait that specifies a range of numeric operations for vectors. pub trait Vector: Copy + Clone where // FIXME: Ugly type signatures - blocked by rust-lang/rust#24092 Self: Array::Scalar>, Self: Add, Self: Sub, Self: Mul<::Scalar, Output = Self>, Self: Div<::Scalar, Output = Self>, Self: Rem<::Scalar, Output = Self>, { /// The associated scalar. type Scalar: BaseNum; /// Construct a vector from a single value, replicating it. fn from_value(scalar: Self::Scalar) -> Self; /// The additive identity vector. Adding this vector with another has no effect. #[inline] fn zero() -> Self { Self::from_value(Self::Scalar::zero()) } } /// A 2-dimensional vector. /// /// This type is marked as `#[repr(C, packed)]`. #[repr(C, packed)] #[derive(PartialEq, Eq, Copy, Clone, Hash, RustcEncodable, RustcDecodable)] pub struct Vector2 { pub x: S, pub y: S, } /// A 3-dimensional vector. /// /// This type is marked as `#[repr(C, packed)]`. #[repr(C, packed)] #[derive(PartialEq, Eq, Copy, Clone, Hash, RustcEncodable, RustcDecodable)] pub struct Vector3 { pub x: S, pub y: S, pub z: S, } /// A 4-dimensional vector. /// /// This type is marked as `#[repr(C, packed)]`. #[repr(C, packed)] #[derive(PartialEq, Eq, Copy, Clone, Hash, RustcEncodable, RustcDecodable)] pub struct Vector4 { pub x: S, pub y: S, pub z: S, pub w: S, } // Utility macro for generating associated functions for the vectors macro_rules! impl_vector { ($VectorN:ident <$S:ident> { $($field:ident),+ }, $n:expr, $constructor:ident) => { impl<$S> $VectorN<$S> { /// Construct a new vector, using the provided values. #[inline] pub fn new($($field: $S),+) -> $VectorN<$S> { $VectorN { $($field: $field),+ } } } impl<$S: Copy + Neg> $VectorN<$S> { /// Negate this vector in-place (multiply by -1). #[inline] pub fn neg_self(&mut self) { $(self.$field = -self.$field);+ } } /// The short constructor. #[inline] pub fn $constructor($($field: S),+) -> $VectorN { $VectorN::new($($field),+) } impl<$S: NumCast + Copy> $VectorN<$S> { /// Component-wise casting to another type #[inline] pub fn cast(&self) -> $VectorN { $VectorN { $($field: NumCast::from(self.$field).unwrap()),+ } } } impl Array for $VectorN { type Element = S; #[inline] fn sum(self) -> S where S: Add { fold_array!(add, { $(self.$field),+ }) } #[inline] fn product(self) -> S where S: Mul { fold_array!(mul, { $(self.$field),+ }) } #[inline] fn min(self) -> S where S: PartialOrd { fold_array!(partial_min, { $(self.$field),+ }) } #[inline] fn max(self) -> S where S: PartialOrd { fold_array!(partial_max, { $(self.$field),+ }) } } impl Vector for $VectorN { type Scalar = S; #[inline] fn from_value(scalar: S) -> $VectorN { $VectorN { $($field: scalar),+ } } } impl> Neg for $VectorN { type Output = $VectorN; #[inline] fn neg(self) -> $VectorN { $VectorN::new($(-self.$field),+) } } impl ApproxEq for $VectorN { type Epsilon = S; #[inline] fn approx_eq_eps(&self, other: &$VectorN, epsilon: &S) -> bool { $(self.$field.approx_eq_eps(&other.$field, epsilon))&&+ } } impl Rand for $VectorN { #[inline] fn rand(rng: &mut R) -> $VectorN { $VectorN { $($field: rng.gen()),+ } } } impl_operator!( Add<$VectorN > for $VectorN { fn add(lhs, rhs) -> $VectorN { $VectorN::new($(lhs.$field + rhs.$field),+) } }); impl_assignment_operator!( AddAssign<$VectorN > for $VectorN { fn add_assign(&mut self, other) { $(self.$field += other.$field);+ } }); impl_operator!( Sub<$VectorN > for $VectorN { fn sub(lhs, rhs) -> $VectorN { $VectorN::new($(lhs.$field - rhs.$field),+) } }); impl_assignment_operator!( SubAssign<$VectorN > for $VectorN { fn sub_assign(&mut self, other) { $(self.$field -= other.$field);+ } }); impl_operator!( Mul for $VectorN { fn mul(vector, scalar) -> $VectorN { $VectorN::new($(vector.$field * scalar),+) } }); impl_assignment_operator!( MulAssign for $VectorN { fn mul_assign(&mut self, scalar) { $(self.$field *= scalar);+ } }); impl_operator!( Div for $VectorN { fn div(vector, scalar) -> $VectorN { $VectorN::new($(vector.$field / scalar),+) } }); impl_assignment_operator!( DivAssign for $VectorN { fn div_assign(&mut self, scalar) { $(self.$field /= scalar);+ } }); impl_operator!( Rem for $VectorN { fn rem(vector, scalar) -> $VectorN { $VectorN::new($(vector.$field % scalar),+) } }); impl_assignment_operator!( RemAssign for $VectorN { fn rem_assign(&mut self, scalar) { $(self.$field %= scalar);+ } }); impl ElementWise for $VectorN { #[inline] fn add_element_wise(self, rhs: $VectorN) -> $VectorN { $VectorN::new($(self.$field + rhs.$field),+) } #[inline] fn sub_element_wise(self, rhs: $VectorN) -> $VectorN { $VectorN::new($(self.$field - rhs.$field),+) } #[inline] fn mul_element_wise(self, rhs: $VectorN) -> $VectorN { $VectorN::new($(self.$field * rhs.$field),+) } #[inline] fn div_element_wise(self, rhs: $VectorN) -> $VectorN { $VectorN::new($(self.$field / rhs.$field),+) } #[inline] fn rem_element_wise(self, rhs: $VectorN) -> $VectorN { $VectorN::new($(self.$field % rhs.$field),+) } #[cfg(feature = "unstable")] #[inline] fn add_assign_element_wise(&mut self, rhs: $VectorN) { $(self.$field += rhs.$field);+ } #[cfg(feature = "unstable")] #[inline] fn sub_assign_element_wise(&mut self, rhs: $VectorN) { $(self.$field -= rhs.$field);+ } #[cfg(feature = "unstable")] #[inline] fn mul_assign_element_wise(&mut self, rhs: $VectorN) { $(self.$field *= rhs.$field);+ } #[cfg(feature = "unstable")] #[inline] fn div_assign_element_wise(&mut self, rhs: $VectorN) { $(self.$field /= rhs.$field);+ } #[cfg(feature = "unstable")] #[inline] fn rem_assign_element_wise(&mut self, rhs: $VectorN) { $(self.$field %= rhs.$field);+ } } impl ElementWise for $VectorN { #[inline] fn add_element_wise(self, rhs: S) -> $VectorN { $VectorN::new($(self.$field + rhs),+) } #[inline] fn sub_element_wise(self, rhs: S) -> $VectorN { $VectorN::new($(self.$field - rhs),+) } #[inline] fn mul_element_wise(self, rhs: S) -> $VectorN { $VectorN::new($(self.$field * rhs),+) } #[inline] fn div_element_wise(self, rhs: S) -> $VectorN { $VectorN::new($(self.$field / rhs),+) } #[inline] fn rem_element_wise(self, rhs: S) -> $VectorN { $VectorN::new($(self.$field % rhs),+) } #[cfg(feature = "unstable")] #[inline] fn add_assign_element_wise(&mut self, rhs: S) { $(self.$field += rhs);+ } #[cfg(feature = "unstable")] #[inline] fn sub_assign_element_wise(&mut self, rhs: S) { $(self.$field -= rhs);+ } #[cfg(feature = "unstable")] #[inline] fn mul_assign_element_wise(&mut self, rhs: S) { $(self.$field *= rhs);+ } #[cfg(feature = "unstable")] #[inline] fn div_assign_element_wise(&mut self, rhs: S) { $(self.$field /= rhs);+ } #[cfg(feature = "unstable")] #[inline] fn rem_assign_element_wise(&mut self, rhs: S) { $(self.$field %= rhs);+ } } impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_scalar_ops!($VectorN { $($field),+ }); impl_index_operators!($VectorN, $n, S, usize); impl_index_operators!($VectorN, $n, [S], Range); impl_index_operators!($VectorN, $n, [S], RangeTo); impl_index_operators!($VectorN, $n, [S], RangeFrom); impl_index_operators!($VectorN, $n, [S], RangeFull); } } macro_rules! impl_scalar_ops { ($VectorN:ident<$S:ident> { $($field:ident),+ }) => { impl_operator!(Mul<$VectorN<$S>> for $S { fn mul(scalar, vector) -> $VectorN<$S> { $VectorN::new($(scalar * vector.$field),+) } }); impl_operator!(Div<$VectorN<$S>> for $S { fn div(scalar, vector) -> $VectorN<$S> { $VectorN::new($(scalar / vector.$field),+) } }); impl_operator!(Rem<$VectorN<$S>> for $S { fn rem(scalar, vector) -> $VectorN<$S> { $VectorN::new($(scalar % vector.$field),+) } }); }; } impl_vector!(Vector2 { x, y }, 2, vec2); impl_vector!(Vector3 { x, y, z }, 3, vec3); impl_vector!(Vector4 { x, y, z, w }, 4, vec4); impl_fixed_array_conversions!(Vector2 { x: 0, y: 1 }, 2); impl_fixed_array_conversions!(Vector3 { x: 0, y: 1, z: 2 }, 3); impl_fixed_array_conversions!(Vector4 { x: 0, y: 1, z: 2, w: 3 }, 4); impl_tuple_conversions!(Vector2 { x, y }, (S, S)); impl_tuple_conversions!(Vector3 { x, y, z }, (S, S, S)); impl_tuple_conversions!(Vector4 { x, y, z, w }, (S, S, S, S)); /// Operations specific to numeric two-dimensional vectors. impl Vector2 { /// A unit vector in the `x` direction. #[inline] pub fn unit_x() -> Vector2 { Vector2::new(S::one(), S::zero()) } /// A unit vector in the `y` direction. #[inline] pub fn unit_y() -> Vector2 { Vector2::new(S::zero(), S::one()) } /// The perpendicular dot product of the vector and `other`. #[inline] pub fn perp_dot(self, other: Vector2) -> S { (self.x * other.y) - (self.y * other.x) } /// Create a `Vector3`, using the `x` and `y` values from this vector, and the /// provided `z`. #[inline] pub fn extend(self, z: S)-> Vector3 { Vector3::new(self.x, self.y, z) } } /// Operations specific to numeric three-dimensional vectors. impl Vector3 { /// A unit vector in the `x` direction. #[inline] pub fn unit_x() -> Vector3 { Vector3::new(S::one(), S::zero(), S::zero()) } /// A unit vector in the `y` direction. #[inline] pub fn unit_y() -> Vector3 { Vector3::new(S::zero(), S::one(), S::zero()) } /// A unit vector in the `w` direction. #[inline] pub fn unit_z() -> Vector3 { Vector3::new(S::zero(), S::zero(), S::one()) } /// Returns the cross product of the vector and `other`. #[inline] #[must_use] pub fn cross(self, other: Vector3) -> Vector3 { Vector3::new((self.y * other.z) - (self.z * other.y), (self.z * other.x) - (self.x * other.z), (self.x * other.y) - (self.y * other.x)) } /// Create a `Vector4`, using the `x`, `y` and `z` values from this vector, and the /// provided `w`. #[inline] pub fn extend(self, w: S)-> Vector4 { Vector4::new(self.x, self.y, self.z, w) } /// Create a `Vector2`, dropping the `z` value. #[inline] pub fn truncate(self)-> Vector2 { Vector2::new(self.x, self.y) } } /// Operations specific to numeric four-dimensional vectors. impl Vector4 { /// A unit vector in the `x` direction. #[inline] pub fn unit_x() -> Vector4 { Vector4::new(S::one(), S::zero(), S::zero(), S::zero()) } /// A unit vector in the `y` direction. #[inline] pub fn unit_y() -> Vector4 { Vector4::new(S::zero(), S::one(), S::zero(), S::zero()) } /// A unit vector in the `z` direction. #[inline] pub fn unit_z() -> Vector4 { Vector4::new(S::zero(), S::zero(), S::one(), S::zero()) } /// A unit vector in the `w` direction. #[inline] pub fn unit_w() -> Vector4 { Vector4::new(S::zero(), S::zero(), S::zero(), S::one()) } /// Create a `Vector3`, dropping the `w` value. #[inline] pub fn truncate(self)-> Vector3 { Vector3::new(self.x, self.y, self.z) } /// Create a `Vector3`, dropping the nth element #[inline] pub fn truncate_n(&self, n: isize)-> Vector3 { match n { 0 => Vector3::new(self.y, self.z, self.w), 1 => Vector3::new(self.x, self.z, self.w), 2 => Vector3::new(self.x, self.y, self.w), 3 => Vector3::new(self.x, self.y, self.z), _ => panic!("{:?} is out of range", n) } } } /// Specifies geometric operations for vectors. This is only implemented for /// vectors of float types. pub trait EuclideanVector: Vector + Sized where // FIXME: Ugly type signatures - blocked by rust-lang/rust#24092 ::Scalar: BaseFloat, Self: ApproxEq::Scalar>, { /// Vector dot (or inner) product. fn dot(self, other: Self) -> Self::Scalar; /// Returns `true` if the vector is perpendicular (at right angles) to the /// other vector. fn is_perpendicular(self, other: Self) -> bool { Self::dot(self, other).approx_eq(&Self::Scalar::zero()) } /// Returns the squared magnitude of the vector. /// /// This does not perform an expensive square root operation like in /// `Vector::magnitude` method, and so can be used to compare vectors more /// efficiently. #[inline] fn magnitude2(self) -> Self::Scalar { Self::dot(self, self) } /// The distance from the tail to the tip of the vector. #[inline] fn magnitude(self) -> Self::Scalar { use rust_num::Float; // FIXME: Not sure why we can't use method syntax for `sqrt` here... Float::sqrt(self.magnitude2()) } /// The angle between the vector and `other`, in radians. fn angle(self, other: Self) -> Rad; /// Returns a vector with the same direction, but with a magnitude of `1`. #[inline] #[must_use] fn normalize(self) -> Self { self.normalize_to(Self::Scalar::one()) } /// Returns a vector with the same direction and a given magnitude. #[inline] #[must_use] fn normalize_to(self, magnitude: Self::Scalar) -> Self { self * (magnitude / self.magnitude()) } /// Returns the result of linearly interpolating the magnitude of the vector /// towards the magnitude of `other` by the specified amount. #[inline] #[must_use] fn lerp(self, other: Self, amount: Self::Scalar) -> Self { self + ((other - self) * amount) } } /// Dot product of two vectors. #[inline] pub fn dot(a: V, b: V) -> V::Scalar where V::Scalar: BaseFloat, { V::dot(a, b) } impl EuclideanVector for Vector2 { #[inline] fn dot(self, other: Vector2) -> S { Vector2::mul_element_wise(self, other).sum() } #[inline] fn angle(self, other: Vector2) -> Rad { Rad::atan2(Self::perp_dot(self, other), Self::dot(self, other)) } } impl EuclideanVector for Vector3 { #[inline] fn dot(self, other: Vector3) -> S { Vector3::mul_element_wise(self, other).sum() } #[inline] fn angle(self, other: Vector3) -> Rad { Rad::atan2(self.cross(other).magnitude(), Self::dot(self, other)) } } impl EuclideanVector for Vector4 { #[inline] fn dot(self, other: Vector4) -> S { Vector4::mul_element_wise(self, other).sum() } #[inline] fn angle(self, other: Vector4) -> Rad { Rad::acos(Self::dot(self, other) / (self.magnitude() * other.magnitude())) } } impl fmt::Debug for Vector2 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "Vector2 ")); <[S; 2] as fmt::Debug>::fmt(self.as_ref(), f) } } impl fmt::Debug for Vector3 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "Vector3 ")); <[S; 3] as fmt::Debug>::fmt(self.as_ref(), f) } } impl fmt::Debug for Vector4 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { try!(write!(f, "Vector4 ")); <[S; 4] as fmt::Debug>::fmt(self.as_ref(), f) } } #[cfg(test)] mod tests { mod vector2 { use vector::*; const VECTOR2: Vector2 = Vector2 { x: 1, y: 2 }; #[test] fn test_index() { assert_eq!(VECTOR2[0], VECTOR2.x); assert_eq!(VECTOR2[1], VECTOR2.y); } #[test] fn test_index_mut() { let mut v = VECTOR2; *&mut v[0] = 0; assert_eq!(v, [0, 2].into()); } #[test] #[should_panic] fn test_index_out_of_bounds() { VECTOR2[2]; } #[test] fn test_index_range() { assert_eq!(&VECTOR2[..0], &[]); assert_eq!(&VECTOR2[..1], &[1]); assert_eq!(VECTOR2[..0].len(), 0); assert_eq!(VECTOR2[..1].len(), 1); assert_eq!(&VECTOR2[2..], &[]); assert_eq!(&VECTOR2[1..], &[2]); assert_eq!(VECTOR2[2..].len(), 0); assert_eq!(VECTOR2[1..].len(), 1); assert_eq!(&VECTOR2[..], &[1, 2]); assert_eq!(VECTOR2[..].len(), 2); } #[test] fn test_into() { let v = VECTOR2; { let v: [i32; 2] = v.into(); assert_eq!(v, [1, 2]); } { let v: (i32, i32) = v.into(); assert_eq!(v, (1, 2)); } } #[test] fn test_as_ref() { let v = VECTOR2; { let v: &[i32; 2] = v.as_ref(); assert_eq!(v, &[1, 2]); } { let v: &(i32, i32) = v.as_ref(); assert_eq!(v, &(1, 2)); } } #[test] fn test_as_mut() { let mut v = VECTOR2; { let v: &mut [i32; 2] = v.as_mut(); assert_eq!(v, &mut [1, 2]); } { let v: &mut (i32, i32) = v.as_mut(); assert_eq!(v, &mut (1, 2)); } } #[test] fn test_from() { assert_eq!(Vector2::from([1, 2]), VECTOR2); { let v = &[1, 2]; let v: &Vector2<_> = From::from(v); assert_eq!(v, &VECTOR2); } { let v = &mut [1, 2]; let v: &mut Vector2<_> = From::from(v); assert_eq!(v, &VECTOR2); } assert_eq!(Vector2::from((1, 2)), VECTOR2); { let v = &(1, 2); let v: &Vector2<_> = From::from(v); assert_eq!(v, &VECTOR2); } { let v = &mut (1, 2); let v: &mut Vector2<_> = From::from(v); assert_eq!(v, &VECTOR2); } } } mod vector3 { use vector::*; const VECTOR3: Vector3 = Vector3 { x: 1, y: 2, z: 3 }; #[test] fn test_index() { assert_eq!(VECTOR3[0], VECTOR3.x); assert_eq!(VECTOR3[1], VECTOR3.y); assert_eq!(VECTOR3[2], VECTOR3.z); } #[test] fn test_index_mut() { let mut v = VECTOR3; *&mut v[1] = 0; assert_eq!(v, [1, 0, 3].into()); } #[test] #[should_panic] fn test_index_out_of_bounds() { VECTOR3[3]; } #[test] fn test_index_range() { assert_eq!(&VECTOR3[..1], &[1]); assert_eq!(&VECTOR3[..2], &[1, 2]); assert_eq!(VECTOR3[..1].len(), 1); assert_eq!(VECTOR3[..2].len(), 2); assert_eq!(&VECTOR3[2..], &[3]); assert_eq!(&VECTOR3[1..], &[2, 3]); assert_eq!(VECTOR3[2..].len(), 1); assert_eq!(VECTOR3[1..].len(), 2); assert_eq!(&VECTOR3[..], &[1, 2, 3]); assert_eq!(VECTOR3[..].len(), 3); } #[test] fn test_into() { let v = VECTOR3; { let v: [i32; 3] = v.into(); assert_eq!(v, [1, 2, 3]); } { let v: (i32, i32, i32) = v.into(); assert_eq!(v, (1, 2, 3)); } } #[test] fn test_as_ref() { let v = VECTOR3; { let v: &[i32; 3] = v.as_ref(); assert_eq!(v, &[1, 2, 3]); } { let v: &(i32, i32, i32) = v.as_ref(); assert_eq!(v, &(1, 2, 3)); } } #[test] fn test_as_mut() { let mut v = VECTOR3; { let v: &mut [i32; 3] = v.as_mut(); assert_eq!(v, &mut [1, 2, 3]); } { let v: &mut (i32, i32, i32) = v.as_mut(); assert_eq!(v, &mut (1, 2, 3)); } } #[test] fn test_from() { assert_eq!(Vector3::from([1, 2, 3]), VECTOR3); { let v = &[1, 2, 3]; let v: &Vector3<_> = From::from(v); assert_eq!(v, &VECTOR3); } { let v = &mut [1, 2, 3]; let v: &mut Vector3<_> = From::from(v); assert_eq!(v, &VECTOR3); } assert_eq!(Vector3::from((1, 2, 3)), VECTOR3); { let v = &(1, 2, 3); let v: &Vector3<_> = From::from(v); assert_eq!(v, &VECTOR3); } { let v = &mut (1, 2, 3); let v: &mut Vector3<_> = From::from(v); assert_eq!(v, &VECTOR3); } } } mod vector4 { use vector::*; const VECTOR4: Vector4 = Vector4 { x: 1, y: 2, z: 3, w: 4 }; #[test] fn test_index() { assert_eq!(VECTOR4[0], VECTOR4.x); assert_eq!(VECTOR4[1], VECTOR4.y); assert_eq!(VECTOR4[2], VECTOR4.z); assert_eq!(VECTOR4[3], VECTOR4.w); } #[test] fn test_index_mut() { let mut v = VECTOR4; *&mut v[2] = 0; assert_eq!(v, [1, 2, 0, 4].into()); } #[test] #[should_panic] fn test_index_out_of_bounds() { VECTOR4[4]; } #[test] fn test_index_range() { assert_eq!(&VECTOR4[..2], &[1, 2]); assert_eq!(&VECTOR4[..3], &[1, 2, 3]); assert_eq!(VECTOR4[..2].len(), 2); assert_eq!(VECTOR4[..3].len(), 3); assert_eq!(&VECTOR4[2..], &[3, 4]); assert_eq!(&VECTOR4[1..], &[2, 3, 4]); assert_eq!(VECTOR4[2..].len(), 2); assert_eq!(VECTOR4[1..].len(), 3); assert_eq!(&VECTOR4[..], &[1, 2, 3, 4]); assert_eq!(VECTOR4[..].len(), 4); } #[test] fn test_into() { let v = VECTOR4; { let v: [i32; 4] = v.into(); assert_eq!(v, [1, 2, 3, 4]); } { let v: (i32, i32, i32, i32) = v.into(); assert_eq!(v, (1, 2, 3, 4)); } } #[test] fn test_as_ref() { let v = VECTOR4; { let v: &[i32; 4] = v.as_ref(); assert_eq!(v, &[1, 2, 3, 4]); } { let v: &(i32, i32, i32, i32) = v.as_ref(); assert_eq!(v, &(1, 2, 3, 4)); } } #[test] fn test_as_mut() { let mut v = VECTOR4; { let v: &mut[i32; 4] = v.as_mut(); assert_eq!(v, &mut [1, 2, 3, 4]); } { let v: &mut(i32, i32, i32, i32) = v.as_mut(); assert_eq!(v, &mut (1, 2, 3, 4)); } } #[test] fn test_from() { assert_eq!(Vector4::from([1, 2, 3, 4]), VECTOR4); { let v = &[1, 2, 3, 4]; let v: &Vector4<_> = From::from(v); assert_eq!(v, &VECTOR4); } { let v = &mut [1, 2, 3, 4]; let v: &mut Vector4<_> = From::from(v); assert_eq!(v, &VECTOR4); } assert_eq!(Vector4::from((1, 2, 3, 4)), VECTOR4); { let v = &(1, 2, 3, 4); let v: &Vector4<_> = From::from(v); assert_eq!(v, &VECTOR4); } { let v = &mut (1, 2, 3, 4); let v: &mut Vector4<_> = From::from(v); assert_eq!(v, &VECTOR4); } } } }